SOLUTIONS CHAPTER 8.2

MATH 549 AU00

Proof. It's quite clear that the sequence is made out of continuous functions and that the limit itself is continuous. To check that the limit is right, namely that

$$\lim_{n \to \infty} f_n = f = 0$$

notice that for a fixed x, if $n > \frac{2}{x}$ then $f_n(x) = 0$ for all following n-s; so the limit is clearly 0. About non-uniformity ... as in the previous chapter we just need a value that's keeping f_n fixed, or (which will go better here) which will bring $f_n(x_n)$ even farther away from its limit of 0 (the only thing that should not happen is that $f_n(x_n)$ gets closer to 0!). Notice that $x_n = \frac{1}{n}$ does the trick, since $f_n(x_n) = n$ which definitely goes away from 0, and hence kills the uniform norm, by not allowing it to approach 0.

4

2

Proof. We have to prove the following assertion:

$$\forall \epsilon > 0, \exists N = N(\epsilon)$$
 such that $\forall n > N, |f_n(x_n) - f(x_0)| < \epsilon$

and we use a very common trick, namely we try to break the difference in a sum of differences, which each, independently, can be made less than a fraction of ϵ , and by adding them back together it will give us the desired result. We have to use the fact that $f_n \to^u f$ and that f_n is continuous, $\forall n$.

$$\begin{split} |f_n(x_n) - f(x_0)| &= |f_n(x_n) - f(x_n) + f(x_n) - f(x_0)| \le \\ &\le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x_0)| \\ \text{Since } f_n \to^u f \Rightarrow \exists N^* = N^*(\epsilon) \text{ such that } |f_n(x) - f(x)| < \frac{\epsilon}{4}, \forall n \ge N^* \Rightarrow \\ &|f_n(x_n) - f(x_n)| < \frac{\epsilon}{4}, \forall n \ge N^* \end{split}$$

Using again the above assertion we get that

$$\begin{aligned} |f(x_n) - f(x_0)| &= |f(x_n) - f_{N^*}(x_n) + f_{N^*}(x_n) - f_{N^*}(x_0) + f_{N^*}(x_0) - f(x_0)| \le \\ &\le |f(x_n) - f_{N^*}(x_n)| + |f_{N^*}(x_n) - f_{N^*}(x_0)| + |f_{N^*}(x_0) - f(x_0)| \le \\ &\le \frac{\epsilon}{4} + |f_{N^*}(x_n) - f_{N^*}(x_0)| + \frac{\epsilon}{4} \end{aligned}$$

Date: 11/04/2000.

But f_{N^*} is continuous, hence, since $x_n \to x_0$, $\exists N^{**} = N^{**}(\epsilon)$ such that $|f_{N^*}(x_n) - f_{N^*}(x_0)| < \frac{\epsilon}{4}, \forall n \ge N^{**}.$

Take now $N = N(\epsilon) = \max(N^*, N^{**}) (= \max(N^*(\epsilon), N^{**}(\epsilon)))$. Combining the above inequalities we get:

$$|f(x_n) - f(x_0)| \le \frac{\epsilon}{4} + |f_{N^*}(x_n) - f_{N^*}(x_0)| + \frac{\epsilon}{4} \le \frac{\epsilon}{2} + \frac{\epsilon}{4} = \frac{3\epsilon}{4}$$

which, if we now combine it with the very first inequality, will give us:

$$|f_n(x_n) - f(x_0)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x_0)| \le$$
$$\le \frac{\epsilon}{4} + \frac{3\epsilon}{4} = \epsilon, \forall n \ge N$$

Notice that N depends only on ϵ - which is the way it should be! (should not depend on a particular n, e.g.). Hence $f_n(x_n) \to f(x_0)$ (compare with the proof of **Theorem** 8.2.2).

5

Proof. Since f is uniformly continuous it means that $\forall \epsilon > 0 \exists \delta = \delta(\epsilon) > 0$ such that, $\forall x, y \in \mathbb{R}$ with $|x - y| < \delta$, $|f(x) - f(y)| < \epsilon$ (in other words, closeness of two values of f is insured by closeness of the two inputs ... counterexample would be $f = \frac{1}{x}$, e.g. - for this function, if you're close enough to 0, even if distance between x and y is really small you can have huge distance between f(x) and f(y)!)

Let now $\epsilon > 0$ and we have to show that $\exists N = N(\epsilon)$ such that $|f_n(x) - f(x)| < \epsilon \ \forall n > N \iff |f(x + \frac{1}{n}) - f(x)| < \epsilon \ \forall n > N$. But if we choose $N = N(\epsilon)$ such that $\frac{1}{N} < \delta(\epsilon) \iff N > \frac{1}{\delta}$ we have that $|x + \frac{1}{n} - x| = \frac{1}{n} \leq \frac{1}{N} < \delta$ hence $|f_n(x) - f(x)| = |f(x + \frac{1}{n}) - f(x)| < \epsilon$ (by uniform continuity) $\forall n > N$. Done!

