SOLUTIONS CHAPTER 7.4

MATH 549 AU00 $\,$

12a

Proof. The log has problems at 0, but the other points are clear. So we have to compute $\int_a^1 \log(x) dx$ and then take lim as $a \to 0$. For the integral use Integration by Parts, taking $u = \log$ and dv = 1.

$$\int_{a}^{1} \log(x) * 1 \, dx = \log(x) * x|_{a}^{1} - \int_{a}^{1} \frac{1}{x} * x \, dx =$$
$$= (\log(1) * 1 - \log(a) * a) - x|_{a}^{1} = -a \log(a) - (1 - a)$$

As $a \to 0 \Rightarrow (1 - a) \to 1$, so we only have to care about the first term. Use l'Hospital $(0 * \infty \text{ case})$.

$$\lim_{a \to 0} -a \log(a) = \lim_{a \to 0} -\frac{\log(a)}{\frac{1}{a}} = \lim_{a \to 0} -\frac{\frac{1}{a}}{-\frac{1}{a^2}} = \lim_{a \to 0} a = 0$$

Hence the improper integral exists and is equal to 0 - 1 = -1.

12d

Proof. Again, we have some trouble at 0 (" $\log(0) = -\infty$ ") so again compute $\int_a^1 x \log(x) dx$ and then take lim as $a \to 0$. For the integral use Integration by Parts, taking $u = \log$ and dv = x.

$$\int_{a}^{1} \log(x) * x \, dx = \log(x) * \frac{x^{2}}{2} \Big|_{a}^{1} - \int_{a}^{1} \frac{1}{x} * \frac{x^{2}}{2} \, dx =$$
$$= (\log(1) * \frac{1}{2} - \log(a) * \frac{a^{2}}{2}) - \frac{1}{2} \frac{x^{2}}{2} \Big|_{a}^{1} = -\frac{a^{2} \log(a)}{2} - \frac{1 - a^{2}}{4}$$

As $a \to 0 \Rightarrow (1 - a^2) \to 1$, so we only have to care about the first term. Use l'Hospital $(0 * \infty \text{ case})$.

$$\lim_{a \to 0} a^2 \log(a) = \lim_{a \to 0} \frac{\log(a)}{\frac{1}{a^2}} = \lim_{a \to 0} \frac{\frac{1}{a}}{-2\frac{1}{a^3}} = \lim_{a \to 0} -\frac{1}{2}a^2 = 0$$

Hence the improper integral exists and is equal to $0 - \frac{1}{4} = -\frac{1}{4}$.

Date: 10/04/2000.

14c

 $\mathbf{2}$

Proof. The integral is computed to ∞ .. so it's improper. To compute it we need (parts, $u = \log, dv = \frac{1}{x}$)

$$\int_{2}^{M} \frac{\log(x)}{x} dx = \log(x) * \log(x) |_{2}^{M} - \int_{2}^{M} \frac{1}{x} \log(x) dx \Rightarrow$$
$$\Rightarrow 2 * \int_{2}^{M} \frac{\log(x)}{x} dx = (\log(x))^{2} |_{2}^{M} \Rightarrow$$
$$\Rightarrow \int_{2}^{M} \frac{\log(x)}{x} dx = \frac{1}{2} (\log^{2}(M) - \log^{2}(2))$$

Taking now lim as $M \to \infty$ we get that the right-hand side diverges! $(\log^2(M) \to \infty)$, so the improper integral doesn't exist.

14d

Proof. Use substitution this time (notice it's improper 'cause of the ∞ ...) and say $\log(x) = u \Rightarrow du = \frac{1}{x} dx$ and we have:

$$\int \frac{1}{x \log^2(x)} \, dx = \int \frac{1}{u^2} \, du = \frac{u^{-1}}{-1} = -\frac{1}{\log(x)}$$

hence

$$\int_{2}^{M} \frac{1}{x \log^{2}(x)} \, dx = -\frac{1}{\log(x)} |_{2}^{M} = \frac{1}{\log(2)} - \frac{1}{\log(M)}$$

As $M \to \infty$ the second term obviously dies, so the limit of the integral as $M \to \infty$ equals $\frac{1}{\log(2)}$ (that is, the improper integral exists, and that's its value).

15b

Proof. Take $\int_{-\infty}^{0} e^{-x}$ which we compute as follows:

$$\int_{-M}^{0} e^{-x} dx = -e^{-x} |_{-M}^{0} = -e^{0} + e^{M} = e^{M} - 1$$

As $M \to \infty \Rightarrow -M \to -\infty$ the right-hand side diverges (to ∞). Hence the improper integral diverges. Note that \int_0^∞ actually exists ... but it's not enough, both must converge).

Proof. We have problems at both 0 and ∞ . Let's compute

$$\int_{a}^{1} \frac{1}{x^{2}} dx = -\frac{1}{x} \Big|_{a}^{1} = -1 + \frac{1}{a}$$

As $a \to 0 \Rightarrow$ the right-hand side diverges (to ∞ again). So (even though $\int_{1}^{\infty} \frac{1}{x^2} dx$ exists) the improper integral diverges.