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Proof. It’s quite clear that the sequence is made out of continuous functions
and that the limit itself is continuous. To check that the limit is right,
namely that

lim
n→∞

fn = f = 0

notice that for a fixed x, if n > 2
x then fn(x) = 0 for all following n-s; so

the limit is clearly 0. About non-uniformity ... as in the previous chapter
we just need a value that’s keeping fn fixed, or (which will go better here)
which will bring fn(xn) even farther away from its limit of 0 (the only thing
that should not happen is that fn(xn) gets closer to 0!). Notice that xn = 1

n
does the trick, since fn(xn) = n which definitely goes away from 0, and
hence kills the uniform norm, by not allowing it to approach 0. �
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Proof. We have to prove the following assertion:

∀ε > 0,∃N = N(ε)such that∀n > N, |fn(xn)− f(x0)| < ε

and we use a very common trick, namely we try to break the difference in
a sum of differences, which each, independently, can be made less than a
fraction of ε, and by adding them back together it will give us the desired
result. We have to use the fact that fn →u f and that fn is continuous, ∀n.

|fn(xn)− f(x0)| = |fn(xn)− f(xn) + f(xn)− f(x0)| ≤
≤ |fn(xn)− f(xn)|+ |f(xn)− f(x0)|

Since fn →u f ⇒ ∃N∗ = N∗(ε) such that |fn(x)− f(x)| < ε
4 ,∀ n ≥ N

∗ ⇒

|fn(xn)− f(xn)| < ε

4
,∀n ≥ N∗

Using again the above assertion we get that

|f(xn)−f(x0)| = |f(xn)−fN∗(xn)+fN∗(xn)−fN∗(x0)+fN∗(x0)−f(x0)| ≤

≤ |f(xn)− fN∗(xn)|+ |fN∗(xn)− fN∗(x0)|+ |fN∗(x0)− f(x0)| ≤

≤ ε

4
+ |fN∗(xn)− fN∗(x0)|+ ε

4
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But fN∗ is continuous, hence, since xn → x0, ∃N∗∗ = N∗∗(ε) such that
|fN∗(xn)− fN∗(x0)| < ε

4 , ∀n ≥ N∗∗.
Take now N = N(ε) = max(N∗, N∗∗)(= max(N∗(ε), N∗∗(ε))). Combin-

ing the above inequalities we get:

|f(xn)− f(x0)| ≤ ε

4
+ |fN∗(xn)− fN∗(x0)|+ ε

4
≤ ε

2
+
ε

4
=

3ε
4

which, if we now combine it with the very first inequality, will give us:

|fn(xn)− f(x0)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x0)| ≤

≤ ε

4
+

3ε
4

= ε,∀n ≥ N

Notice that N depends only on ε - which is the way it should be! (should
not depend on a particular n, e.g.). Hence fn(xn) → f(x0) (compare with
the proof of Theorem 8.2.2).

�
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Proof. Since f is uniformly continuous it means that ∀ε > 0 ∃δ = δ(ε) > 0
such that, ∀x, y ∈ R with |x − y| < δ, |f(x) − f(y)| < ε (in other words,
closeness of two values of f is insured by closeness of the two inputs ...
counterexample would be f = 1

x , e.g. - for this function, if you’re close
enough to 0, even if distance between x and y is really small you can have
huge distance between f(x) and f(y)!)

Let now ε > 0 and we have to show that ∃N = N(ε) such that |fn(x) −
f(x)| < ε ∀n > N ⇐⇒ |f(x + 1

n) − f(x)| < ε ∀n > N . But if we choose
N = N(ε) such that 1

N < δ(ε) ⇐⇒ N > 1
δ we have that |x+ 1

n − x| =
1
n ≤

1
N < δ hence |fn(x)− f(x)| = |f(x+ 1

n)− f(x)| < ε (by uniform continuity)
∀n > N . Done! �
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Proof. sin(nx)
nx →u 0 on [a, π], since | sin(nx)

nx | ≤
1
nx ≤

1
na → 0. So we can

interchange, by Theorem 8.2.4 the limit with the integral, and we get:

lim
∫

sin(nx)
nx

dx =
∫

(lim
sin(nx)
nx

) dx =
∫

0 dx = 0

If a = 0 the limit is no longer uniform: the actual limit is going to be

f =

{
0, x > 0
1, x = 0

(since fn(0) = limx→0
sin(nx)
nx = limnx→0

sin(nx)
nx = 1).

Choose now a value less than 1, let’s say 1
2 :

sin(nx)
nx

=
1
2
⇒ sin(nx) =

nx

2
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which has a certain solution xn between 0 and π
n (why? take the function

g = sin(nx)− nx
2 ; g′ = n(cos(nx)− 1

2) is positive up to x = π
3n and negative

up to π
n , hence g is increasing first, from g(0) = 0 up to g( π3n) = sin(π3 )− π

6 =
√

3
2 −

π
6 > 0.1 > 0, and then decreases up to g(πn) = sin(π) − π

2 = −π
2 ; but

g is continuous, so it must pass through zero, and we call that value xn).
Therefore the limit is no longer uniform. In this case we cannot use the
above mentioned theorem.

We can try to use the boundedness of sin(nx)
nx : take a = ε

2 ; since −1 ≤
sin(nx)
nx ≤ 1⇒

(−1) ∗ (a− 0) ≤
∫ a

0

sin(nx)
nx

dx ≤ 1 ∗ (a− 0) ⇐⇒

⇐⇒ − ε
2
≤
∫ a

0

sin(nx)
nx

≤ ε

2
⇐⇒

⇐⇒ |
∫ a

0

sin(nx)
nx

dx| < ε

2
Since we already know that for our a we get that

lim
n→∞

∫ π

a

sin(nx)
nx

dx = 0⇒

⇒ ∃N = N(ε) such that |
∫ π
a

sin(nx)
nx dx| < ε

2 ∀n > N .
Hence, if we take n > N we have that

|
∫ π

0

sin(nx)
nx

dx| < |
∫ a

0

sin(nx)
nx

dx|+ |
∫ π

a

sin(nx)
nx

dx| < ε

2
+
ε

2
= ε

hence

lim
∫ π

0

sin(nx)
nx

dx = 0

still ... but not due to uniform convergence, which is not present here. �
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Proof. If x = 0⇒ fn(0) = 0⇒ f(0) = 0
If x 6= 0⇒ fn(x) = nx

1+nx = 1
1
nx

+1
→ 1. Hence we have

f(x) =

{
0, x = 0
1, x > 0

It’s clear that f is integrable, and that
∫ 1

0 f(x) dx = 1.∫ 1

0
fn(x) dx =

∫ 1

0

nx

1 + nx
dx =

∫ 1

0
(1− 1

1 + nx
) dx =

= 1−
∫ 1

0

1
1 + nx

dx = 1− 1
n

ln(1 + nx)|10 = 1− ln(n+ 1)
n
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But lim ln(n+1)
n =l’Hospital lim

1
n+1

1 = 0 hence

lim
∫ 1

0
fn(x) dx = 1− 0 = 1 =

∫ 1

0
f(x) dx

Again, we have equality, but not due to uniform convergence - again, not
applicable here - and it’s not actually a bad idea to look upon this equality
as a coincidence, rather. �


