Final Exam

Part I

- 1. Let g(x) = 2x 3 and $f(x) = x^2 + 4$.
 - a) Find the domain of $\frac{f(x)}{g(x)}$.
 - b) Find f(4) g(4).
 - c) Find a formula for $(f \circ g)(x)$.
 - d) Find all x for which f(x) + g(x) = 0
- **2.** Find all real numbers x which satisfy the inequality: $x^2 + 3x > 10$.
- **3.** Factor the polynomial $f(x) = x^3 13x + 12$ into a product of three **linear** factors. (Hint: 3 is a zero.) Work must be shown. Calculator answers will not receive full credit.
- **4.** Consider the function $f(x) = \frac{4(x-5)(x+3)}{(x+2)(x-3)}$. You must do parts a), b), and c) algebraically.
 - a) Find the vertical asymptotes.
 - b) Find the horizontal asymptotes, if any.
 - c) Find the x-intercepts and y-intercepts for the graph.
 - d) Sketch the graph. Be sure to include and label all of the information found above.
- **5.** Under each graph picture write the letter of the appropriate description. There is only one correct description for each picture.
 - A. Horizontal asymptote at f(x) = 2; Vertical asymptote at x = 2; f(x) is decreasing
 - B. Horizontal asymptote at f(x) = 2; Vertical asymptote at x = -2; f(2) = 0
 - C. Horizontal asymptote at f(x) = -2; Vertical asymptote at x = 2; When x > 2, y > 0.
 - D. Horizontal asymptote at f(x) = -2; Vertical asymptote at x = -2; When x < -2, y < 0.
 - E. Horizontal asymptote at f(x) = 2; Vertical asymptote at x = 2; f(x) is increasing
 - F. Horizontal asymptote at f(x) = 2; Vertical asymptote at x = -2; f(0) = 4

Part II

- **6.** Solve the equation $1 \log(x + 3) = \log(x)$ by finding the exact solution(s) using **algebraic methods**. (Calculator solutions receive no credit.)
- 7. a) Sketch the graph $f(x) = 2 \ln x + 2$. Be sure to label all the intercepts and asymptotes if any.
 - b) Find the formula for the inverse function f^{-1} .
- **8.** A certain angle φ has $\cos(\varphi) = -.2121$ and $\sin(\varphi) < 0$.
 - a) If φ is in standard position, which Quadrant contains the terminal side of angle φ ?
 - b) Find all the possible values, in radians, for φ . (Hint: Your answer should include an integer k.)
- **9.** Algebraically verify the identity.

$$1 - \sin y = \frac{\cos^2 y}{1 + \sin y}$$

- **10.** Let $y = A \sin(Bx + C)$, where A, B, and C are positive. Given the following information, find A, B, and C, and write out the correct expression for y.
 - Amplitude: 3
 - Period: $\frac{p}{2}$
 - Phase Shift: -1

Part III

- 11. Suppose that α , β are acute angles with $\cos(\mathbf{a}) = \frac{3}{4}$ and $\sin(\mathbf{b}) = \frac{2}{5}$. Determine the **exact** value for $\cos(\mathbf{a} + \mathbf{b})$.
- 12. a) Use the sum identities to algebraically verify this identity:

$$\sin 2x = 2\sin x \cos x$$

- b) Let \mathbf{q} be an acute angle and $\tan \mathbf{q} = \frac{1}{4}$. Find the exact value of $\sin (2\mathbf{q})$. Calculator answers receive no credit.
- **13.** Which angles \mathbf{q} , in the interval $[0^{\circ}, 360^{\circ})$, satisfy $\cos(2\mathbf{q}) = \frac{1}{2}$? Find the **exact** values, in degrees, of all four answers.
- **14.** Given that x is in the interval $[0, 2\mathbf{p})$, use algebraic methods solve the trigonometric equation $\tan x = 2 \sin x$. **Exact** answers are required.
- **15.** a) Convert the polar coordinates point $\left(7, \frac{2\mathbf{p}}{3}\right)$ to rectangular coordinates. (Answer should be accurate to 2 decimal places.)
 - b) Change the polar equation $r = -2 \sin q$ to rectangular form.
 - c) Change $y = x^2$ to polar form.