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Proof. Let Σak be the series. The trick is to consider the two series, the
positive and negative terms’ series, as follows:

a+
k =

{
ak, ak ≥ 0
0, ak < 0

and

a−k =

{
0, ak ≥ 0
ak, ak < 0

As you can see these two series now are ”complementary”: their sum is
the full series, yet they contain only the positive terms or only the negative
terms, with zeroes to fill in the blanks.

Assume one of the two series is convergent - let’s say the positive terms
(if it’s the other one just consider the ”minus” series). Then, since the
series is convergent (conditionally, true, but still convergent), and since we
know that the sum/difference of two convergent series is also convergent,
we get that the negative terms’ series (equal to the difference between the
full series and the positive terms series) is also convergent. But then, if we
take the following series: Σa+

k − Σa−k , it is going to be convergent (being
the difference of two convergent series), but if you take a closer look you’ll
notice that it’s exactly Σ|ak|!! because the positive terms keep their sign,
while the negative terms get a negative sign, which transforms them in their
absolute value. This is now a contradiction, since we assumed that the
series was conditionally convergent, that is, the series is NOT absolutely
convergent. Hence both the positive terms and the negative terms’ series
must be divergent. �
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Proof. We have:
1

n(n+ 1)(n+ 2)
=
A

n
+

B

n+ 1
+

C

n+ 2
=

=
A(n+ 1)(n+ 2) +Bn(n+ 2) + Cn(n+ 1)

n(n+ 1)(n+ 2)
⇒
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⇒ 1 = A(n+ 1)(n+ 2) +Bn(n+ 2) + Cn(n+ 1)
Plug in n = 0, n = −1 and n = −2 respectively; we get:

1 = 2A⇒ A =
1
2

1 = −B ⇒ B = −1
and

1 = 2C ⇒ C =
1
2

hence
1

n(n+ 1)(n+ 2)
=

1
2

1
n
− 1
n+ 1

+
1
2

1
n+ 2

Let’s write down a few of these equalities, and add them up to see what we
get:

1
1 ∗ 2 ∗ 3

=
1
2

1
1
− 1

2
+

1
2

1
3

1
2 ∗ 3 ∗ 4

=
1
2

1
2
− 1

3
+

1
2

1
4

1
3 ∗ 4 ∗ 5

=
1
2

1
3
− 1

4
+

1
2

1
5

...
1

n(n+ 1)(n+ 2)
=

1
2

1
n
− 1
n+ 1

+
1
2

1
n+ 2

and we get - notice the cancelling pattern: 1
1 does not get cancelled at all,

1
2 only partially, and then 1

3 completely, same for 1
4 etc, up to 1

n+1 which is
again only partially cancelled, while 1

n+2 isn’t cancelled at all

Σ
1

k(k + 1)k + 2)
=

1
2

1
1
− 1

2
1
2
− 1

2
1

n+ 1
+

1
2

1
n+ 2

=

=
1
2
− 1

4
− 1

2(n+ 1)
+

1
2(n+ 2)

→n→∞
1
4

�
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Proof. Not necessarily; Σ(−1)n 1√
n

kills this assertion, since itself it’s con-

vergent (alternating series), while Σ((−1)n 1√
n

)2 = Σ 1
n is divergent. But

if we put the additional assumption that it’s a positive series (all terms
are positive) then it’s true (why? since the series converges, it means that
the general term goes to zero, hence from some point on it’s less than 1;
we can consider the series starting at that point only - and then we have
Σak ≥ Σ(ak)2, so the second series converges as well).

For the second part the answer is again NO. Take Σ 1
n2 - it’s convergent,

but the series Σ 1
n is divergent. �
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Proof. Use Cauchy’s Criterion; let ε > 0:

|ambm + am+1bm+1 + · · ·+ anbn| ≤ |ambm|+ |am+1bm+1|+ · · ·+ |anbn|
But {bn}n is bounded, hence ∃M such that |bk| ≤M . Also, since the series
Σak is absolutely convergent it means that for our ε there exists N = N(ε)
such that

|am|+ |am+1|+ · · ·+ |an| ≤
ε

M
, ∀m,n > N

Getting back to the above expression we have, for m,n > N , that

|ambm + am+1bm+1 + · · ·+ anbn| ≤ |am||bm|+ |am+1||bm+1|+ · · ·+ |an||bn| ≤

≤M(|am|+ · · ·+ |an| ≤M
ε

M
= ε

hence, by Cauchy’s Criterion the series Σakbk is convergent. �
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Proof. We have to prove an ”if and only if” assertion, hence we have to
prove that:

-if Σ∞1 (an) converges then Σ∞1 (2na2n) converges
-if Σ∞1 (2na2n) converges then Σ∞1 (an) converges
One fact to remember: since we’re talking about positive terms’ series,

there are only two cases with respect to convergency - either the series con-
verges and hence it’s finite, or it’s divergent to infinity (so to test convergency
it’s enough to show it’s finite, like it’s less than some number). Let’s assume
that Σ∞1 (2na2n) converges. Since an decreases (very important assumption -
if this doesn’t happen, neither the Cauchy Condensatio Test won’t happen)
we have:

a1 ≤ a1

(they’re actually equal, but we’re only interested in the inequality)
and then

a2 ≤ a2

a3 ≤ a2

and then
a4 ≤ a4

a5 ≤ a4

a6 ≤ a4

a7 ≤ a4

and so on (see the pattern? starting at a2k all higher index terms are less
than a2k , and we write this until the a2k+1 - not included). Now add all
these inequalities (and group terms) and we get:

a1 + a2 + · · · ≤
≤ (21 − 20)a1=20 + (22 − 21)a21 + (23 − 22)a22 + · · ·+ (2k+1 − 2k)a2k + · · · =
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= 20a20 + 21a21 + · · ·+ 2ka2k + . . .

but since the right-hand side is convergent (hence strictly less than ∞) the
left-hand side is too (comparison test, let’s say).

Let’s assume now that Σ∞1 (an) is convergent (so we need some reverse
inequality; of course, we cannot expect to have the above inequality reversed,
since this would mean that the two series are equal, which is not true - we
ignore way too many terms of Σ∞1 (an) in Σ∞1 (2na2n) for this to happen).
Let’s see:

a2 ≤ a1

and then
a4 ≤ a2

a4 ≤ a3

and then
a8 ≤ a4

a8 ≤ a5

a8 ≤ a6

a8 ≤ a7

and so on (the pattern: a2k is less than all terms starting at a2k−1 and up
to itself, not included) which gives after summing all inequalities:

(21 − 20)a21 + (22 − 21)a22 + (23 − 22)a23 + · · · ≤ a1 + a2 + . . . ⇐⇒

⇐⇒ 20a21 + 21a22 + 22a23 + · · · ≤ a1 + a2 + . . .

from which we get

1
2

(21a21 + 22a22 + . . . ) ≤ a1 + a2 + . . . ⇐⇒

⇐⇒ 1
2

(20a20 + 21a21 + 22a22 + . . . ) ≤ a1

2
+ a1 + a2 + · · · ⇒

20a20 + 21a21 + 22a22 + · · · ≤ 2(
a1

2
+ a1 + a2 + . . . )

but the right-hand side is finite (since the series is convergent) hence the
left-hand side is finite (therefore convergent) too. �
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Proof. By the above property we can check convergency by looking at the
following series:

Σ2na2n = Σ2n
1

2n log(2n)
= Σ

1
n log(2)

=
1

log(2)
Σ

1
n

but this series diverges, hence the original one does the same. �
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Proof. Pretty much the same thing:

Σ2na2n = Σ2n
1

2n(log(2n))c
= Σ

1
nc logc(2)

=
1

logc(2)
Σ

1
nc

and we know that this series converges only when c > 1. �
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Proof. Multiply by the conjugate:
√
n+ 1−

√
n√

n
=
√
n+ 1−

√
n√

n

√
n+ 1 +

√
n√

n+ 1 +
√
n

=

=
1√

n2 + n+ n
>

1
n+ 1 + n+ 1

=
1
2

1
n+ 1

which is divergent, hence the original series is divergent. (the inequality√
n2 + n + n < n + 1 + n + 1 you can prove as follows:

√
n2 + n + n <√

n2 + n+ n+ 1 + n+ 1 =
√

(n+ 1)2 + n+ 1 = n+ 1 + n+ 1) �


