SOLUTIONS - CHAPTER 4.1

MATH 548 - SP 2000

1(b). One can assume x is positive - hint is the fact that we need |x-1| which means we are interested in what happens close to 1.

$$|x^2 - 1| < \frac{1}{10^3} \iff -\frac{1}{10^3} < x^2 - 1 < \frac{1}{10^3} \iff$$

$$\iff 1 - \frac{1}{10^3} < x^2 < 1 + \frac{1}{10^3} \iff \sqrt{1 - \frac{1}{10^3}} < x < \sqrt{1 + \frac{1}{10^3}} \iff$$

 $\iff 0.99949987 < x < 1.0004999 \iff -0.00050013 < x - 1 < 0.0004999$

Hence, if we choose |x-1| < 0.0004, let's say, the last condition is verified, so by going backwards we get what we need: $|x^2 - 1| < \frac{1}{10^3}$.

3.

$$\lim_{x \to c} f(x) = L \iff$$

for any given $\epsilon > 0$ there exists a $\delta(\epsilon) > 0$ such that if $0 < |x - c| < \delta(\epsilon)$ then $|f(x) - L| < \epsilon \iff \text{making } x = y + c, \text{ for any given } \epsilon > 0 \text{ there exists a } \delta(\epsilon) > 0 \text{ such that if } |y + c - c| < \delta(\epsilon) \text{ i.e. } |y - 0| < \delta(\epsilon) \text{ then } |f(y + c) - L| < \epsilon \iff$

$$\iff \lim_{y \to 0} f(y+c) = L$$

Changing in the last formula the symbol y with x we get the required result.

6. $|x^2-c^2|=|(x+c)(x-c)|=|x+c||x-c|$. But both $x,c\in(0,a)\Rightarrow x+c>0$ so we don't need the absolute value sign; more than that, x+c< a+a=2a. Hence, $|x^2-c^2|\leq 2a|x-c|$, which takes care of the first part. Taking now a fixed c, we have: for $\epsilon>0$, we take $\delta(\epsilon)=\frac{\epsilon}{2a}>0$ and this gives us, for any x with $|x-c|<\delta(\epsilon), |x^2-c^2|\leq 2a|x-c|<2a\frac{\epsilon}{2a}=\epsilon\iff$

$$\iff \lim_{x \to c} x^2 = c^2$$

8. Using same method as in 6, we can assume that our x wanders around some bounded interval that contains c, so we can assume we have $x, c \in$

Date: 04/03/2000.

(-M,M), for some positive $M\Rightarrow |x|< M, |c|< M.$ Then, because $x^3-c^3=(x-c)(x^2+xc+c^2)$ we have $|x^3-c^3|=|x-c||x^2+xc+c^2|\le \le |x-c|(|x^2|+|x||c|+|c^2|\le |x-c|(M^2+M*M+M^2)=3M^2|x-c|.$ Taking now $\epsilon>0,$ and $\delta(\epsilon)=\frac{\epsilon}{3M^2}>0$ we have that for $|x-c|<\epsilon,|x^3-c^3|\le 3M^2|x-c|<3M^2\frac{\epsilon}{3M^2}=\epsilon$

$$\iff \lim_{x \to c} x^3 = c^3$$

9. We have two cases: c=0 and c>0. For the first case we have that for $|x-0|=x<\epsilon^2,\, |\sqrt{x}-0|=\sqrt{x}<\sqrt{\epsilon^2}=\epsilon,$ which takes care of it. For the second case we use the following: $\sqrt{x}-\sqrt{c}=\frac{x-c}{\sqrt{x}+\sqrt{c}}$ and the fact

For the second case we use the following: $\sqrt{x}-\sqrt{c}=\frac{x-c}{\sqrt{x}+\sqrt{c}}$ and the fact that, since c>0 we can assume x,c>r, for r>0 fixed (obviously small ... but it's important that it exists - notice we couldn't have done it in the first case), so $\sqrt{x}+\sqrt{c}>2\sqrt{r}\Rightarrow \frac{1}{\sqrt{x}+\sqrt{c}}<\frac{1}{2\sqrt{r}}$, hence $|\sqrt{x}-\sqrt{c}|\leq \frac{1}{2\sqrt{r}}|x-c|$... and now for the ϵ we choose $\delta(\epsilon)=2\sqrt{r}*\epsilon$... and we have what we need (I'll leave you the pleasure to write the last details ...).

10(c). $\epsilon - \delta$: let $\epsilon > 0$, and choose $\delta(\epsilon) = \epsilon \to |x - 0| < \epsilon$ (i.e. $|x| < \epsilon$...). Then we have $|\frac{x^2}{|x|} - 0| = |\frac{x^2}{x}| = |x| < \epsilon$... done.

sequential: let $(x_n)_{n\in\mathbb{N}}\to 0$. We have that $|\frac{x_n^2}{|x_n|}|=|\frac{x_n^2}{x_n}|=|x_n|\Rightarrow -|x_n|\leq \frac{x_n^2}{|x_n|}\leq |x_n|$, so by Squeeze Theorem, since both $-|x_n|$ and $|x_n|\to 0 \Rightarrow \frac{x_n^2}{|x_n|}\to 0$, meaning that for any sequence converging to 0 the new sequence (through the function) converges to 0, so the limit at 0 for the function is 0, which is exactly what we wanted.

- **11(c).** To show that a limit doesn't exist it's enough to construct a sequence that converges to 0, but which through the function fails to converge. Let's take $x_n = (-1)^n \frac{1}{n}$ (it converges to 0 and alternates the sign).
- $x_n \to 0$ (easy to prove), and $x_n + sgn(x_n) = (-1)^n \frac{1}{n} + (-1)^n = (-1)^n (\frac{1}{n} + 1)$. This new sequence fails to converge, since if we take the subsequence x_{2n} (even indexes) we have $x_{2n} = \frac{1}{n} + 1 \to 1$, and if we take the subsequence x_{2n+1} (odd indexes) we have $x_{2n+1} = -(\frac{1}{n} + 1) \to -1$ if the sequence were convergent, all subsequences must converge to the same value, and this doesn't happen. Hence the limit doesn't exist.
- **14.** If $f(x) = x \Rightarrow |f(x)| \le |x|$; if $f(x) = 0 \Rightarrow |f(x)| \le |x|$. Hence, if we take an $\epsilon > 0$ and choose $\delta(\epsilon) = \epsilon$ we have that for $|x 0| = |x| < \epsilon$, $|f(x) 0| = |f(x)| \le |x| < \epsilon$, hence

$$\lim_{x \to 0} f(x) = 0$$

For the second part, let's take $c \in R^*$. We can always construct a sequence $(x_n)_{n \in \mathbb{N}} \subset Q$ and $(y_n)_{n \in \mathbb{N}} \subset R \setminus Q$, both converging to c (if $c \in Q$, for the

first sequence just take $(c-\frac{1}{n})$ and for the second $(c-\frac{\sqrt{2}}{n})$; if $c \in R \setminus Q$ take for the first sequence the sequence of approximations - e.g. for π take 3, 3.1, 3.14, 3.141, 3.1415 etc - and for the second $(c-\frac{1}{n})$; easy to check that these sequences verify the above conditions). Then, for (x_n) the limit is going to be c, and for (y_n) the limit is going to be 0 (the function becomes 0 for irrationals, so $f(y_n) = 0$, for all n, and $f(x_n) = x_n$ etc). Since $c \neq 0$ we get that we have 2 sequences which both converge to c, but through f they converge to different values, hence

$$\lim_{x \to c} f(x) DNE^1$$

for $c \neq 0$.

 $^{^{1}}$ DNE=does not exist