MIDTERM III

MATH 132 WINTER 2000

I. Evaluate the following integrals

$$
\begin{equation*}
\text { a) } \quad \int x\left(7 x^{2}+2\right)^{4} d x \tag{10p}
\end{equation*}
$$

use substitution: $\left.u=7 x^{2}+2\right) \Rightarrow d u=7 \cdot 2 x d x=14 x d x \Rightarrow \frac{1}{14} d u=x d x$. The integral then becomes:

$$
\begin{gather*}
\int u^{4} \frac{1}{14} d u=\frac{1}{14} \int u^{4} d u=\frac{1}{14} \frac{u^{5}}{5}+C=\frac{\left(7 x^{2}+2\right)^{5}}{70}+C \\
\text { b) } \quad \int \frac{x^{2}+6 x+3}{x} d x \tag{10p}
\end{gather*}
$$

divide each term of the numerator by x, and get:

$$
\begin{gather*}
\int\left(x+6+3 \frac{1}{x}\right) d x=\int x d x+\int 6 d x+\int 3 \frac{1}{x} d x=\frac{x^{2}}{2}+6 x+3 \ln (x)+C \\
\text { c) } \int_{0}^{6} 100+6 x^{2} d x \tag{10p}\\
\int 100+6 x^{2} d x=100 x+6 \frac{x^{3}}{3}=100 x+2 x^{3}
\end{gather*}
$$

so

$$
\begin{align*}
\int_{0}^{6} 100+6 x^{2} d x=(100 x & \left.+2 x^{3}\right)\left.\right|_{0} ^{6}=\left(100 \cdot 6+2 \cdot 6^{3}\right)-\left(100 \cdot 0+2 \cdot 0^{3}\right)= \\
& =(600+432)-0=1032 \\
\text { d) } & \int \frac{e^{x}}{e^{x}+5} d x \tag{10p}
\end{align*}
$$

[^0]Use substitution again, namely $u=e^{x}+5 \Rightarrow d u=e^{x} d x$ so our integral becomes

$$
\int \frac{1}{u} d u=\ln (u)+C=\ln \left(e^{x}+5\right)+C
$$

(at this point have the integral tables - in Appendix C of your book ready)
e) use provided integral tables to find the following integral. State the number of formula that you use

$$
\int \frac{x d x}{\sqrt{5+6 x}}
$$

if you have the samples' package, the formula that matches our function is 8.; if you only have your textbook, the formula in Appendix C that matches the function is $\mathbf{1 5}$.
based on this formula we get, noticing that $a=5$ and $b=6$:

$$
\int \frac{x}{\sqrt{5+6 x}} d x=\frac{2(6 x-2 \cdot 5) \sqrt{5+6 x}}{3 \cdot 6^{2}}+C=\frac{2(6 x-10) \sqrt{5+6 x}}{108}+C
$$

II. Find the area of the region bounded by: the graph of the curve $y=$ $x^{2}-2 x$, the lines $x=-2, x=1$ and the x-axis (15 p)

Draw the graph! (in the exam, the graph, most likely, will be provided to you ...)

We have to integrate from $x=-2$ up to $x=1$. Let's check whether y becomes zero between -2 and 1: $y=0 \Rightarrow x^{2}-2 x=0 \Rightarrow x(x-2)=0 \Rightarrow x=0$ or $x=2$. Between -2 and 1 there's only one of them, namely 0 . So let's compute the integral from -2 to 0

$$
\begin{aligned}
\int_{-2}^{0} x^{2}-2 x d x & =\frac{x^{3}}{3}-\left.x^{2}\right|_{-2} ^{0}=\left(\frac{0^{3}}{3}-0^{2}\right)-\left(\frac{(-2)^{3}}{3}-(-2)^{2}\right)= \\
& =0-\frac{-8}{3}+4=2.66+4=6.66
\end{aligned}
$$

and the integral from 0 to 1
$\int_{0}^{1} x^{2}-2 x d x=\frac{x^{3}}{3}-\left.x^{2}\right|_{0} ^{1}=\left(\frac{1^{3}}{3}-1^{2}\right)-\left(\frac{0^{3}}{3}-0^{2}\right)=\frac{1}{3}-1=0.33-1=-0.66$
Notice that the second integral is negative! this because the graph of y is below the x-axis; in order to compute the total area, on the other hand, we just need to drop the second integral's negative sign, and add the two, positive now, numbers together:

$$
\text { Total_area }=6.66+0.66=7.33
$$

III. Suppose the demand equation for a product is given by

$$
p=400-2 q
$$

and its supply function is given by

$$
p=q+100
$$

(a) find the equilibrium point
(b) find the consumer's surplus
(c) find the producer's surplus
it's the regular setup - with p in terms of q for both equations. Draw the graph(s)!

