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Proof. Note that we cannot use L’Hospital’s rule! or 6.3.1 for that purpose,
since limx→c f(x) = A 6= 0 so we have to rely on something different - so
let’s simply use the definiton of the limit.

Let M > 0. We have that there exists δ′ > 0 such that f(x) > A
2 for all

x such that |x − c| < δ′. At the same time, since limx→c g(x) = 0 ⇒ there
exists a δ′′ such that g(x) = |g(x)| < A

2M (take in account that g(x) > 0).
Let now δ = min (δ′, δ′′) and we have that for x such that |x− c| < δ

f(x)
g(x)

>
A
2
A

2M

= M

which means that

lim
x→c

f(x)
g(x)

=∞

As for the case when A < 0 we have that, if solving the problem in the
above manner for −f and g,

lim
x→c

−f(x)
g(x)

=∞⇒ lim
x→c

f(x)
g(x)

= −∞

�
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Proof. Using Theorem 6.3.1 (possible since: f(0) = g(0) = 0, g(x) 6= 0 for
0 < x < π

2 - since we need limit at 0 we can restrict our attention to a
small interval with 0 as an endpoint - and since g is clearly differentiable
actually everywhere, and f is differentiable in 0 - not so clearly, but if one
computes limx→0

f(x)
x we can use Squeeze Theorem to prove it’s 0 - and

g′(0) = cos 0 = 1 6= 0) we get

lim
x→0+

f(x)
g(x)

=
f ′(0)
g′(0)

=
0
1

= 0

Using now symmetry of f and (anti)symmetry of sin we get that

limx→0−
f(x)
g(x)

= 0

too. Hence the limit is 0.
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We cannot use Theorem 6.3.3 since one key feature of f should be con-
tinuity - but you can see that f is not continuous but in 0, and this is not
enough (it’s required to have continuity on a full interval). �

The following problems involve also a short check whether one can use
the mentioned theorem (like continuity, differentiability and so on). I will
leave this for you as an (useful) exercise - helps remember the theorems, e.g.
6b

Proof. Using 6.3.3 (and, again, we don’t need to have the full interval (0, π2 )
at our disposal, but merely (0, π3 ) will be more than enough - so 6.3.3 can
be used without any problems, even though tan is not defined in π

2 !)we get:

lim
x→0+

tanx
x

= lim
x→0+

1
sec2 x

1
=

1
sec2 0

= 1

�
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Proof. We need to rearrange the expression a bit (based on x > 0 among
others):

1
x(log x)2

= (
1√

x log x
)2 = (

1√
x

log x
)2

and we need to compute just the limit of the expression inside the “square”,
using 6.3.6:

lim
x→0

1√
x

log x
= lim

x→0

− 1

2x
3
2

1
x

= −1
2

lim
x→0

1

x
1
2

=∞

hence the square limit is also ∞. �
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Proof. Using the modified Theorem 6.3.6 (not written down in the textbook,
but merely mentioned - page 212, just before Example 6.3.7)we get:

lim
x→∞

x+ log x
x log x

= lim
x→∞

1 + 1
x

log (x) + 1
=

1
∞

= 0

�
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Proof. We start by taking the ln of the expression (case 1∞) and we go for
the following limit:

lim
x→∞

x ln (1 +
3
x

)
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Modifying it a bit we get, by 6.3.4:

lim
x→∞

ln (1 + 3
x)

1
x

= lim
x→∞

1
1+ 3

x

(− 3
x2 )

− 1
x2

= 3 lim
x→∞

1
1 + 3

x

= 3

Finally, we have to get back to our original limit, which is exp of the above
result: lim = e3 �

10d

Proof. Rewrite (using the formulas of sec and tan):

secx− tanx =
1

cosx
− sinx

cosx
=

1− sinx
cosx

Using now a symmetric form of 6.3.6 (concerning left limits, and not right
limits)we get:

lim
x→π

2

1− sinx
cosx

= lim
x→π

2

− cosx
sinx

=
−0
1

= 0
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