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Proof. Take x ∈ [a, b]; we distinguish 3 cases:
1) x < c⇒ x ∈ [a, c] on which interval h = f , hence h is continuous in x,

since f is;
2) x > c⇒ x ∈ [c, b] on which interval h = g, hence h is continuous in x,

since g is;
3) x = c; since f is continuous on [a, b] it means it is continuous ”to the

left” of c⇒ for any neighbourhood Vε(f(c)) there exists V←δ (c) such that, if
x ∈ V←δ (c) ∩ [a, c] then f(x) ∈ Vε(f(c)); similarly, since g is continuous ”to
the right”of c ⇒ for the same neighbourhood Vε(f(c)) there exists V→δ (c)
such that, if x ∈ V→δ (c) ∩ [c, b] then f(x) ∈ Vε(f(c)). Take now Vδ(c) =
V←δ ∩ V→δ and this will do the trick (since any x ∈ Vδ(c) is either in the ←
neighbourhood or in the → one).
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Proof. Let’s analyse this function. First of all, it’s periodic, so we can restrict
our attention to only the interval [0, 2π).

1) x ∈ [0, π2 )⇒ sin (x) ∈ [0, 1)⇒ [sin (x)] = 0
2) x = π

2 ⇒ [sin (x)] = 1
3) x ∈ (π2 , π]⇒ [sin (x)] = 0
4) x ∈ (π, 2π)⇒ [sin (x)] = −1
It’s simpler to give the answer to this problem by pointing out the points

at which the function fails to be continuous: π
2 +2kπ, π+2kπ and ... 0+2kπ

(k ∈ Z) (the last one because to the right of 0 one has 0 as an output - see
behaviour for [0, π2 ) - and to the left it has -1 as output - see behaviour for
(π, 2π), which can be shifted by 2π to the left).
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Proof. Let ε > 0. Since f is continuous at c⇒ there exists Vδ(c) such that,
for any x ∈ Vδ(c), |f(x)− f(c)| < ε

2 . Take now x, y ∈ Vδ(c);

|f(x)−f(y)| = |f(x)−f(c)+f(c)−f(y)| = |(f(x)−f(c))+(f(c)−f(y))| <
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< |f(x)− f(c)|+ |f(c)− f(y)| = |f(x)− f(c)|+ |f(y)− f(c)| < ε

2
+
ε

2
= ε

(triangle inequality for the critical part)
�
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Proof. Since f is continuous in R ⇒ it’s continuous in x as well. Since
xn → x ⇒ f(xn) → f(x) (continuity) ⇒ the sequence formed of 0 (zeros)
converges to f(x); but it converges to 0 too, and since it cannot have 2 limits
⇒ f(x) = 0⇒ x ∈ S.
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Proof. (a) using sequential criterion (which says that if xn → c then f(xn)→
f(c), for any (xn)n∈N, xn ∈ B) we get that for those particular xns which
consist of elements of A, if xn → c⇒ f(xn)→ f(c) ⇐⇒ g(xn)→ g(c)⇒ g
is continuous at c.

(b) Taking f to be such that f(x) = 0 if x ∈ Q and f(x) = 1 if x ∈ R\Q,
we know that f is not continuous at c, for any c ∈ R. But taking g to
be f ’s restriction to Q, then g = 0. Hence g is continuous, let’s say at 0,
even though f isn’t (the way one should think about this phenomenon is
that since f is defined is a bigger set - B - the variety of possible sequnces
convergent to a point is richer than for g, which is defined on a smaller
set, and hence allows sequences a lesser freedom of choice; so even though
the restricted kind of sequences get you the continuity property, the more
general sequences most probably won’t).
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Proof. Any c ∈ R has at least one sequence of rational numbers (xn)n∈N

which converges to it (xn → c)(the best example is the sequence of ap-
proximations with some finite number of decimals - e.g. for π take 3,
3.1, 3.14, 3.141, 3.1415, 3.14159 etc). Since f is continuous we have that
f(xn)→ f(c)⇒ (0)n → f(c)⇒ f(c) = 0 for any c ∈ R\Q.
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Proof. Let c ∈ Q ⇒ take xn = c (rational numbers) and yn = c + π
n (irra-

tional numbers - mind the definition for g); both these sequences converge
to c ... hence if we want to have continuity we must have both limits of
g(xn) and g(yn) equal, and equal to g(c): limn→∞ g(xn) = lim 2c = 2c and
limn→∞ g(yn) = lim c + π

n + 3 = c + 3 ⇒ 2c = c + 3 ⇒ c = 3. If we choose
now d ∈ R\Q and have xn = sequence of approximations (as in the previous
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problem) and yn = d we get the same thing as for c ... problem is that d = 3
doesn’t cope with d being irrational, hence there’s no such d.
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