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Proof. If you remember problem # 3, last section, we know that a function
φ defined as: φ(x) = 0 when x ∈ [0, 1

2 ] and φ(x) = 1 when x ∈ (1
2 , 1] is

integrable. In a similar fashion we can prove that the following two functions,
defined on [−1, 1], are integrable: φ1 defined as φ1(x) = −1 when x ∈ [−1, 0)
and φ1(x) = 0 when x ∈ [0, 1]; φ2 defined as φ2(x) = 0 when x ∈ [−1, 0] and
φ2(x) = 1 when x ∈ (0, 1] are integrable. By the summation property of
integrable functions we know that φ1 + φ2 is integrable as well. But notice
that sgn = φ1 + φ2 (when x is negative φ1 kicks in, while φ2 is zero, etc).

If sgn had an antiderivative ⇒ there exists a function Φ such that Φ′ =
sgn. Let’s try to see how this Φ should look like: since for x < 0 sgn=−1⇒
by Fundamental Theorem of Calculus (since Φ is differentiable it must also
be continuous!) for x < 0 we get:∫ x

−1
sgn = Φ(x)− Φ(−1)⇒ Φ(x) =

∫ x

−1
(−1) + Φ(−1)

Φ(x) = −x+ 1 + Φ(−1)

Similarly we get∫ 1

x
sgn = Φ(1)− Φ(x)⇒ Φ(x) = Φ(1)− (

∫ 1

x
1)

Φ(x) = Φ(1)− (1− x) = x+ Φ(1)− 1

for x > 0.We need now to patch these formulas together in 0 - and it has to
be a continuous, and actually differentiable patch! by continuity we get
Φ(0) = −0 + 1 + Φ(−1) = 0 + Φ(1)−1⇒ Φ(1)−Φ(−1) = 2. Assuming that
this condition is checked let’s see how differentiality fares: Φ′ = −1 to the
left of 0 and Φ′ = 1 to the right of 0 (differentiate the respective expressions
of Φ). Approaching to 0 these values should get closer too, but they don’t!
(if you compute the derivative using definition - with limits - you’ll see the
necessity to compute the limit from the left and from the right; but these
two limits do not coincide) so you can only infer that the derivative in 0 does
not exist - and this contradicts the assumption that Φ were differentiable
everywhere. Hence the Φ does not exist.

Obviously H ′ = sgn (when x < 0 then H(x) = |x| = −x etc) for x 6= 0
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As for ∫ 1

−1
sgn = H(1)−H(−1)

we use the fact that
∫ 0
−1 sgn = 1 and

∫ 1
0 sgn = 1 while H(1) − H(−1) =

1 − (−1) = 1 + 1 = 2 so the above equality (also based on Theorem 7.2.4,
which allows us to compute an integral on subintervals, and then add them
back together) holds. Note that it’s a coincidence (taking G(x) defined as
G(x) = −x − 10 when x < 0 and G(x) = x + π when x ≥ 0, G′ = sgn for
x 6= 0, but the integral does not equal G(1) − G(−1) - check this). It will
hold, however, if we have the aditional assumption thatH be continuous. �
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Proof. a) sgn is integrable on [−1, 1] hence it is also on [0, b]; we have that
H is continuous, and indeed H ′ = sgn for x ∈ (0, b). Since the conditions
in the First Form of the Fundamental Theorem of Calculus are checked, we
can use its conclusion, which in our case states:∫ b

0
sgn = H(b)−H(0) = b

b) We can do the same thing on the interval [a, 0] (H is continuous,
H ′ = sgn, sgn which is integrable) so 1st Form of FTC gives us∫ 0

a
sgn = H(0)−H(a) = −|a| = −(−a) = a

(remember that a < 0). By Theorem 7.2.4 (we used it above too) we have
that ∫ b

a
sgn =

∫ 0

a
sgn +

∫ b

0
sgn = a+ b

which concludes our proof.
Note that it was essential that H were continuous - if it weren’t, FTC

could not have been used. �
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Proof. x 6= 0:

G′(x) = 2x∗sin(
π

x2
)+x2∗cos(

π

x2
)∗(−2)πx−3 = 2x∗sin(

π

x2
)+

cos( π
x2 ) ∗ (−2)π
x

x = 0 - use limits:

lim
x→0

G(x)−G(0)
x− 0

= lim
x→0

x2 sin( π
x2 )− 0
x

= lim
x→0

x sin(
π

x2
) = 0

because the sin keeps between −1 and 1, so it’s bounded, and x→ 0 (if you
want to give it more details, go for the Squeeze Theorem, and ”squeeze” the
above formula between −|x| and |x|). Hence g = G′ exists everywhere. The
fact that g is not bounded we can check by looking at the above expression:
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the part with the sin will go to 0, since it has an x appended to it, while
the other term has an x in the denominator ... so making x arbitrarily
small will kill the first term, but quite probably will blow up the second;
the best way to prove this is by finding a sequence {xn}n∈N → 0 and which
will allow the above expression to sport the above commented behaviour.
Let’s make the sin equal 0 and the cos equal 1 (to make the matter simpler):
π
x2 = 2nπ ⇒ x2 = 1

n ⇒ x = 1√
n

. We notice that the sequence xn = 1√
n

converges to 0. The sin dissapears (sin(2nπ) = 0) and cos is 1 (cos(2nπ) = 1)
so the above expression becomes −2π

1√
n

= −2
√
nπ →∞.

As a > 0 we have that g is continuous and hence bounded on [a, 1] (g is
actually computed above!) so it’s integrable on this interval, so by the FTC
we have: ∫ 1

a
g = G(1)−G(a) = sin(π)− a2 sin(

π

a2
) = −a2 sin(

π

a2
)

Taking now limit we have that the sin is bounded, and that, as a → 0,
a2 → 0 as well, hence the limit is 0 (again, for more details use Squeeze
Theorem). So the limit does exist, indeed. �
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Proof. Obviously F is continuous on any interval (n − 1, n). The problem
is, what happens at the endpoints (mind the fact that to the right of n it’s
the interval [n, n+ 1) = [(n− 1) + 1, n+ 1), so in the formula of F you have
to increment all occurences of n for x > n)

lim
x→n−

F (x) = lim
x→n−

(n− 1)x− (n− 1)n
2

= (n− 1)n− (n− 1)n
2

=
(n− 1)n

2

lim
x→n+

F (x) = lim
x→n+

nx− n(n+ 1)
2

= n ∗ n− n2 + n

2
=

2n2

2
− n2 + n

2
=

=
2n2 − n2 − n

2
=
n2 − n

2
=

(n− 1)n
2

Since the two limits coincide, and they actually equal the value of F in n,
F is continuous at n, hence at all n’s, hence continuous everywhere.

Now ... on each interval [n, n + 1] F is continuous, on (n, n + 1) it’s
differentiable (it’s linear, in fact) and moreover F ′ = n⇒ for n < x < n+ 1
F ′ = [x]. Hence ∫ b

a
[x] = F (b)− F (a)

as long as n < a ≤ b < n+ 1.
If 0 ≤ a < b, we can of course divide the interval [a, b] into [a, k], [k, k +

1], [k + 1, k + 2], . . . , [k + n, b], where k < k + 1 < · · · < k + n are all the
integers between a and b (of course, there might be none - above case - or
some amount of them; we can have b = k + n but we assume that if a is
an integer, we start with a+ 1, in order to be consistent with the definition
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of F ). We can use Theorem 7.2.4 again, and compute integral on each
subinterval (we can, since the FTC on each is satisfied), so∫ b

a
[x] =

∫ k

a
[x] +

∫ k+1

k
[x] . . .

∫ b

k+n
[x] =

= (F (k)−F (a))+(F (k+1)−F (k))+ · · ·+(F (b)−F (k+n)) = F (b)−F (a)
where you can of course find formulas for F (a) and F (b) also:

k − 1 ≤ a < k ⇒ F (a) = (k − 1)a− (k − 1)k
2

and

k + n ≤ b < k + n+ 1⇒ F (b) = (k + n)b− (k + n)(k + n+ 1)
2

�
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Proof. Call the antiderivative
∫

sin(t2) = S(t). We have by FTC:

F (x) = S(x)− S(0)⇒ F ′(x) = (S(x)− S(0))′ = (S(x))′ − 0 = S′(x)

but S is the antiderivative of sin(t2) hence S′ = sin(t2)⇒
F ′(x) = sin(x2)

�

20a

Proof. Use substitution (I’ll leave as a job for you to do the justification -
that is, point out each Theorem/Corollary/Proposition that is used) 1+t2 =
u⇒ 2t dt = du hence the integral becomes∫

t
√

1 + t2 dt =
∫ √

u du =
∫
u

1
2 du =

u
3
2

3
2

=
(1 + t2)

3
2

3
2

hence the definite integral is∫ 1

0
t
√

1 + t2 dt =
u

3
2

3
2

|10 =
2
3

�
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Proof. Use again substitution, 2t + 3 = u ⇒ 2 dt = du but also t = u−3
2 .

Hence the integral becomes∫
t
√

2t+ 3 dt =
∫
u− 3

2
∗
√
u ∗ 1

2
du =

1
4

∫
u
√
u− 3

√
u du =

1
4

∫
u

3
2 − 3u

1
2 du
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and I’ll leave you the pleasure to finish it off (get the antiderivative, put back
the variable t, use the FTC then to compute the actual definite integral) �

22b

Proof. Use substitution, but in another sense: t = (x − 1)2 ⇒ dt = 2(x −
1) dx, but also

√
t = x− 1⇒ x =

√
t+ 1) hence the integral becomes:∫ √

t

1 +
√
t
dt =

∫
x− 1

1 + x− 1
2(x− 1) dx = 2

∫
x2 − 2x+ 1

x
dx =

= 2
∫

(
x2

x
− 2x

x
+

1
x

) dx = 2
∫

(x− 2 +
1
x

) dx =

= x2 − 4x+ 2 ln(x) = (
√
t+ 1)2 − 4(

√
t+ 1) + 2 ln(

√
t+ 1)

Use now FTC and you’re done. �


