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Proof. Both functions are increasing since, if x1 < x2 ⇒ f(x1) = x1 < x2 =
f(x2) and x1 < x2 ⇒ g(x1) = x1 − 1 < x2 − 1 = g(x2). Taking now their
product, we have that fg(0) = 0 ∗ (−1) = 0, but fg(1

2) = 1
2 ∗ (−1

2) = −1
4

hence, even though 0 < 1
2 we have fg(0) > fg(1

2) (reason? well, g has
negative values! hence it reverses the inequality ...) �
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Proof. Let’s show “⇒”: if f is continuous at c, then for any sequence
(xn)n∈N converging to c we have f(xn) → f(c); in particular, this will
happen for the kind of sequence described in the problem, too! so let’s find
one: xn = c+ (−1)n 1

n
“⇐”:we have to show that if f is continuous for the sequence (xn) as

defined, it’s actually continuous for any sequence (sequential definition of
continuity, that is). But then, take any sequence (yn)n∈N with yn → c. We
notice the following: since f(xn)→ f(c) for any ε there exists Nε such that
|f(xn) − f(c)| < ε for any n > Nε; but that means that we have an even
indexed x (let’s take x2Nε) and an odd indexed x (x2Nε+1) after Nε, with the
above equality (involving ε) satisfied. We have that yn → c⇒ for some Mε

yn ∈ (x2Nε+1, x2Nε) for any n > Mε; but then, since f is increasing, it means
that f(x2Nε+1) < f(yn) < f(x2Nε) ⇒ f(x2Nε+1) − f(c) < f(yn) − f(c) <
f(x2Nε) − f(c) ⇒ −ε < f(yn) − f(c) < ε; since ε is arbitrary, we have that
f(yn)→ f(c), hence, since the sequence yn was arbitrary, f is continuous at
c.

�
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Proof. Let x 6= y and assume f(x) = f(y); then we have either x = y (both
rational), false; x = 1− y ⇒ y = 1− x (first rational, second irrational; but
that would imply, since x is rational, that y is too), false; 1 − x = y (first
irratinal, second rational; same reason) false; 1− x = 1− y ⇒ x = y (both
irrational), false. Hence we it’s absurd to have equality, hence f(x) 6= f(y),
hence f is injective.
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For the next part observe that if x is rational, f(x) = x is same, obviously;
and if x is irrational, then f(x) = 1 − x is also irrational. So, when taking
f(f(x)) we either have f(f(x)) = f(x) = x when x is rational, or f(f(x)) =
f(1− x) = 1− (1− x) = x when x is irrational.

For the last part, since for any number there always is a rational and
an irrational sequence converging to it, to have continuity we must have
x = 1 − x for that particular x where f is continuous (we did something
similar some chapters ago). But that means x = 1

2 ... and it’s easy to
show (based on the property of 1

2 of satisfying the above equality) that f is
continuous there.

�
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Proof. f increases from 0 to 1, and from 1 to 2 - so the only problem would
be if f(1) is not less than ANY f(x) with 1 < x ≤ 2; but if 1 < x ≤ 2 ⇒
2 < f(x) = x+ 1 ≤ 3, hence f(1) = 1 < 2 < f(x), so it’s OK.

The inverse function’s domain is [0, 1] ∪ (2, 3] (it’s the direct function’s
range!). We have that f−1(x) = x for x ∈ [0, 1] and f−1(x) = x − 1 for
x ∈ (2, 3] (draw this function’s graph!). It’s increasing on both intervals,
and again, the only problem could be if f−1(1) would be greater than some
value f−1(x) with 2 < x ≤ 3; but this doesn’t happen, since 2 < x ≤ 3 ⇒
1 = 2− 1 < f−1(x) = x− 1 < 3− 1 = 2⇒ f−1(1) = 1 < f−1(x). Hence f−1

is also increasing (you could’ve said this also because of the fact of being
the inverse of a increasing function).

As for continuity, f is continuous everywhere on its domain, except at
1 (obviously); as for f−1 it’s continuous everywhere (the horizontal gap
doesn’t count as discontinuity for f , but merely as a discontinuity for the
domain!)

�
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Proof. Assume, by contradiction, that f is not increasing ⇒ there exist
x < y with f(x) > f(y). We have two cases (we can ignore the cases when
x = 0 or y = 1 due to the fact that, since f is continuous, we can go slightly
to the right of 0 or slightly to the left of 1, and find x or y respectively,
which still satisfy the inequality!):

case 1: f(x) > f(0); since f is continuous, f takes all values between f(0)
and f(x) AND all values between f(x) and f(y) (remember that f(x) >
f(y)!) - but that means that f takes all values between max (f(0), f(y))
and f(x) (at least) twice! (at least once to the left of x and at least once to
the right of x), which is unheard of ... uh ... no, contradicts the hypothesis
:)

case 2: f(x) < f(0) (cannot have equality, right?) but that means that
f(y) < f(x) < f(0) < f(1), hence we are in the symmetric setting, when
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f(x) > f(y) and f(y) < f(1) ... and we’ll get that f takes at least twice all
the values between f(y) and min (f(x), f(1)), contradiction.

Hence, since we have contradiction for all possible cases, it means that
our asssumption is wrong, hence f is increasing.

�
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Proof. f is continuous on a compact interval, hence it attains its absolute
maximum; since it must have same value EXACTLY twice, we must have
this maximum EXACTLY twice, and let’s call these to numbers at which
we have the max c1 and c2, c1 < c2. If c1 6= 0 ⇒ we get all values of f
in points slightly to the left of c1 (and slightly to the right of c1) THREE
times: twice around c1, and once slightly to the left of c2! (it’s not a totally
rigurous proof - if you get annyoed by the “slightly” you can work with δ
neighbourhoods ... but I think it’s rigurous enough for our purpose). Same
will happen if c2 is not 1 - we’ll get three times the values slightly around
c2, because of what happens slightly to the right of c1. Hence c1 = 0 and
c2 = 1.

Taking now the absolute minimum, we have d1 < d2 the two numbers
where we have it ... and again, if these are not 0 and 1, we get same values
at least thrice (uh, three times) ... but since the place is already taken by
the absolute maximums, the only thing that we can have is to have constant
function (only for it we can have abs max=abs min) ... but constant function
has same value infinite number of times, so it’s not good, either. Hence ...
no such function exists.
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