SOLUTIONS CHAPTER 6.3

MATH 548 SP00

2

Proof. Note that we cannot use L'Hospital's rule! or 6.3.1 for that purpose, since $\lim _{x \rightarrow c} f(x)=A \neq 0$ so we have to rely on something different - so let's simply use the definiton of the limit.

Let $M>0$. We have that there exists $\delta^{\prime}>0$ such that $f(x)>\frac{A}{2}$ for all x such that $|x-c|<\delta^{\prime}$. At the same time, since $\lim _{x \rightarrow c} g(x)=0 \Rightarrow$ there exists a $\delta^{\prime \prime}$ such that $g(x)=|g(x)|<\frac{A}{2 M}$ (take in account that $g(x)>0$). Let now $\delta=\min \left(\delta^{\prime}, \delta^{\prime \prime}\right)$ and we have that for x such that $|x-c|<\delta$

$$
\frac{f(x)}{g(x)}>\frac{\frac{A}{2}}{\frac{A}{2 M}}=M
$$

which means that

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\infty
$$

As for the case when $A<0$ we have that, if solving the problem in the above manner for $-f$ and g,

$$
\lim _{x \rightarrow c} \frac{-f(x)}{g(x)}=\infty \Rightarrow \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=-\infty
$$

4

Proof. Using Theorem 6.3.1 (possible since: $f(0)=g(0)=0, g(x) \neq 0$ for $0<x<\frac{\pi}{2}$ - since we need limit at 0 we can restrict our attention to a small interval with 0 as an endpoint - and since g is clearly differentiable actually everywhere, and f is differentiable in $0-$ not so clearly, but if one computes $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ we can use Squeeze Theorem to prove it's 0 - and $\left.g^{\prime}(0)=\cos 0=1 \neq 0\right)$ we get

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{g(x)}=\frac{f^{\prime}(0)}{g^{\prime}(0)}=\frac{0}{1}=0
$$

Using now symmetry of f and (anti)symmetry of sin we get that

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)}{g(x)}=0
$$

too. Hence the limit is 0 .

We cannot use Theorem 6.3.3 since one key feature of f should be continuity - but you can see that f is not continuous but in 0 , and this is not enough (it's required to have continuity on a full interval).

The following problems involve also a short check whether one can use the mentioned theorem (like continuity, differentiability and so on). I will leave this for you as an (useful) exercise - helps remember the theorems, e.g. 6b

Proof. Using 6.3.3 (and, again, we don't need to have the full interval ($0, \frac{\pi}{2}$) at our disposal, but merely $\left(0, \frac{\pi}{3}\right)$ will be more than enough - so 6.3.3 can be used without any problems, even though tan is not defined in $\frac{\pi}{2}!$)we get:

$$
\lim _{x \rightarrow 0^{+}} \frac{\tan x}{x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{\sec ^{2} x}}{1}=\frac{1}{\sec ^{2} 0}=1
$$

7b

Proof. We need to rearrange the expression a bit (based on $x>0$ among others):

$$
\frac{1}{x(\log x)^{2}}=\left(\frac{1}{\sqrt{x} \log x}\right)^{2}=\left(\frac{\frac{1}{\sqrt{x}}}{\log x}\right)^{2}
$$

and we need to compute just the limit of the expression inside the "square", using 6.3.6:

$$
\lim _{x \rightarrow 0} \frac{\frac{1}{\sqrt{x}}}{\log x}=\lim _{x \rightarrow 0} \frac{-\frac{1}{2 x^{\frac{3}{2}}}}{\frac{1}{x}}=-\frac{1}{2} \lim _{x \rightarrow 0} \frac{1}{x^{\frac{1}{2}}}=\infty
$$

hence the square limit is also ∞.

8d

Proof. Using the modified Theorem 6.3.6 (not written down in the textbook, but merely mentioned - page 212, just before Example 6.3.7)we get:

$$
\lim _{x \rightarrow \infty} \frac{x+\log x}{x \log x}=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}}{\log (x)+1}=\frac{1}{\infty}=0
$$

9c

Proof. We start by taking the \ln of the expression (case 1^{∞}) and we go for the following limit:

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{3}{x}\right)
$$

Modifying it a bit we get, by 6.3.4:

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{3}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{1+\frac{3}{x}}\left(-\frac{3}{x^{2}}\right)}{-\frac{1}{x^{2}}}=3 \lim _{x \rightarrow \infty} \frac{1}{1+\frac{3}{x}}=3
$$

Finally, we have to get back to our original limit, which is \exp of the above result: $\lim =e^{3}$

Proof. Rewrite (using the formulas of sec and tan):

$$
\sec x-\tan x=\frac{1}{\cos x}-\frac{\sin x}{\cos x}=\frac{1-\sin x}{\cos x}
$$

Using now a symmetric form of 6.3 .6 (concerning left limits, and not right limits)we get:

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{-\cos x}{\sin x}=\frac{-0}{1}=0
$$

