MIDTERM I, FORM A

MATH 132 WI00

I. Compute the following limits (if the limit is $+\infty$ or $-\infty$ or DNE, state whether it is $+\infty$ or $-\infty$ or DNE; leave the answer in fractions)

(a)
$$\lim_{t \to 2} \sqrt[3]{t^2 + 1}$$
 (6 points)

(b)
$$\lim_{x \to 2} \frac{4 - x^2}{x^2 - 5x + 6}$$
 (6 points)

(c)
$$\lim_{x \to \infty} \frac{x^{1997} + 9}{1997x^{1998} + 2000}$$
 (6 points)

(d)
$$\lim_{x \to -\infty} \frac{x}{1 - 7x}$$
 (6 points)

(e) Let
$$f(x) = 5x - 8$$
, find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ (6 points)

(f)
$$\lim_{h \to 0} \frac{\frac{4}{3+h} - \frac{4}{3-h}}{h}$$
 (6 points)

Date: 01/21/2001.

find:

(i)
$$\lim_{x \to 3^+} G(x)$$
 (2 points)

(ii)
$$\lim_{x \to 3^{-}} G(x)$$
 (2 points)

(iii)
$$G(3)$$
 (2 points)

(iv)
$$\lim_{x \to \infty} G(x)$$
 (2 points)

(v)
$$\lim_{x \to -\infty} G(x)$$
 (2 points)

(h) Let
$$f(x) = \begin{cases} \frac{7}{x+1}, & \text{if } x < 1\\ \frac{7}{4}, & \text{if } x = 1\\ \frac{14}{x+5}, & \text{if } x > 1 \end{cases}$$
 Find:

(i)
$$\lim_{x \to 1^+} f(x)$$
 (2 points)

(ii)
$$\lim_{x \to 1^-} f(x)$$
 (2 points)

(iii)
$$f(1)$$
 (2 points)

II. Find the derivatives of the following functions (do not simplify)

(a)
$$f(s) = (2s+1)(1-s+3s^2)$$
 (6 points)

(b)
$$f(t) = \frac{t^3 + 2}{2t^5 + t + 4}$$
 (6 points)

(c)
$$y = [(3x - 7)^5][(x^2 + 5)]$$
 (6 points)

III. Solve the inequality

$$\frac{(7-x)(5+x)}{(x-3)} \le 0$$
 (10 points)

IV. Find the equation of the tangent line to the graph of

$$y = 8x^3 + 7x - 6$$

at the point (1,9) (8 points)

- V. Let $p=200-2q-q^2$ be the demand function for a manufacturers product.
- (a) Find the rate of change of price p per unit with respect to quantity q (6 points)
 - (b) How fast is the price changing with respect q when q = 5 (6 points)