We need the intersection point - set the two equations equal to one another:

$$
\begin{gathered}
400-2 q=q+100 \Rightarrow 400=q+100+2 q=3 q+100 \Rightarrow 400-100=3 q \Rightarrow \\
\Rightarrow 300=3 q \Rightarrow q=100
\end{gathered}
$$

and based on this, $p=q+100=100+100=200$. Hence the equilibrium is $(p, q)=(200,100)$.

To find the Consumer's Surplus, look at the graph - it's the upper-most area, bounded by the decreasing $p=400-2 q$ function and by $p=200$ (the equilibrium). The integral goes from $q=0$ up to $q=100$ (again, the equilibrium). Hence we have:

$$
\begin{aligned}
C S & =\int_{0}^{1} 00[(400-2 q)-200] d q=\int_{0}^{1} 00200-2 q d q=\left.\left(200 q-q^{2}\right)\right|_{0} ^{1} 00= \\
& =\left(200 \cdot 100-100^{2}\right)-\left(200 \cdot 0-0^{2}\right)=(20000-10000)-0=10000
\end{aligned}
$$

For the Producer's Surplus, we look at the area below the Consumer's Surplus' area - it's bounded by $p=200$ (the equilibrium) and the increasing $p=q+100$ function; also, this integral goes, again, from $q=0$ to $q=100$ (the equilibrium, once again). We get:

$$
\begin{gathered}
P S=\int_{0}^{1} 00[200-(q+100)] d q=\int_{0}^{1} 00(200-q-100) d q=\int_{0}^{1} 00100-q d q= \\
=\left.\left(100 q-\frac{q^{2}}{2}\right)\right|_{0} ^{1} 00=\left(100 \cdot 100-\frac{100^{2}}{2}\right)-\left(100 \cdot 0-\frac{0^{2}}{2}\right)= \\
=(10000-5000)-0=5000
\end{gathered}
$$

IV. Find the area under the graph of the curve $y=9-x^{2}$ and above the line $y=5-3 x$. (15p)

Draw the graph! (again, most likely the exam paper will provide you with the graph). Let's see where the two graphs intersect: $9-x^{2}=5-3 x \Rightarrow 0=$
$5-3 x-9+x^{2}=x^{2}-3 x-4=(x-4)(x+1)$ which gives $x=-1$ os $x=4$. Hence, we're interested in the region bounded by these two values. We need to compute the integral of the difference between the two functions, from -1 to 4 . Optionally, we need to see which function sits above (why optionally? if you choose any order, and you get a negative result, this just means you chose the wrong order; but the result you got is still OK, just drop the sign!). As an example, let's choose the obviously wrong order, namely suppose the line is above, so we substract $y=9-x^{2}$ out of $y=5-3 x$.

Let's compute:

$$
\begin{aligned}
& \int_{-1}^{4}\left[(5-3 x)-\left(9-x^{2}\right)\right] d x=\int_{-1}^{4}\left(5-3 x-9+x^{2}\right) d x=\int_{-1}^{4}\left(x^{2}-3 x-4\right) d x= \\
& =\left.\left(\frac{x^{3}}{3}-3 \frac{x^{2}}{2}-4 x\right)\right|_{-1} ^{4}=\left(\frac{4^{3}}{3}-3 \frac{4^{2}}{2}-4 \cdot 4\right)-\left(\frac{(-1)^{3}}{3}-3 \frac{(-1)^{2}}{2}-4 \cdot(-1)\right)= \\
& \quad=(21.33-24-16)-(-0.33+1.5+4)=-18.66-5.16=-23.83
\end{aligned}
$$

Negative result? No problem, it means we just chose the right order ... so the actual result reads:

[^0]: Date: 03/03/2000.

