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2a

Proof. Compute the derivative:

f ′(x) = 1− 1
x2

=
x2 − 1
x2

=
(x− 1)(x+ 1)

x2

The sign of this function is as follows: “+” in (−∞,−1), “−” in (−1, 0)
and (0, 1), “+” in (1,∞) (mind the fact that the denominator is always
positive). Hence we have f increasing up to -1, decreasing up to 1 (in the
sense that to the left of 0 it decreases to −∞ and then to the right it starts
from ∞ and decreases further) and increasing afterwards; hence we have a
relative max in -1, not defined (of course!) in 0 and relative minimum in
1. �

2b

Proof. Compute the derivative:

(x2 + 1)− x ∗ 2x
(x2 + 1)2

=
1− x2

(x2 + 1)2
=

(1− x)(1 + x)
(1 + x2)2

The sign of this derivative is (again, the denominator is positive!): “−” in
(−∞,−1), “+” in (−1, 1) and “−” in (1,∞); hence f is decreasing up to -1,
then increasing up to 1, then decreasing afterwards, with -1 being relative
minimum and 1 being relative maximum. �

3a

Proof. By the definition of absolute value, we have that f is: x2 − 1 if x ∈
[−4,−1]∪ [1, 4]; 1−x2 for x ∈ (−1, 1). Hence f ′ is:2x if x ∈ [−4,−1]∪ [1, 4];
−2x for x ∈ (−1, 1). We notice that f ′ doesn’t exist for x = ±1. Hence
critical numbers are ±1 and 0 (that’s where the derivative is 0) 1. Let’s see
what happens to the sign of f ′ ... which is best to find relative extrema: f ′

is “−” for x ∈ (−4,−1), then “+” for x ∈ (−1, 0), “−” for x ∈ (0, 1) and
finally “+” for x ∈ (1, 4). So we see that −1 and 1 are relative minima, and 0
is a relative maximum (why? f decreases up to −1, increases afterwards up
to 0, decreases again up to 1, and decreases afterwards up to 4 ... following
the behaviour of f ′-’s sign. �
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1remember that critical number means the x-value where f ′ is 0 or doesn’t exist!
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Proof. Let’s find the derivative of f :

f ′ =
n∑
i=1

2(ai − x) ∗ (−1) = −2a1 + 2x− 2a2 + 2x− · · · − 2an + 2x =

= −2(a1 + a2 + · · ·+ an) + 2nx

The zero of f ′ is 2(a1+a2+···+an)
2n = a1+a2+···+an

n and the sign of this func-
tion is as follows:”−” for x < a1+a2+···+an

n and ”+” for x > a1+a2+···+an
n ,

so a1+a2+···+an
n is a relative minimum (f decreases up to it, and increases

afterwards). �

6

Proof. By MVTh we have that, since sin is continuous and differentiable
actually everywhere, for any interval [x, y] there exists a c ∈ (x, y) such
that sin y − sinx = sin′ c ∗ (y − x) ⇐⇒ sin y − sinx = cos c ∗ (y − x) ⇒
| sin y − sinx| = | cos c| ∗ |(y − x)|. But | cos c| ≤ 1 for any c, hence

| sin y − sinx| = | cos c| ∗ |(y − x)| ≤ 1 ∗ |(y − x)| ⇒

⇒ | sin y − sinx| ≤ |y − x|
�

7

Proof. Since log is continuous and differentiable for x ≥ 1 we have (by
MVTh) that there’s a c ∈ (1, x) sucht that log x− log 1 = log′ c(x− 1) ⇐⇒
log x − log 1 = 1

c (x − 1) Use now the fact that c > 1 (and tacitly the fact
that log 1 = 0):

log x =
x− 1
c

<
x− 1

1
= x− 1

which is the second inequality that needed to be proved; secondly, c < x so
we have:

log x =
x− 1
c

>
x− 1
x

which is the first inequality. �

10

Proof. To compute g′(0) we have to rely on the definition; why? let’s take
a look at the derivative elsewhere:

g′ = 1 + 4x sin
1
x

+ 2x2 ∗ cos
1
x

(− 1
x2

) = 1 + 4x sin
1
x
− 2 cos

1
x
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and as you can see getting close to zero meeses up the third term (first is
just 1, and second gets tamed by the x, which will make the second term go
to 0 ... nothing helps the third term though).

g′(0) = lim
x→0

x+ 2x2 sin 1
x

x
= lim

x→0
1 + 2x sin

1
x

= 1

(again, the x tames the wild sin 1
x). As for the multitude of signs around

0, check the following two sequences: xn = 2
2nπ and yn = 1

(2n+1)π ; both
converge to 0 (hence we get as close to 0 as we want, and g′(xn) = 1 +

1
2nπ sin 1

1
2nπ

− 2 cos 1
1

2nπ

= 1 + 1
2nπ sin 2nπ − 2 cos 2nπ = 1 − 2 = −1 while

g′(yn) = 1 + 2 = 3, so one is negative while the second one is positive ⇒ we
have both signs in any neighbourhood of 0. �

12

Proof. If such an f existed, it would be differentiable (hence continuous)
hence we could use the MVTh ... but then we would have, for x > 0:

f(x)− f(0) = f ′(c)(x− 0) = x⇒ f(x) = x+ f(0)

for some 0 < c < x. Also, for x < 0 we sould have:

f(0)− f(x) = f ′(d)(0− x) = 0 ∗ (0− x) = 0⇒ f(x) = f(0)

for some x < d < 0. So our function should look like this: f(x) = x+ f(0)
for x > 0 and f(x) = f(0) for x < 0. This function is continuous alright
... but it’s not diffferentiable in 0!! so we reach a dead end: there’s no such
function.

As an example for two functions ... just make the negative part differ by
a constant, while keeping the positive part fixed: g(x) = 0 for x < 0 and
g(x) = x for x ≥ 0 and h(x) = 1 for x < 0 and h(x) = x for x ≥ 0 �

13

Proof. Just use MVTh: have x < y, x, y ∈ I, and since f is differentiable
(hence continuous) in I, it is also in the interval [x, y]; we get:

f(y)− f(x) = f ′(c)(y − x)

for some c ∈ (x, y); but f ′(c) > 0, y − x > 0 hence

f(y)− f(x) > 0⇒ f(y) > f(x)

hence we get that f is strictly increasing (f(x) = f(y) would mean that
there’s a c such that f ′(c) = 0, which is not true, f ′ being strictly bigger
than 0). �


