MIDTERM I, FORM A

MATH 132 WI00

I. Compute the following limits (if the limit is $+\infty$ or $-\infty$ or DNE, state whether it is $+\infty$ or $-\infty$ or DNE; leave the answer in fractions)

(a)
$$\lim_{t \to 2} \sqrt[3]{t^2 + 1} \qquad (6 \text{ points})$$

Answer: $\sqrt[3]{5}$ - plug in 2

(b)
$$\lim_{x \to 2} \frac{4 - x^2}{x^2 - 5x + 6}$$
 (6 points)

Answer: $\frac{-4}{-1} = 4$ since $\frac{4-x^2}{x^2-5x+6} = \frac{-(x-2)(x+2)}{(x-2)(x-3)} = \frac{-(x+2)}{(x-3)}$

(c)
$$\lim_{x \to \infty} \frac{x^{1997} + 9}{1997x^{1998} + 2000}$$
 (6 points)

Answer: 0 - it's $\lim_{x\to\infty} \frac{x^{1997}}{1997x^{1998}} = \lim_{x\to\infty} \frac{1}{1997x}$

(d)
$$\lim_{x \to -\infty} \frac{x}{1 - 7x}$$
 (6 points)

Answer: $-\frac{1}{7}$ - same as previous, only $\lim_{x\to -\infty} \frac{x}{-7x} \dots$

(e) Let
$$f(x) = 5x - 8$$
, find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ (6 points)

Answer: 5

(f)
$$\lim_{h \to 0} \frac{\frac{4}{3+h} - \frac{4}{3-h}}{h}$$
 (6 points)

Answer: $-\frac{8}{9}$

 $Date \colon 01/21/2001.$

 $\quad \text{find:} \quad$

(i)
$$\lim_{x \to 3^+} G(x)$$
 (2 points)

Answer: 3

(ii)
$$\lim_{x \to 3^{-}} G(x)$$
 (2 points)

Answer: 2

(iii)
$$G(3)$$
 (2 points)

Answer: 3

(iv)
$$\lim_{x \to \infty} G(x)$$
 (2 points)

Answer: ∞

(v)
$$\lim_{x \to -\infty} G(x)$$
 (2 points)

Answer: $-\infty$

(h) Let
$$f(x) = \begin{cases} \frac{7}{x+1}, & \text{if } x < 1\\ \frac{7}{4}, & \text{if } x = 1\\ \frac{14}{x+5}, & \text{if } x > 1 \end{cases}$$
 Find:

(i)
$$\lim_{x \to 1^+} f(x)$$
 (2 points)

Answer: $\frac{14}{6}$ (use last formula)

(ii)
$$\lim_{x \to 1^{-}} f(x)$$
 (2 points)

Answer: $\frac{7}{2}$ (use first formula)

(iii)
$$f(1)$$
 (2 points)

Answer: $\frac{7}{4}$ (use the middle definition)

II. Find the derivatives of the following functions (do not simplify)

(a)
$$f(s) = (2s+1)(1-s+3s^2)$$
 (6 points)

Answer: $2(1 - s + 3s^2) + (2s + 1)(-1 + 6s)$ -product rule

(b)
$$f(t) = \frac{t^3 + 2}{2t^5 + t + 4}$$
 (6 points)

Answer: $\frac{(3t^2)(2t^5+t+4)-(t^3+2)(10t^4+1)}{(2t^5+t+4)^2}$ - quotient rule

(c)
$$y = [(3x - 7)^5][(x^2 + 5)]$$
 (6 points)

Answer: $[5(3x-7)^4(3)](x^2+5)+[(3x-7)^5](2x)$ - product rule combined with chain rule

III. Solve the inequality

$$\frac{(7-x)(5+x)}{(x-3)} \le 0$$
 (10 points)

Answer: $[-5, 3) \cup [7, \infty)$

IV. Find the equation of the tangent line to the graph of

$$y = 8x^3 + 7x - 6$$

at the point (1,9) (8 points)

Answer: slope is given by derivative $(24x^2+7)$ in 1 $(24\cdot1^2+7=31)$, so it's 31. Equation is given by: y-9=31(x-1)

- V. Let $p = 200 2q q^2$ be the demand function for a manufacturers product.
- (a) Find the rate of change of price p per unit with respect to quantity q (6 points)

Answer: read the problem carefully - we are asked to find RATE OF CHANGE OF p WITH RESPECT TO q, hence it's DERIVATIVE of p with respect to q - result is -2-2q

(b) How fast is the price changing with respect q when q = 5 (6 points)

Answer: plug in 5 - result is $-2 - 2 \cdot 5 = -2 - 10 = -12$