## Math 153 – First Midterm May 1, 2000

Instructions: The examination is closed book, other than one page of formulae. Please print your name on the exam. YOU MUST SHOW ALL YOUR WORK TO GET FULL CREDIT.

- 1. (20 Points) T or F ( If true just write true; if false give counterexample or correct calculation.)
  - (a) If sequences  $\{a_n\}$  and  $\{b_n\}$  are divergent, then sequence  $\{a_n+b_n\}$  is divergent.
  - (b) If  $\sum a_n$  is divergent, then  $\sum |a_n|$  is divergent.
  - (c) If  $\sum_{n=0}^{n=+\infty} C_n(-2)^n$  diverges, then  $\sum_{n=0}^{n=+\infty} C_n 3^n$  diverges.
  - (d) If sequence  $\{a_n\}$  converges, then  $\sum a_n$  converges.
- 2. (15 Points) Calculate the limits.

(a) 
$$\lim_{n \to \infty} \frac{n^2 - \sqrt{n}}{4 - n^2}$$
 (b)  $\lim_{n \to \infty} \frac{\sqrt{n}}{\ln n}$  (c)  $\lim_{n \to \infty} \frac{n!}{n^n}$ 

3. (15 Points) Find the Taylor series of the function about a=2.

$$f(x) = \ln x$$

- 4. (15 Points) Find the first four non-zero terms of the Maclaurin series for  $f(x) = x \sin(x^2)$ . Use this to find the eleventh derivative of f(x) at x = 0.
- 5. (15 Points) Given

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$

where |x| < 1. Use it to calculate the sum of the series

$$\frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \dots + \frac{n}{3^n} + \dots$$

6. (20 Points) Find the radius of convergence and interval of convergence for the power series

$$20 \qquad \sum_{n=0}^{n=+\infty} \frac{x^n}{n \ln n}$$