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1(b). One can assume x is positive - hint is the fact that we need |x− 1|
which means we are interested in what happens close to 1.

|x2 − 1| < 1
103

⇐⇒ − 1
103

< x2 − 1 <
1

103
⇐⇒

⇐⇒ 1− 1
103

< x2 < 1 +
1

103
⇐⇒

√
1− 1

103
< x <

√
1 +

1
103

⇐⇒

⇐⇒ 0.99949987 < x < 1.0004999 ⇐⇒ −0.00050013 < x− 1 < 0.0004999

Hence, if we choose |x−1| < 0.0004, let’s say, the last condition is verified,
so by going backwards we get what we need: |x2 − 1| < 1

103 .
•

3.
lim
x→c

f(x) = L ⇐⇒

for any given ε > 0 there exists a δ(ε) > 0 such that if 0 < |x − c| < δ(ε)
then |f(x) − L| < ε ⇐⇒ making x = y + c, for any given ε > 0 there
exists a δ(ε) > 0 such that if |y + c − c| < δ(ε) i.e. |y − 0| < δ(ε) then
|f(y + c)− L| < ε ⇐⇒

⇐⇒ lim
y→0

f(y + c) = L

Changing in the last formula the symbol y with x we get the required
result.

•
6. |x2−c2| = |(x+c)(x−c)| = |x+c||x−c|. But both x, c ∈ (0, a)⇒ x+c >

0 so we don’t need the absolute value sign; more than that, x+c < a+a = 2a.
Hence, |x2 − c2| ≤ 2a|x− c|, which takes care of the first part. Taking now
a fixed c, we have: for ε > 0, we take δ(ε) = ε

2a > 0 and this gives us, for
any x with |x− c| < δ(ε), |x2 − c2| ≤ 2a|x− c| < 2a ε

2a = ε ⇐⇒

⇐⇒ lim
x→c

x2 = c2

•
8. Using same method as in 6, we can assume that our x wanders around

some bounded interval that contains c, so we can assume we have x, c ∈
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(−M,M), for some positive M ⇒ |x| < M, |c| < M . Then, because x3−c3 =
(x− c)(x2 + xc+ c2) we have |x3 − c3| = |x− c||x2 + xc+ c2| ≤
≤ |x− c|(|x2|+ |x||c|+ |c2| ≤ |x− c|(M2 +M ∗M +M2) = 3M2|x− c|.

Taking now ε > 0, and δ(ε) = ε
3M2 > 0 we have that for |x − c| < ε,

|x3 − c3| ≤ 3M2|x− c| < 3M2 ε
3M2 = ε ⇐⇒

⇐⇒ lim
x→c

x3 = c3

•
9. We have two cases: c = 0 and c > 0. For the first case we have that

for |x− 0| = x < ε2, |
√
x− 0| =

√
x <
√
ε2 = ε, which takes care of it.

For the second case we use the following:
√
x−
√
c = x−c√

x+
√
c

and the fact
that, since c > 0 we can assume x, c > r, for r > 0 fixed (obviously small ...
but it’s important that it exists - notice we couldn’t have done it in the first
case), so

√
x+
√
c > 2

√
r ⇒ 1√

x+
√
c
< 1

2
√
r
, hence |

√
x−
√
c| ≤ 1

2
√
r
|x− c| ...

and now for the ε we choose δ(ε) = 2
√
r ∗ ε ... and we have what we need

(I’ll leave you the pleasure to write the last details ...).
•

10(c). ε− δ: let ε > 0, and choose δ(ε) = ε→ |x− 0| < ε (i.e. |x| < ε ...).
Then we have | x2

|x| − 0| = |x2

x | = |x| < ε ... done.

sequential: let (xn)n∈N → 0. We have that | xn2

|xn| | = |xn2

xn
| = |xn| ⇒

−|xn| ≤ xn2

|n| ≤ |xn|, so by Squeeze Theorem, since both −|xn| and |xn| →
0 ⇒ xn2

|xn| → 0, meaning that for any sequence converging to 0 the new
sequence (through the function) converges to 0, so the limit at 0 for the
function is 0, which is exactly what we wanted.

•
11(c). To show that a limit doesn’t exist it’s enough to construct a se-

quence that converges to 0, but which through the function fails to converge.
Let’s take xn = (−1)n 1

n (it converges to 0 and alternates the sign).
xn → 0 (easy to prove), and xn+sgn(xn) = (−1)n 1

n +(−1)n = (−1)n( 1
n +

1). This new sequence fails to converge, since if we take the subsequence
x2n (even indexes) we have x2n = 1

n +1→ 1, and if we take the subsequence
x2n+1 (odd indexes) we have x2n+1 = −( 1

n + 1) → −1 - if the sequence
were convergent, all subsequences must converge to the same value, and this
doesn’t happen. Hence the limit doesn’t exist.

•
14. If f(x) = x ⇒ |f(x)| ≤ |x|; if f(x) = 0 ⇒ |f(x)| ≤ |x|. Hence, if

we take an ε > 0 and choose δ(ε) = ε we have that for |x − 0| = |x| < ε,
|f(x)− 0| = |f(x)| ≤ |x| < ε, hence

lim
x→0

f(x) = 0

.
For the second part, let’s take c ∈ R∗. We can always construct a sequence

(xn)n∈N ⊂ Q and (yn)n∈N ⊂ R\Q, both converging to c (if c ∈ Q, for the
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first sequence just take (c− 1
n) and for the second (c−

√
2
n ); if c ∈ R\Q take

for the first sequence the sequence of approximations - e.g. for π take 3, 3.1,
3.14, 3.141, 3.1415 etc - and for the second (c− 1

n); easy to check that these
sequences verify the above conditions). Then, for (xn) the limit is going to
be c, and for (yn) the limit is going to be 0 (the function becomes 0 for
irrationals, so f(yn) = 0, for all n, and f(xn) = xn etc). Since c 6= 0 we
get that we have 2 sequences which both converge to c, but through f they
converge to different values, hence

lim
x→c

f(x)DNE1

for c 6= 0.
•

1DNE=does not exist


