On the isomorphism problem of Cayley graphs

Péter P. Pálfy
Alfréd Rényi Institute of Mathematics and
Eötvös University, Budapest, Hungary

Columbus, March **, 2010
I got my *candidate of science* degree in 1983.

Thesis title:
Group theoretical methods in combinatorics and universal algebra

Informal supervisors: Ervin Fried and László Babai

From the Acknowledgements:
“I am especially indebted to those who helped starting my research career:

Ervin Fried . . .

László Babai, whose continuous interest and encouragement helped me to overcome my laziness, and who taught me how to write mathematics papers.”
Circulant graphs

First chapter in my thesis:

Isomorphism of circulant graphs — pronormal subgroups

Ádám’s conjecture (1967): Two circulant graphs on Z_n are isomorphic if and only if there is a k coprime to n such that the multiplication by k modulo n gives an isomorphism between the two graphs.

Final result: Muzychuk (1995, 1997) For undirected graphs Ádám’s conjecture is true in exactly the following cases:

$n = 2^j m$, where m is an odd square-free number and $0 \leq j \leq 2$, or $n = 8, 9, 18$.

The density of this set is $7/\pi^2$.
Cayley Isomorphism (CI) property

Generalization for arbitrary Cayley graphs

Babai (1977)

G finite group, $S \subset G$ determine a **Cayley graph** $\text{Cay}(G, S)$ with vertex set G, where (x, y) is an edge iff $yx^{-1} \in S$.

The right translations $x \mapsto xg$ are automorphisms of $\text{Cay}(G, S)$.

We assume $1 \notin S$ (no loops) and $S^{-1} = S$ (undirected edges).

Definition. $\text{Cay}(G, S)$ is a **CI-graph** if for every Cayley graph $\text{Cay}(G, T)$ which is isomorphic to $\text{Cay}(G, S)$ there is an automorphism α of the group G which provides an isomorphism between the two Cayley graphs, that is $S^\alpha = T$.

G is called a **CI-group** if every Cayley graph of G is a CI-graph.
Generalization for arbitrary relational structures

Babai (1977) “concrete categories”

A relational structure on the base set G is a **Cayley object** if the right translations $x \mapsto xg$ are all automorphisms of the structure. It is a **CI-object** if any isomorphic Cayley object can be obtained by applying an automorphism of the group G.

Babai’s Lemma. \mathcal{R} is a CI-object iff

$$\varphi \rho G \varphi^{-1} \leq \text{Aut}(\mathcal{R}) \ (\varphi \in \text{Sym}(G)) \ \Rightarrow \ \exists \psi \in \text{Aut}(\mathcal{R}) : \ \varphi \rho G \varphi^{-1} = \psi \rho G \psi^{-1}.$$
Pronormal subgroups

Every Cayley object of G is a CI-object iff any two regular permutation groups isomorphic to G are conjugate inside the subgroup they generate. These are the so-called pronormal regular subgroups of the symmetric group.

P^3 (1987) The pronormal regular subgroups in symmetric groups are the following: cyclic groups of order n with $(n, \varphi(n)) = 1$ and groups of order 4.

If the regular copy of a group G is not pronormal in the symmetric group, then there is a relational structure with a single quaternary relation which is a Cayley object, but not a CI-object.
CI-graphs and CI-groups

Subgroups of CI-groups are CI-groups themselves.

Babai–Frankl (1979) The Sylow subgroups of CI-groups can be the following:
- elementary abelian p-groups (Z_p^k);
- Z_4, Z_8, Q;
- Z_9, (Z_{27}).

Problem 1. Which elementary abelian groups Z_p^k are CI-groups?

$p = 2$: Z_2^5 is CI (Conder–Li, 1998), Z_2^6 is not CI (Nowitz, 1992)

p odd: Z_p^4 is CI (Hirasaka–Muzychuk, 2001), Z_p^k is not CI if $k = 2p - 1 + \binom{2p-1}{p}$ (Muzychuk, 2003), if $k = 4p - 2$ (Spiga, 2007), if $k = 2p + 3$ (Somlai, 2010+)
Structure of CI-groups

survey paper: Li (Discrete Mathematics, 2002)

CI-groups are solvable (Li, 1999)

severe structural restrictions (Li–Praeger, 1999; Li–Lu–Pálfy, 2007)

direct product of groups of pairwise coprime orders

Problem 2. If G_1 and G_2 are CI-groups of coprime order and none of them contains elements of order 8 or 9, is it true that $G_1 \times G_2$ is also a CI-group?

Dobson, 2002; Kovács–Muzychuk, 2009: $Z^2_p \times Z_q$
Li–Lu–P^3 (2007) If G is a coprime indecomposable CI-group, then G is one of the following:

\[p \]-groups:
- elementary abelian \(p \)-groups \(\mathbb{Z}_p^k \),
- \(\mathbb{Z}_4, \mathbb{Z}_8, Q, \mathbb{Z}_9 \),

\(\{ p, q \} \)-groups:
- extension of an elementary abelian group \(\mathbb{Z}_p^k \) by a cyclic group of order \(n \) (\(n = 2, 3, 4 \) or 8), where the generator of the cyclic group acts on \(\mathbb{Z}_p^k \) as power automorphism \((x \mapsto x^r)\) of prime order,
- metabelian groups \(\mathbb{Z}_2^2 . \mathbb{Z}_3 = A_4, \mathbb{Z}_2^2 . \mathbb{Z}_9, \mathbb{Z}_9 . \mathbb{Z}_2 = D_9, \mathbb{Z}_9 . \mathbb{Z}_4 \).

The latter are CI-groups by the computer work of Conder–Li (1998)
Metabelian extensions

Let $E(p^k, n)$ be the extension of the elementary abelian group Z_p^k by a cyclic group of order n ($n = 2, 3, 4$ or 8), where the generator of the cyclic group acts on Z_p^k as power automorphism ($x \mapsto x^r$) of prime order (e.g., $r = -1$, if $n = 2, 4$ or 8).

Problem 3. Is $E(p^k, n)$ a CI-group provided Z_p^k is a CI-group?

True if the elementary abelian normal subgroup is just cyclic, Z_p:
- $n = 2$: Babai (1972)
- $n = 3$: Babai–Frankl (1979)
- $n = 4, 8$: Li–Lu–P3 (2007)

Moreover, true for $E(3^2, 2)$ (Conder–Li, 1998)
Happy Birthday, Laci!

I wish you new discoveries, excellent students, and good health.