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Proof. The first inequality is clear: for a fixed x we have
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Proof. We use the fact that
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so we have:
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(a finite sum is less than the whole series, when the series has only positive
terms) so we get
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which solves the first inequality.
For the second we have:
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hence
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The above (strict) inequalities are actually true for all n.
For the third inequality:
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but we have the following obvious inequality for n ≥ 2:
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add all the above and we get that
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for all n, hence
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for n ≥ 2.
Assume now that e is rational⇒ e = m

n ⇒ en! = m(n−1)(n−2) . . . 1 ∈ Z;
but we have that (1+1+ 1

2! + . . . 1
n!)n! ∈ Z as well; their difference is also an

integer. But look at the inequality we just proved: it says that this particular
difference is less than 1! so we have an integer, which is positive, but less
than 1, impossible ... so the assumption that e was rational is false. �
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Proof. We have that:

(x+ 1)(1− x+ x2 − x3 + · · ·+ (−x)n−1) =

= x+ 1− x2 − x+ x3 + x2 − x4 − x3 + · · ·+ x(−x)n−1 + (−x)n−1 =

= 1− (−x)n

and just rearrange the equation ... By Theorem 8.3.9 we have that the log
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log(x+ 1)− log(1) = (x− x2
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From here we get:

| log(1 + x)− (x− x2

2
+ · · ·+ (−1)n−1x

n

n
)| = |

∫ x

0

(−t)n

1 + t
dt| ⇐⇒

⇐⇒ | log(1+x)−(x− x
2

2
+· · ·+(−1)n−1x

n

n
)| ≤

∫ x

0
|(−t)

n

1 + t
| dt ≤

∫ x

0
tn dt =

=
xn+1

n+ 1
− 0

(since t+ 1 > 1) and the inequality is proved.
�
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Proof. Let g(x) = f(x)
ex ; let’s compute the derivative of this function:

g′(x) =
f ′(x)ex − f(x)ex

(ex)2
=
f(x)ex − f(x)ex

e2x
= 0

Hence the function g must be a constant, g(x) = K, ∀x ∈ R. So f(x)
ex =

K ⇐⇒ f(x) = Kex. �
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Proof. Actually the inequality 1 + x ≤ ex is true for all x: taking h(x) =
ex − x − 1 we have that h′(x) = ex − 1 which is negative up to 0 and
then positive from 0, which means that 0 is a local (and actually a global)
minimum; but h(0) = e0 − 0− 1 = 1− 1 = 0 hence the lowest posible value
for h(x) is 0, so ex − x− 1 ≥ 0⇒ ex ≥ x+ 1.

Computing all the values xk, some will be negative - but we just observed
that it’s OK to plug in even negative numbers into the inequality that we
have to use. What we get is:
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We also notice that after pluging the values xk in the inequality we actually
get all positive numbers - and it’s safe to multiply:
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⇐⇒ a1a2 . . . an
An
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1
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1
n ≤ 1

n
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Equality is obtained when all values xk provide us with equality when
pluged into the inequality (remember, 0 was a global minimum) - hence
ak
A − 1 = 0⇒ ak = A, ∀k; but then a1 = a2 = · · · = an = A. Done. �


