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Proof. We have to compute

lim
x→0

f(x)− f(0)
x− 0

= lim
x→0

f(x)
x

which equals x2

x = x for x rational and 0
x = 0 for x irrational. But then we

have

−|x| ≤ f(x)
x

≤ |x|

and by the Squeeze Theorem (limits to 0 for both −|x| and |x| are 0)

lim
x→0

f(x)
x

= 0

By definition, since the limit exists it means f is differentiable, and more
than that, f ′(0) = 0.

Note: f is not differentiable anywhere else, since first of all f is not
continuous anywhere else! �
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Proof. Chain Rule:

k′(x) = tan ′(x2) ∗ (x2)′ = sec 2(x2) ∗ 2x
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Proof. g = 2x + |x| ⇒ since 2x is differentiable everywhere we have to see
where |x| is not differentiable ... and the only point where this happens is
x = 0 (to the left of 0 its derivative is -1, to the right it’s 1 ... but in 0 it
doesn’t exist - check using the definition, and taking limit to the left and
to the right, and you’ll see you get different values).

Now, to find this derivative, we base our computation on dividing R into
two parts:

(−∞, 0): g(x) = 2x + (−x) = 2x− x = x⇒ g′(x) = 1
(0,∞): g(x) = 2x + x = 3x⇒ g′(x) = 3
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Proof. Everywhere but in 0 we can compute the derivative of g using the
rules we know (product, chain, etc):

g′ = 2x ∗ sin (
1
x2

) + x2 ∗ cos (
1
x2

)(−2)x−3 = 2x ∗ sin (
1
x2

)− 2
1
x
∗ cos (

1
x2

)

For 0 though it doesn’t work ... (try pluging in 0 in the above formula ... it
does not work). So ... we have to use the definition:

lim
x→0

g(x)− g(0)
x− 0

= lim
x→0

x2 sin ( 1
x2 )

x
= lim

x→0
x sin (

1
x2

)

We have that
−|x| ≤ x sin (

1
x2

) ≤ |x|

(since the sine function ranges from -1 to 1 etc) so by Squeeze Theorem we
get that

g′(0) = lim
x→0

x sin (
1
x2

) = 0

hence the derivative exists everywhere, and is defined as above ... separately
for x 6= 0 and x = 0.

As for the boundedness of g′ just notice that the first term of its formula
is always bounded (the x tames the fluctuating sine) but the second part is
too wild, since 1

x2 goes to infinity, and the cosine fluctuates between -1 and
1. Let’s find a sequence that converges to 0, and which plugged into g′ goes
to infinity; for that let’s have the value through cosine a fixed value, let’s
say 1 ... this happens for 2kπ for k ∈ N ... we want hence to have

1
x2

= 2kπ ⇒ x =
1√

2π
√

k

Let’s see if this one accomodates us: the first term actually becomes 0! (since
sin 2kπ = 0), and the second term becomes −

√
2π
√

k, which, as k →∞ goes
to −∞ ... proving that g′ is not bounded (if it were, it would not be able to
go beyond certain values ... but here it actually goes beyond any value!).
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Proof. chain rule:

g′ = 3(L(x2))2∗(L(x2))′ = 3(L(x2))2∗L′(x2)∗(x2)′ = 3(L(x2))2∗L′(x2)∗2x

and let’s use L′ = 1
x :

g′ = 3(L(x2))2 ∗ 1
x2
∗ 2x = 6

L2(x2)
x
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Proof. Since f is differentiable it means that

lim
h→0

f(c + h)− f(c)
h

= f ′(c)

But the limit can be viewed also in the spirit of the sequential definition
of a limit ... in the sense that any sequence (hn)n∈N with hn →(n→∞) 0 will
make f(c+hn)−f(c)

hn
→(n→∞) f ′(c); taking the particular sequence hn = 1

n we
get

f ′(c) = lim
n→∞

f(c + 1
n)− f(c)
1
n

= lim
n→∞

n(f(c +
1
n

)− f(c))

Note: it does not go both ways! you can have the above limit to exist
even if the derivative of f does not (think of that function defined separately
for rationals and irrationals!) �
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Proof. The points corresponding to x = 0, 1,−1 are, respectively: y = 03 +
2 ∗ 0 + 1 = 1, 13 + 2 ∗ 1 + 1 = 4, (−1)3 + 2(−1) + 1 = −2. Also, h′ = 3x2 + 2,
and based on that we have

(h−1)′(y) =
1

h′(h−1(y))
=

1
h′(x)

where y and x are corresponding (y = h(x) ⇐⇒ x = h−1(y))
We need to compute then:

(h−1)′(1) =
1

3 ∗ 02 + 2
=

1
2

(h−1)′(4) =
1

3 ∗ 12 + 2
=

1
5

(h−1)′(−2) =
1

3 ∗ (−1)2 + 2
=

1
5
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