SOLUTIONS CHAPTER 5.1

MATH 548 -SP00

3

Proof. Take $x \in [a, b]$; we distinguish 3 cases:

1) $x < c \Rightarrow x \in [a, c]$ on which interval h = f, hence h is continuous in x, since f is;

2) $x > c \Rightarrow x \in [c, b]$ on which interval h = g, hence h is continuous in x, since g is;

3) x = c; since f is continuous on [a, b] it means it is continuous "to the left" of $c \Rightarrow$ for any neighbourhood $V_{\epsilon}(f(c))$ there exists $V_{\delta}^{\leftarrow}(c)$ such that, if $x \in V_{\delta}^{\leftarrow}(c) \cap [a,c]$ then $f(x) \in V_{\epsilon}(f(c))$; similarly, since g is continuous "to the right of $c \Rightarrow$ for the same neighbourhood $V_{\epsilon}(f(c))$ there exists $V_{\delta}^{\rightarrow}(c)$ such that, if $x \in V_{\delta}^{\to}(c) \cap [c,b]$ then $f(x) \in V_{\epsilon}(f(c))$. Take now $V_{\delta}(c) =$ $V_{\delta}^{\leftarrow} \cap V_{\delta}^{\rightarrow}$ and this will do the trick (since any $x \in V_{\delta}(c)$ is either in the \leftarrow neighbourhood or in the \rightarrow one).

4c

Proof. Let's analyse this function. First of all, it's periodic, so we can restrict our attention to only the interval $[0, 2\pi)$.

- 1) $x \in [0, \frac{\pi}{2}) \Rightarrow \sin(x) \in [0, 1) \Rightarrow [\sin(x)] = 0$ 2) $x = \frac{\pi}{2} \Rightarrow [\sin(x)] = 1$ 3) $x \in (\frac{\pi}{2}, \pi] \Rightarrow [\sin(x)] = 0$
- 4) $x \in (\pi, 2\pi) \Rightarrow [\sin(x)] = -1$

It's simpler to give the answer to this problem by pointing out the points at which the function **fails** to be continuous: $\frac{\pi}{2} + 2k\pi$, $\pi + 2k\pi$ and ... $0 + 2k\pi$ $(k \in \mathbf{Z})$ (the last one because to the right of 0 one has 0 as an output - see behaviour for $[0, \frac{\pi}{2})$ - and to the left it has -1 as output - see behaviour for $(\pi, 2\pi)$, which can be shifted by 2π to the left).

6

Proof. Let $\epsilon > 0$. Since f is continuous at $c \Rightarrow$ there exists $V_{\delta}(c)$ such that, for any $x \in V_{\delta}(c), |f(x) - f(c)| < \frac{\epsilon}{2}$. Take now $x, y \in V_{\delta}(c);$

$$|f(x) - f(y)| = |f(x) - f(c) + f(c) - f(y)| = |(f(x) - f(c)) + (f(c) - f(y))| < |f(x) - f(y)| = |f(x) - f(x) - f(y)| = |f(x) - f(y)| = |f(x)$$

Date: 04/18/2000.

MATH 548 -SP00

$$<|f(x) - f(c)| + |f(c) - f(y)| = |f(x) - f(c)| + |f(y) - f(c)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

(triangle inequality for the critical part)

8

Proof. Since f is continuous in $\mathbf{R} \Rightarrow$ it's continuous in x as well. Since $x_n \to x \Rightarrow f(x_n) \to f(x)$ (continuity) \Rightarrow the sequence formed of 0 (zeros) converges to f(x); but it converges to 0 too, and since it cannot have 2 limits $\Rightarrow f(x) = 0 \Rightarrow x \in S$.

9	9
---	---

Proof. (a) using sequential criterion (which says that if $x_n \to c$ then $f(x_n) \to f(c)$, for any $(x_n)_{n \in \mathbb{N}}, x_n \in B$) we get that for those particular x_n s which consist of elements of A, if $x_n \to c \Rightarrow f(x_n) \to f(c) \iff g(x_n) \to g(c) \Rightarrow g$ is continuous at c.

(b) Taking f to be such that f(x) = 0 if $x \in \mathbf{Q}$ and f(x) = 1 if $x \in \mathbf{R} \setminus \mathbf{Q}$, we know that f is not continuous at c, for any $c \in \mathbf{R}$. But taking g to be f's restriction to \mathbf{Q} , then g = 0. Hence g is continuous, let's say at 0, even though f isn't (the way one should think about this phenomenon is that since f is defined is a bigger set - B - the variety of possible sequences convergent to a point is richer than for g, which is defined on a smaller set, and hence allows sequences a lesser freedom of choice; so even though the restricted kind of sequences get you the continuity property, the more general sequences most probably won't).

12

Proof. Any $c \in \mathbf{R}$ has at least one sequence of rational numbers $(x_n)_{n \in \mathbf{N}}$ which converges to it $(x_n \to c)$ (the best example is the sequence of approximations with some finite number of decimals - e.g. for π take 3, 3.1, 3.14, 3.141, 3.1415, 3.14159 etc). Since f is continuous we have that $f(x_n) \to f(c) \Rightarrow (0)_n \to f(c) \Rightarrow f(c) = 0$ for any $c \in \mathbf{R} \setminus \mathbf{Q}$.

13

Proof. Let $c \in \mathbf{Q} \Rightarrow \text{take } x_n = c$ (rational numbers) and $y_n = c + \frac{\pi}{n}$ (irrational numbers - mind the definition for g); both these sequences converge to c ... hence if we want to have continuity we must have both limits of $g(x_n)$ and $g(y_n)$ equal, and equal to g(c): $\lim_{n\to\infty} g(x_n) = \lim_{n\to\infty} 2c = 2c$ and $\lim_{n\to\infty} g(y_n) = \lim_{n\to\infty} c + \frac{\pi}{n} + 3 = c + 3 \Rightarrow 2c = c + 3 \Rightarrow c = 3$. If we choose now $d \in \mathbf{R} \setminus \mathbf{Q}$ and have $x_n =$ sequence of approximations (as in the previous

 $\mathbf{2}$

problem) and $y_n = d$ we get the same thing as for c ... problem is that d = 3 doesn't cope with d being irrational, hence there's no such d.