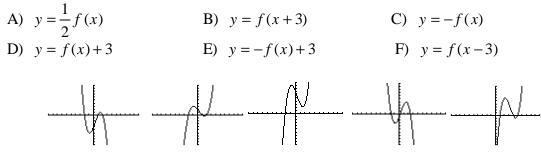
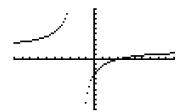
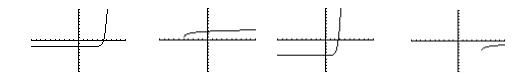

Math 150 Final Exam


Sample Exams Questions

Sp 2001


- Let g(x) = 7x 2 and f(x) = x² 3.
 a) Find the domain of f(x)/g(x).
 b) Find f(4) g(4).
 c) Find a formula for (f ∘ g)(x).
 - d) Find a formula for g^{-1} .
- 2. Factor the polynomial $f(x) = x^3 4x^2 4x + 16$ into a product of three **linear** factors. Calculator answers will not receive full credit. (Hint: 2 is a zero.)
- 3. Find all real numbers x which satisfy the inequality: $x^2 + 8 > -6x$. Answer using interval notation.
- 4. Suppose that the picture below is the graph of y = f(x).

For each of the graphs below, write the letter that corresponds to the correct transformation of f.



5. Find the formula for the rational function f determined by the given graph. (Hint: You must use the information about the asymptotes and intercepts.)

6. a) Sketch the graph $f(x) = \log(x+5)+2$. Be sure to label all the intercepts and asymptotes if any. Give your answers with 2 decimal place accuracy.

b) Which of the following is the graph of f^{-1} , the inverse function of f? Circle your answer.

- 7. Suppose that q, j are acute angles with $\cos(q) = \frac{3}{4}$ and $\sin(j) = \frac{1}{3}$. Determine the **exact** value for $\cos(q + j)$.
- 8. A certain angle φ has $\cos(\varphi) = .2626$ and $\sin(\varphi) < 0$.
 - a) If ϕ is in standard position, which Quadrant contains the terminal side of angle ϕ
 - b) Find all the possible values, in radians, for φ . (Hint: Your answer should include an integer *k*.)
- 9. a) Determine the amplitude, period, and phase shift for $y = 2\sin\left(px \frac{p}{3}\right)$.
 - b) If $f(x) = A \sin(Bx + C)$ has a period of 2, an amplitude of 6, and a phase shift of -1, find *A*, *B* and *C*. (Assume that *A*, *B*, and *C* are positive.)
- **10.** Algebraically verify the identity.

$$\frac{(1-\sin x)(1+\sin x)}{1-\cos^2 x} = \cot^2 x$$

- **11.** Given $\mathbf{u} = \langle -1, 2 \rangle$ and $\mathbf{v} = \langle 3, -2 \rangle$.
 - a) Find the magnitude, $|\mathbf{v}|$.
 - b) Find $2\mathbf{u} \mathbf{v}$.
 - c) Find the unit vector in the same direction as **u**.
- 12. Suppose **u** and **v** are vectors which are perpendicular, having $|\mathbf{u} + \mathbf{v}| = 32$ and the angle between **u** + **v** and **u** is 22°. Find the lengths $|\mathbf{u}|$ and $|\mathbf{v}|$.
- 13. Given that \boldsymbol{q} is in the interval $\left[0, \frac{\boldsymbol{p}}{2}\right]$, use **algebraic methods** to solve the trigonometric equation $2\cos^2 \boldsymbol{q} = \sin 2\boldsymbol{q}$. Exact answers are required.
- 14. a) Convert the rectangular coordinates point (3, 8) to polar coordinates. (Answer should be accurate to 2 decimal places.)
 - b) Convert the equation $r = 2\cos q$ to rectangular form.
 - c) Convert $x = y^2$ to polar form.
- 15. a) Let z = 5 + 3i and w = 7 4i, compute zw.

b) Convert the complex number $-1+i\sqrt{3}$ to polar form. Give the exact values of *r* and *q*, with *q* in radians.

c) Convert the complex number $2e^{(\mathbf{p}/6)i}$ to rectangular form.