SOLUTIONS CHAPTER 4.3

MATH 548, SP 2000

4

 $\lim_{x\to c} f = \infty \iff \forall \alpha > 0 \exists \delta \text{ such that for all } x \in (0,\infty) \text{ with } |x-c| < \delta \text{ then } |f(x)| > \alpha > 0 \iff \forall \alpha > 0 \exists \delta \text{ such that for all } x \in (0,\infty) \text{ with } |x-c| < \delta \text{ then } \frac{1}{|f(x)|} < \frac{1}{\alpha}; \text{ taking } \alpha \text{ big enough makes } \frac{1}{\alpha} \text{ very small, so it might be a good idea to call } \frac{1}{\alpha} \text{ "ϵ", so we can get exactly the definition for the limit; so let's rewrite the last statement: } \forall \epsilon > 0 \exists \delta \text{ such that for all } x \in (0,\infty) \text{ with } |x-c| < \delta \text{ then } |\frac{1}{f(x)}| < \epsilon \iff \lim_{x\to c} \frac{1}{f(x)} = 0.$

5c

$$\lim_{x \to 0^+} \frac{x+2}{\sqrt{x}} = \lim_{x \to 0^+} \left(\frac{x}{\sqrt{x}} + \frac{2}{\sqrt{x}} \right) = \lim_{x \to 0^+} \left(\sqrt{x} + \frac{2}{\sqrt{x}} \right)$$

But $\sqrt{x} \to 0$ as $x \to 0^+$, so we have to see what happens to the second term. Take $\alpha > 0$, and construct $\delta(\alpha) = \frac{4}{\alpha^2}$. Then, if $x = |x| = |x - 0| < \frac{4}{\alpha^2} \Rightarrow |\frac{2}{\sqrt{x}}| > \frac{2}{\sqrt{\frac{4}{\alpha^2}}} = \frac{2}{\frac{2}{\alpha}} = \alpha \Rightarrow$ (by definition)

$$\lim_{x \to 0^+} \frac{2}{\sqrt{x}} = \infty$$

hence the whole limit is $0 + \infty = \infty$.

5h

Divide top and bottom by x:

$$\frac{\sqrt{x}-x}{\sqrt{x}+x} = \frac{\frac{\sqrt{x}-x}{x}}{\frac{\sqrt{x}+x}{x}} = \frac{\frac{1}{\sqrt{x}}-1}{\frac{1}{\sqrt{x}}+1}$$

Taking now numerator and denominator separately we get:

$$\lim_{x \to \infty} \left(\frac{1}{\sqrt{x}} - 1\right) = \left(\lim_{x \to \infty} \frac{1}{\sqrt{x}}\right) - 1 = 0 - 1 = -1$$

and

$$\lim_{x \to \infty} \left(\frac{1}{\sqrt{x}} + 1\right) = \left(\lim_{x \to \infty} \frac{1}{\sqrt{x}}\right) + 1 = 0 + 1 = +1$$

Date: 04/10/2000.

where we used $\lim_{x\to\infty}\frac{1}{\sqrt{x}}=0\iff \forall\epsilon,\exists\delta=\delta(\epsilon)=\frac{1}{\epsilon^2}$ such that, if $x>\delta=\frac{1}{\epsilon^2},|f(x)-0|=\frac{1}{\sqrt{x}}<\frac{1}{\sqrt{\frac{1}{\epsilon^2}}}=\frac{1}{\frac{1}{\epsilon}}=\epsilon.$

Hence,

$$\lim_{x \to \infty} \frac{\sqrt{x} - x}{\sqrt{x} + x} = \lim_{x \to \infty} \frac{\frac{1}{\sqrt{x}} - 1}{\frac{1}{\sqrt{x}} + 1} = \frac{\lim_{x \to \infty} (\frac{1}{\sqrt{x}} - 1)}{\lim_{x \to \infty} (\frac{1}{\sqrt{x}} + 1)}$$

(by Th. 4.2.4 - since the limit of the bottom, namely 1, is not zero), so we end up getting

$$=\frac{-1}{1}=-1$$

7

If $\lim_{x\to\infty} g = \infty$ we're done (since ∞ is "bigger" than any number).

Let now the limit be finite, $\lim_{x\to\infty} g = L$. Proof by contradiction: assume $\lim_{x\to\infty} f(x) > L \Rightarrow \exists \zeta_0 > 0$ such that, $\forall \delta \exists x_\delta$ with $x_\delta > \delta$ and $f(x_{\delta}) > L + \zeta_0$

But then, since $g(x) \to L \Rightarrow \exists \delta$ such that $|g(x) - L| < \frac{\zeta_0}{2}, \forall x > \delta \Rightarrow$ $g(x) < L + \frac{\zeta_0}{2} < L + \zeta_0, \forall x > \delta \Rightarrow g(x_\delta) < L + \zeta_0 < f(x_\delta),$ for the particular $x_\delta > \delta$ given by the above affirmation, which leads to the contradiction (f(x))is supposed to be $\leq g(x)$ for all x. Hence

$$\lim_{x \to \infty} f(x) \le \lim_{x \to \infty} g(x)$$

9

$$\lim_{x \to \infty} x f(x) = L \iff$$

 $\lim_{x \to \infty} x f(x) = L \iff$ $\forall \epsilon, \exists \delta = \delta(\epsilon), \text{ such that if } x > \delta \text{ then } |x f(x) - L| < \epsilon, \text{ which inequality is equivalent to (note } x \neq 0 \text{ and } x > 0) \ L - \epsilon < x f(x) < L + \epsilon \iff \frac{L - \epsilon}{x} < \epsilon$ $f(x) < \frac{L+\epsilon}{r}$.

second
$$x > \frac{L+\epsilon}{\epsilon} \Rightarrow x\epsilon > L + \epsilon \Rightarrow \frac{L+\epsilon}{x} < \epsilon$$

third
$$x > -\frac{L-\epsilon}{\epsilon} \Rightarrow -x\epsilon < L-\epsilon \Rightarrow -\epsilon < \frac{L-\epsilon}{x}$$

Let now $\delta_1(\epsilon) = \max(\delta(\epsilon), \frac{L+\epsilon}{\epsilon}, -\frac{L-\epsilon}{\epsilon})$. If $x > \delta_1 \Rightarrow$ first: $x > \delta$ the above inequality is true second $x > \frac{L+\epsilon}{\epsilon} \Rightarrow x\epsilon > L + \epsilon \Rightarrow \frac{L+\epsilon}{x} < \epsilon$; third $x > -\frac{L-\epsilon}{\epsilon} \Rightarrow -x\epsilon < L - \epsilon \Rightarrow -\epsilon < \frac{L-\epsilon}{x}$. Putting all inequalities together (you notice that the second inequality patches the right-hand side, and the third the left-hand side), and considering in what conditions they happen, we get:

$$\forall \epsilon, \exists \delta_1(\epsilon) \text{ such that } x > \delta_1 \text{ implies } |f(x)| < \epsilon \iff$$

$$\iff \lim_{x \to \infty} f(x) = 0$$

¹Note that the opposite affirmation would have stated that, for every ζ there exists a value δ such that for all $x > \delta$ we get $f(x) < L + \zeta$ - which means that the limit, if it exists, is less that $L+\zeta, \ \forall \ \zeta>0$; but this would imply that the limit is $\leq L$ - imagine making ζ smaller and smaller

12

Since $\lim f(x) = L > 0 \Rightarrow \exists \delta_0 = \delta_0(L)$ such that $|f(x) - L| < \frac{L}{2}$ which inequality is equivalent to $\frac{L}{2} < f(x) < \frac{3L}{2}$, for all $x > \delta_0$.

inequality is equivalent to $\frac{L}{2} < f(x) < \frac{3L}{2}$, for all $x > \delta_0$. Let $\alpha > 0$; we know that $\exists \delta_1 = \delta_1(\alpha)$ such that $g(x) > \frac{2\alpha}{L}$ for all $x > \delta_1 \Rightarrow f(x)g(x) > \frac{L}{2}\frac{2\alpha}{L} = \alpha$.

 $x > \delta_1 \Rightarrow f(x)g(x) > \frac{L}{2}\frac{2\alpha}{L} = \alpha$. Let's write down again the conditions and the final inequality: $\forall \alpha > 0, \exists \delta = \delta(\alpha) = \max(\delta_0(L), \delta_1(\alpha))$ such that $f(x)g(x) > \alpha$ for all $x > \delta$ (remember, L is fixed! hence δ_0 is fixed ... so the last δ is just a function of $\alpha \Leftrightarrow \beta$

$$\iff \lim_{x \to \infty} f(x)g(x) = \infty$$

As a counterexample for the case L=0 (by the way, did you see where we used the fact that $L\neq 0$? ... there's a fraction involving L as a denominator at some point ...) just take g(x)=x and $f(x)=\frac{1}{x}$. $g(x)=x\to\infty$ and $f(x)\to 0$ as $x\to\infty$, but $f(x)g(x)=1\to 1$ as $x\to\infty$.

13

If we could find such functions we would have the following:

$$\lim_{x \to \infty} \frac{f}{g} = \lim_{x \to \infty} \frac{f - g + g}{g} = \lim_{x \to \infty} \frac{f - g}{g} + \lim_{x \to \infty} \frac{g}{g} =$$

$$= \lim_{x \to \infty} \frac{f - g}{g} + 1 = 0 \iff \lim_{x \to \infty} \frac{f - g}{g} = -1$$

But $g(x) \to \infty \Rightarrow \frac{1}{g} \to 0$ and $(f - g)(x) \to 0$ hence their product (by Th. 4.2.4) has the property

$$\lim_{x\to\infty}\frac{f-g}{g}=\lim_{x\to\infty}(f-g)\frac{1}{g}=(\lim_{x\to\infty}(f-g))(\lim_{x\to\infty}\frac{1}{g})=0$$

so it can never be -1! the answer is **NO**.

As a last observation: how does one get the above result for $\frac{1}{g}$? We have that $\forall \epsilon$, there exists $\delta = \delta(\epsilon) = \delta(\frac{1}{\epsilon})$ such that for $x > \delta$ we get $g(x) > \frac{1}{\epsilon} \Rightarrow \frac{1}{g(x)} < \epsilon$... (look at problem 4!!).