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Proof. The first inequality is clear: for a fixed x we have
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As for the second part (again, fixed x):
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Proof. We use the fact that
L1
e= +ﬁ+a+...
so we have:
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(a finite sum is less than the whole series, when the series has only positive
terms) so we get
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which solves the first inequality.
For the second we have:
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hence
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The above (strict) inequalities are actually true for all n.
For the third inequality:
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but we have the following obvious inequality for n > 2:
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add all the above and we get that
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for all n, hence
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hence
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for n > 2.

Assume now that e is rational = e = * = en! = m(n—1)(n—-2)...1 € Z;
but we have that (1+1+ 2 +... )n! € Z as well; their difference is also an
integer. But look at the inequality we just proved: it says that this particular
difference is less than 1! so we have an integer, which is positive, but less
than 1, impossible ... so the assumption that e was rational is false. U

Proof. We have that:

(:c+1)(1—x—|—x2—x3_|_..._|_(_x)n*1):

4 -1

=r+l-a?—a4+a3+2? -2t -3+ () 4 () =
=1—(-a)"
and just rearrange the equation ... By Theorem 8.3.9 we have that the log
is the antiderivative of %; use this and we have:
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From here we get:
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(since t +1 > 1) and the inequality is proved.
O
Proof. Let g(x) = %; let’s compute the derivative of this function:
fl(x)e* — f(x)e*  f(x)e® — f(x)e”
J(z) = (z) H() _ f) 23:() _0
(e”) e
Hence the function g must be a constant, g(xz) = K, Vz € R. So % =
K < f(z)=Ke". O
Proof. Actually the inequality 1 + x < e is true for all z: taking h(z) =
e’ —x — 1 we have that h'(x) = e* — 1 which is negative up to 0 and
then positive from 0, which means that 0 is a local (and actually a global)

minimum; but ~(0) = e’ —0—1=1—1 = 0 hence the lowest posible value

for h(z)is0,s0 e —x—1>0=¢€" >z + 1.

Computing all the values x;, some will be negative - but we just observed

that it’s OK to plug in even negative numbers into the inequality that we

have to use. What we get is:
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We also notice that after pluging the values zj, in the inequality we actually
get all positive numbers - and it’s safe to multiply:
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Equality is obtained when all values x; provide us with equality when
pluged into the inequality (remember, 0 was a global minimum) - hence
% —1=0=a; = A, Vk; but then a; = az = --- = a,, = A. Done. O