13

Proof. $\frac{\sin(nx)}{nx} \to^u 0$ on $[a, \pi]$, since $|\frac{\sin(nx)}{nx}| \le \frac{1}{nx} \le \frac{1}{na} \to 0$. So we can interchange, by **Theorem 8.2.4** the limit with the integral, and we get:

$$\lim \int \frac{\sin(nx)}{nx} \, dx = \int (\lim \frac{\sin(nx)}{nx}) \, dx = \int 0 \, dx = 0$$

If a = 0 the limit is no longer uniform: the actual limit is going to be

$$f = \begin{cases} 0, & x > 0\\ 1, & x = 0 \end{cases}$$

(since $f_n(0) = \lim_{x \to 0} \frac{\sin(nx)}{nx} = \lim_{nx \to 0} \frac{\sin(nx)}{nx} = 1$). Choose now a value less than 1, let's say $\frac{1}{2}$:

$$\frac{\sin(nx)}{nx} = \frac{1}{2} \Rightarrow \sin(nx) = \frac{nx}{2}$$

which has a certain solution x_n between 0 and $\frac{\pi}{n}$ (why? take the function $g = \sin(nx) - \frac{nx}{2}$; $g' = n(\cos(nx) - \frac{1}{2})$ is positive up to $x = \frac{\pi}{3n}$ and negative up to $\frac{\pi}{n}$, hence g is increasing first, from g(0) = 0 up to $g(\frac{\pi}{3n}) = \sin(\frac{\pi}{3}) - \frac{\pi}{6} = \frac{\sqrt{3}}{2} - \frac{\pi}{6} > 0.1 > 0$, and then decreases up to $g(\frac{\pi}{n}) = \sin(\pi) - \frac{\pi}{2} = -\frac{\pi}{2}$; but g is continuous, so it must pass through zero, and we call that value x_n). Therefore the limit is no longer uniform. In this case we cannot use the above mentioned theorem.

We can try to use the boundedness of $\frac{\sin(nx)}{nx}$: take $a = \frac{\epsilon}{2}$; since $-1 \le \frac{\sin(nx)}{nx} \le 1 \Rightarrow$

$$(-1)*(a-0) \le \int_0^a \frac{\sin(nx)}{nx} dx \le 1*(a-0) \iff$$
$$\iff -\frac{\epsilon}{2} \le \int_0^a \frac{\sin(nx)}{nx} \le \frac{\epsilon}{2} \iff$$
$$\iff |\int_0^a \frac{\sin(nx)}{nx} dx| < \frac{\epsilon}{2}$$

Since we already know that for our a we get that

$$\lim_{n \to \infty} \int_{a}^{\pi} \frac{\sin(nx)}{nx} \, dx = 0 \Rightarrow$$

 $\Rightarrow \exists N = N(\epsilon) \text{ such that } |\int_a^\pi \frac{\sin(nx)}{nx} dx| < \frac{\epsilon}{2} \ \forall n > N.$ Hence, if we take n > N we have that

$$\left|\int_{0}^{\pi} \frac{\sin(nx)}{nx} \, dx\right| < \left|\int_{0}^{a} \frac{\sin(nx)}{nx} \, dx\right| + \left|\int_{a}^{\pi} \frac{\sin(nx)}{nx} \, dx\right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

hence

$$\lim \int_0^\pi \frac{\sin(nx)}{nx} \, dx = 0$$

still ... but not due to uniform convergence, which is not present here. \Box

Proof. If
$$x = 0 \Rightarrow f_n(0) = 0 \Rightarrow f(0) = 0$$

If $x \neq 0 \Rightarrow f_n(x) = \frac{nx}{1+nx} = \frac{1}{\frac{1}{nx}+1} \to 1$. Hence we have
$$f(x) = \begin{cases} 0, & x = 0\\ 1, & x > 0 \end{cases}$$

It's clear that f is integrable, and that $\int_0^1 f(x) dx = 1$.

$$\int_0^1 f_n(x) \, dx = \int_0^1 \frac{nx}{1+nx} \, dx = \int_0^1 (1 - \frac{1}{1+nx}) \, dx =$$
$$= 1 - \int_0^1 \frac{1}{1+nx} \, dx = 1 - \frac{1}{n} \ln(1+nx) |_0^1 = 1 - \frac{\ln(n+1)}{n}$$

But $\lim \frac{\ln(n+1)}{n} = {}^{l'\text{Hospital}} \lim \frac{\frac{1}{n+1}}{1} = 0$ hence

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 1 - 0 = 1 = \int_0^1 f(x) \, dx$$

Again, we have equality, but not due to uniform convergence - again, not applicable here - and it's not actually a bad idea to look upon this equality as a coincidence, rather. $\hfill\square$