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Abstract We show that for almost all points on any analytic curve on R
k which is not

contained in a proper affine subspace, the Dirichlet’s theorem on simultaneous approxima-
tion, as well as its dual result for simultaneous approximation of linear forms, cannot be
improved. The result is obtained by proving asymptotic equidistribution of evolution of a
curve on a strongly unstable leaf under certain partially hyperbolic flow on the space of
unimodular lattices in R

k+1. The proof involves Ratner’s theorem on ergodic properties of
unipotent flows on homogeneous spaces.

1 Introduction

The Dirichlet’s theorem on simultaneous approximation of any k real numbers ξ1, . . . , ξk

says the following:

(A) For any positive integer N there exist integers q1, . . . , qk,p such that

|q1ξ1 + · · · + qkξk − p| ≤ N−k and 0 < max
1≤i≤k

|qi | ≤ N;

(B) For any positive integer N there exist integers q,p1, . . . , pk such that

max
1≤i≤k

|qξi − pi | ≤ N−1 and 0 < |q| ≤ Nk.

After Davenport and Schmidt [6] we say that the D.Th. (A) (respectively, (B)) cannot be
improved for ξ = (ξ1, . . . , ξk) ∈ R

k if for any 0 < μ < 1 the following holds:
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(Aμ) There are infinitely many positive integers N for which the pair of inequalities

|(q1ξ1 + · · · + qkξk) − p| ≤ μN−k and 0 < max
1≤i≤k

|qi | ≤ μN

are insoluble in integers q1, . . . , qk,p (respectively,
(Bμ) there are infinitely many positive integers N for which the pair of inequalities

max
1≤i≤k

|qξi − p1| ≤ μN−1 and 0 < |q| ≤ μNk

are insoluble in integers q,p1, . . . , pk).

In [6], Davenport and Schmidt proved that D.Th. (A) and (B) cannot be improved for
almost all ξ ∈ R

k .
One says that D.Th. (A) (respectively, (B)) cannot be μ-improved for ξ ∈ R

k if (Aμ)
(respectively, (Bμ)) holds. In [7] Davenport and Schmidt showed that D.Th. (A) cannot be
(1/4)-improved for the pair (ξ, ξ 2) for almost all ξ ∈ R. This result was generalized by
Baker [1] for almost all points on ‘smooth curves’ in R

2, by Dodson, Rynne and Vick-
ers [8] for almost all points on ‘higher dimensional curved submanifolds’ of R

k , and by
Bugeaud [2] for almost all points on the curve (ξ, ξ 2, . . . , ξ k); in each case (Aμ) holds for
some small value of μ < 1 depending on the curvature of the smooth submanifold. Their
proofs typically involve the technique of regular system introduced in [6].

Recently the problem was recast in the language of flows on homogeneous spaces by
Kleinbock and Weiss [15] using observations due to Dani [3], as well as Kleinbock and
Margulis [13]. In [15] it was shown that D.Th. (A) and (B), as well as its various general-
izations, cannot be μ-improved for almost all points on any non-degenerate curve on R

k for
some small μ < 1 depending on the curve. In this article, we shall strengthen such results
for all 0 < μ < 1:

Theorem 1.1 Let ϕ : [a, b] → R
k be an analytic curve such that its image is not contained

in a proper affine subspace. Then Dirichlet’s theorem (A) and (B) cannot be improved for
ϕ(s) for almost all s ∈ [a, b].

This result will be deduced from a result about limiting distributions of certain expand-
ing sequence of curves on the space of lattices in R

n where n = k + 1. A refinement of
Theorem 1.1 is obtained in Theorem 1.4.

Notation Let G = SL(n,R), n ≥ 2. For t ∈ R and ξ = (ξ1, . . . , ξn−1) ∈ R
n−1, define

at =

⎡
⎢⎢⎢⎣

e(n−1)t

e−t

. . .

e−t

⎤
⎥⎥⎥⎦ and a′

t =

⎡
⎢⎢⎢⎣

et

. . .

et

e−(n−1)t

⎤
⎥⎥⎥⎦ , (1.1)

u(ξ) =

⎡
⎢⎢⎢⎣

1 ξ1 . . . ξn−1

1
. . .

1

⎤
⎥⎥⎥⎦ and u′(ξ) =

⎡
⎢⎢⎢⎣

1 −ξn−1

. . .
...

1 −ξ1

1

⎤
⎥⎥⎥⎦. (1.2)
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The main goal of this article is to prove the following:

Theorem 1.2 Let ϕ : [a, b] → R
n−1 be an analytic curve whose image is not contained in

a proper affine subspace. Let � be a lattice in G. The for any x0 ∈ G/� and any bounded
continuous function f on G/�,

lim
t→∞

1

|b − a|
∫ b

a

f (atu(ϕ(s))x0) ds =
∫

G/�

f dμG, (1.3)

where μG is the G-invariant probability measure on G/�. Similarly,

lim
t→∞

1

|b − a|
∫ b

a

f (a′
t u

′(ϕ(s))x0) ds =
∫

G/�

f dμG. (1.4)

This result corroborates [12, Sect. 4.3] and [15, Sect. 4.1]. In fact, we will prove the
following more general statement.

Theorem 1.3 Let L be a Lie group and � a lattice in L. Let ρ : G → L be a continuous
homomorphism. Let x0 ∈ L/� and H be a minimal closed subgroup of L containing ρ(G)

such that the orbit Hx0 is closed, and admits a finite H -invariant measure, say μH . Then
for any bounded continuous function f on L/� the following holds:

lim
t→∞

1

|b − a|
∫ b

a

f (ρ(atu(ϕ(s)))x0) ds =
∫

Hx0

f dμH . (1.5)

The above results are also valid for maps ϕ from boxes in Rd (d ≥ 1) to R
n−1, see

Theorem 1.8.
The first part of Theorem 1.2 follows from Theorem 1.3 by taking L = G, ρ the identity

map, and � = �; in this case H = G.
Let w ∈ GL(n,R) be such that w(ei) = en+1−i for 1 ≤ i ≤ n, where e1, . . . , en denotes the

standard basis of R
n. We define an involutive automorphism σ of G by σ(g) = w( tg

−1
)w−1

for all g ∈ G. Then σ(at ) = a′
t and σ(u(ξ)) = u′(ξ). Now the second part of Theorem 1.2

follows from Theorem 1.3 by taking L = G, ρ = σ and � = �; we observe that H = L in
this case.

1.0.1

Next we take L = G × G, � = SL(n,Z), � = � × � and ρ(g) = (g, σ (g)) for all g ∈ G.
Note that σ(�) = �, and hence ρ(�) ⊂ � and ρ(�) is a lattice in ρ(G). Therefore if we
let x0 = �, then ρ(G)x0 is closed and admits a finite ρ(G)-invariant measure; in other
words, we have H = ρ(G). Now using Theorem 1.3, in the next section we will deduce the
following enhancement of Theorem 1.1.

Theorem 1.4 Let ϕ = (ϕ1, . . . , ϕk) : I = [a, b] → R
k be an analytic curve whose image is

not contained in a proper affine subspace. Let N be an infinite set of positive integers. Then
for almost every s ∈ I and any μ < 1, there exist infinitely many N ∈ N such that both the
following pairs of inequalities are simultaneously insoluble:

|q1ϕ1(s) + · · · + qkϕk(s) − p| ≤ μN−k and max
1≤i≤k

|qi | ≤ μN (1.6)
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for (q1, . . . , qk) ∈ Z
k
� {0} and p ∈ Z; and

max
1≤i≤k

|qϕi(s) − pi | ≤ μN−1 and |q| ≤ μNk (1.7)

for q ∈ Z � {0} and (p1, . . . , pk) ∈ Z
k .

Now suppose we let I = [a1, b1] × · · · × [ad, bd ] ⊂ R
d , where ai < bi for all 1 ≤ i ≤ d ,

and let ϕ : I → R
k to be an analytic map such that ϕ(I) is not contained in a proper affine

subspace. Then there exists a line L in R
d such that ϕ((x + L) ∩ I ) is not contained in a

proper affine subspace of Rk for almost every x ∈ I . Due to this observation we can deduce
the following consequence of Theorem 1.4.

Corollary 1.5 Let M be an analytically immersed submanifold of R
k which affinely spans

R
k . Then Dirichlet’s theorem (A) and (B) cannot be improved for almost every vector on M ,

with respect to the smooth measure class on M .

1.0.2

Due to the effective equidistribution result proved by Kleinbock and Margulis [14], it should
be possible to prove that Dirichlet’s theorem (A) and (B) cannot be improved for almost all
ξ ∈ R

k where the constant μ is replaced by an explicitly given function μ(N) < 1 with
μ(N) → 1 as N → ∞. However proving such a result for almost all points on curves would
require proving a version of Theorem 1.2 with explicit rate of convergence. This is currently
beyond the scope of our methods.

1.0.3 Some background on the equidistribution results for translates of measures

In [9], using powerful techniques of harmonic analysis on L2(G/�), Duke, Rudnick and
Sarnak proved that if H is a symmetric subgroup of a noncompact simple group G and μH

is the Haar probability measure on a closed orbit of H on G/�, then the translated measures
gμH get equidistributed in G/� as g → ∞ in G modulo H . Eskin and McMullen [10]
gave a simpler proof of the result using mixing property of geodesic flows. The limiting
distributions for translates gμH for more general subgroups H were studied by Mozes and
Shah [16], Shah [20], and Eskin, Mozes and Shah [11] using Ratner’s classification theorem
for measures invariant under unipotent flows.

From a different view point, in [13] Kleinbock and Margulis proved a quantitative non-
divergence theorem for limiting distributions of translates of the parameter measure on any
‘non-degenerate’ curve on SL(n,R)/SL(n,Z); like u(ϕ([a, b]))x0 as in the statement of
Theorem 1.2. Our results extend their work to show that the limiting measures are in fact
G-invariant.

Unlike the limiting measures for translates of Haar measures on closed orbits of sub-
groups, the limiting distributions for translates of measures on curves or manifolds are not a
priori invariant under non-trivial unipotent subgroups. However in [21], the author has intro-
duced a technique which allows us to start applying Ratner’s classification and linearization
technique to this question. In this article we add the following ‘linear dynamical’ component
to the linearization technique to prove the homogeneity of limiting measures in the above
special setting.
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Theorem 1.6 Let ϕ : [a, b] → R
n−1 be a differentiable curve, whose image is not contained

in a union of finitely many proper affine subspaces of R
n−1. Let V be a finite dimensional

normed linear space on which G acts linearly. Further suppose that there is no nonzero
G-fixed vector in V . Then given C > 0 there exists t0 > 0 such that

sup
s∈[a,b]

‖atu(ϕ(s))v‖ ≥ C‖v‖, ∀v ∈ V and t > t0. (1.8)

The essential ingredient in this result is what we will call the ‘Basic Lemma’ (Proposi-
tion 4.2). For its proof we develop a method to understand dynamical interactions between
linear actions of various SL(2,R)’s contained in SL(n,R) acting on a finite dimensional
vector space. This in turn uses linear dynamical properties of individual actions of SL(2,R)

as studied in [21].

1.0.4 Translates by more general elements

In fact, in [13] one also considers translates by elements of the form

at :=

⎡
⎢⎢⎢⎣

et1+···+tn−1

e−t1

. . .

e−tn−1

⎤
⎥⎥⎥⎦ (1.9)

as ‖t‖ → ∞, where t = (t1, . . . , tn−1) and ti ≥ 0. In order to obtain similar equidistribution
results in this case using the method of this article, one needs to obtain the analogue of
Theorem 1.6, and the corresponding basic lemma for the above at . This has been carried
out in [23] using the basic lemma of this article to analyze dynamical interaction between
various SL(m,R)’s contained in SL(n,R). This generalization implies non-improvability of
Minkowski’s multiplicative version of Dirichlet’s theorem [23].

Obtaining analogues of the basic lemma corresponding to translates by diagonal elements
more general than those described in (1.9) is a challenging problem. We are still not able
to provide the optimal conjectural description for the algebraic restriction on the curves
living on associated horospherical subgroups to ensure non-divergence, or more generally
equidistribution, of limits of translates of measures on trajectories of such curves.

1.1 Sketch of the proof of Theorem 1.3

Let I = [a, b]. We will treat G as a subset of L via the homomorphism ρ. We consider the
normalized parameter measure, say ν, on the segment {u(ϕ(s))x0 : s ∈ I } on L/�. Take any
sequence ti → ∞. Let ati ν denote the translate of ν concentrated on the curve ati u(ϕ(I ))x0.

We claim that, given any ε > 0 there exists a large compact set F ⊂ L/� such that

(ati ν)(F ) := 1

|b − a| {s ∈ [a, b] : ati u(ϕ(s))x0 ∈ F } ≥ 1 − ε.

If this claim fails to hold, then by Dani-Margulis criterion for nondivergence the follow-
ing algebraic condition holds: There exists a finite dimensional representation V of L and a
nonzero vector v ∈ V such that after passing to a subsequence

lim
i→∞

sup
s∈I

‖ati u(ϕ(s))v‖ = 0.
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But this cannot happen because of Theorem 1.6, and the claim is proved.
Therefore there exists a probability measure μ on L/� such that after passing to a sub-

sequence, ati ν
i→∞−→ μ with respect to the weak∗-topology.

At this stage, we note that u(ϕ(I))x0 is contained in a strongly unstable leaf for the action
of at on L/�. Then for each s0 ∈ I if ϕ̇(s0) denotes the derivative of ϕ at s0, then

ϕ(s) − ϕ(s0) = (s − s0)ϕ̇(s0) + O((s − s0)
2). (1.10)

Therefore for any large t > 0, the translated curve

{atu(ϕ(s))x0 = u(ent (ϕ(s) − ϕ(s0)))(atu(ϕ(s0))x0) : |s − s0| < δt } (1.11)

stays very close to the unipotent trajectory

{u(ent (s − s0)ϕ̇(s0))(atu(ϕ(s0))x0) : |s − s0| < δt }, (1.12)

if we choose δt > 0 such that ent δt → ∞, but ent δ2
t → 0 as t → ∞. Note that the length of

the unipotent trajectory (1.12) is about ent δt‖ϕ̇(s0)‖ and hence it is very long if ϕ̇(s0) = 0.
Our difficultly is that the direction ϕ̇(s0) of the flow varies with s0.

In order to take care of this problem, instead of translating the original curve, we twist it
by z(s) ⊂ ZG(A) ∼= A × SL(n − 1,R) so that z(s)u(ϕ̇(s))z(s)−1 = u(e1) for all s ∈ I ; here
A = {at : t ∈ R}, e1 is a fixed nonzero vector in R

n−1, and we assume that ϕ̇(s) = 0 for all
s ∈ I . We take another curve: {z(s)u(ϕ(s))x0 : s ∈ I } and associate a normalized parameter
measure ν ′ on it. Since z(I ) is contained in a compact set, we conclude that after passing
to a subsequence ati ν

′ converges to a probability measure μ′ as i → ∞. Now one can show
that μ′ is invariant under the flow {u(se1) : s ∈ R}. Then we use Ratner’s theorem [17] and
linearization technique (avoidance criterion) [5, 16, 18, 19] to show that there exist a finite
dimensional representation V of L and a discrete set D of nonzero vectors in V which are
algebraically associated to x0 and R > 0 such that for each i there exists vi ∈ D such that

sup
s∈I

‖ati u(ϕ(s))vi‖ ≤ R.

Therefore from Theorem 1.6 we conclude that for some i0, the vector vi0 is fixed by G.
From this very restrictive situation, as vi0 is algebraically related to x0, we will deduce that
the measure μ′ is H -invariant, where H is the smallest closed subgroup of L containing
G such that the orbit Hx0 is closed. Since the modification of ν to obtain ν ′ was only by
elements centralizing A in G, and since we have shown that μ′ is invariant under ZG(A),
we obtain that μ = μ′, and hence μ is H -invariant. This will prove Theorem 1.3.

Remark 1.7 We assume ϕ to be analytic instead of just smooth because the Dani-Margulis
nondivergence criterion, as well as the linearization technique, makes use of certain ‘uni-
form’ growth properties of the space of functions s �→ 〈ϕ(s)v,w〉 from I → R for all
v,w ∈ V . If ϕ is analytic, this space is finite dimensional and the required growth prop-
erties hold ([13]). If we assume that ϕ is just smooth and ‘nondegenerate’ as considered in
[13], it is far from clear if the required growth properties will be valid for a general repre-
sentation V of G. To overcome this difficulty one would require a much stronger form of
Theorem 1.6 where the length of the interval I shrinks to 0 as t → 0 [22, Sect. 7].
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1.2 Variations of the equidistribution result

1.2.1 Expanding translates of any analytic subvariety

The following form of Theorem 1.3 is more appealing.

Theorem 1.8 Let I be a bounded open subset of R
d (d ≥ 1) with zero boundary measure.

Let ψ : I → SL(n,R) be an analytic map such that the image of the first row of this map
is not contained in a proper subspace of R

n. Let the notation be as in the statement of
Theorem 1.3. Then

1

Vol(I )

∫
I

f (ρ(atψ(s))x0) ds
t→∞−→

∫
Hx0

f dμH .

1.2.2 Uniform versions

First we state the basic uniform version of Theorem 1.2.

Theorem 1.9 Let the notation be as in Theorem 1.2. Then given any compact set K ⊂ G/�,
a bounded continuous function f on G/� and an ε > 0, there exists t0 > 0 such that for
any x ∈ K and t ≥ t0, we have

∣∣∣∣
∫ b

a

f (atu(ϕ(s))x) ds −
∫

f dμG

∣∣∣∣ ≤ |b − a|ε.

The following result is a general uniform version for Theorem 1.3.

Theorem 1.10 Let I be any bounded open subset of R
d with boundary measure zero. Let

ψ : I → SL(n,R) be an analytic map such that the image of the first row of this map is
not contained in a proper subspace of R

n. Let L be a Lie group, � a lattice in L and
π : L → L/� the quotient map. Let ρ : G → L be a continuous homomorphism. Let K
be a compact subset of L/�. Then given ε > 0 and a bounded continuous function f on
L/�, there exist finitely many proper closed subgroups H1, . . . ,Hr of L such that for each
1 ≤ i ≤ r , Hi ∩ � is a lattice in Hi and there exists a compact set

Ci ⊂ N(Hi,ρ(G)) := {g ∈ L : ρ(G)g ⊂ gHi}
such that the following holds: Given any compact set

F ⊂ K
∖ r⋃

i=1

π(Ci)

there exists t0 > 0 such that for any x ∈ F and any t ≥ t0,.

∣∣∣∣
1

Vol(I )

∫
I

f (ρ(atu(ϕ(s)))x) ds −
∫

L/�

f dμL

∣∣∣∣ < ε.

If L is an algebraic group then the sets N(Hi,ρ(G)) are algebraic subvarieties of
L. Therefore unless H contains a proper normal subgroup of L containing G, the set
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⋃r

i=1 π(Ci) is contained in a finite union of relatively compact lower dimensional submani-
folds of L/�.

In the next section we will deduce the number theoretic consequences from the equidis-
tribution statement. Rest of the article closely follows the strategy laid out in Sect. 1.1. The
basic lemma and its consequences are proved in Sect. 4.

2 Deduction of Theorem 1.4 from Theorem 1.3

The argument given below is based on [15, Sect. 2.1]. Let the homomorphism ρ(g) =
(g, σ (g)) from G to L = G × G, and other notation be as in Sect. 1.0.1. Let n = k + 1.
Let (q1, . . . , qk) ∈ Z

k , p ∈ Z, q ∈ Z and (pk, . . . , p1) ∈ Z
k . Let N ∈ N and put t = log(N).

We consider the standard action of G × G on R
n × R

n. For s ∈ [a, b], we have

(ζ (N, s),η(N, s)) := ρ(atu(ϕ(s)))

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

−p

q1
...

qk

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

pk

...

p1

q

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

Nk(−p + ∑k

i=1 qiϕi(s))

N−1q1
...

N−1qk

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

N(−qϕk(s) + pk)
...

N(−qϕ1(s) + p1)

N−kq

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ .

We now fix 0 < μ < 1. Let

Bμ = {(ξ1, . . . , ξn) ∈ R
n : max

1≤i≤n
ξi ≤ μ}.

Then (1.6) is equivalent to ζ (N, s) ∈ Bμ and (1.7) is equivalent to η(N, s) ∈ Bμ.
Let � denote the space of unimodular lattices in R

n. Note that G acts transitively on �

and the stabilizer of Z
n is �. Similarly L acts transitively on � × � and the stabilizer of

x0 := (Zn,Z
n) is �. Thus G/� ∼= � and L/� ∼= � × �.

Let

Kμ = { ∈ � :  ∩ Bμ = {0}}.
As we observed above for any s ∈ [a, b] and N ∈ N, the inequalities (1.6) and (1.7) are
simultaneously insoluble, if for t = logN ,

ρ(atu(ϕ(s)))x0 ∈ Kμ × Kμ. (2.1)

As noted earlier there exists a ρ(G)-invariant probability measure on ρ(G)x0 ⊂ � × �,
say λ. Since μ < 1, Kμ × Kμ contains an open neighbourhood of x0. Hence there exists
ε > 0 such that

λ(Kμ × Kμ) > ε.

Therefore there exists a continuous function 0 ≤ f ≤ 1 on L/� such that

supp(f ) ⊂ Kμ × Kμ and
∫

f dλ > ε/2.
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Let J be any subinterval of [a, b] with nonempty interior. Then by Theorem 1.3, there
exists N0 > 0, such that for all N ≥ N0, and t = logN ,

1

|J |
∫

s∈J

f (ρ(atu(ϕ(s)))x0) ds ≥ ε/4, (2.2)

where |·| denotes the Lebesgue measure on R.
Let N ⊂ N be an infinite set. Let

E = {s ∈ [a, b] : ρ(a(logN)u(ϕ(s)))x0 ∈ Kμ × Kμ for all large N ∈ N }.
By (2.2), for any subinterval J ⊂ [a, b], we have |J ∩ E| ≤ (1−ε/4)|J |. Therefore |E| = 0.
In view of the observation associated to (2.1), this proves Theorem 1.4.

The Theorem 1.1 is a special case of Theorem 1.4. On the other hand, the proof of
Theorem 1.1 can also be deduced directly from Theorem 1.2 in a similar way.

3 Non-divergence of the limiting distribution

Let ϕ : I = [a, b] → R
n−1 be an analytic map whose image is not contained in a proper

affine subspace. Let x0 ∈ L/�. Given a nontrivial continuous homomorphism ρ : G → L,
for the sake of simplicity of notation, without loss of generality, we will identify g ∈ G with
ρ(g) ∈ L. Therefore now onward we will treat G as a subgroup of L, ρ being an inclusion.
We will assume that the orbit of x0 under G is dense in L/�; that is Gx0 = L/�. Let
ti → ∞ be any sequence in R. Let xi → x0 be a convergent sequence in L/�. For any i ∈ N

let μi be the measure on L/� defined by
∫

L/�

f dμi := 1

|I |
∫

I

f (ati u(ϕ(s))xi) ds, ∀f ∈ Cc(L/�). (3.1)

Theorem 3.1 Given ε > 0 there exists a compact set F ⊂ L/� such that μi(F ) ≥ 1 − ε for
all large i ∈ N.

It may be noted that in the case of L = G, ρ the identity map and � = SL(n,Z), the
above result was proved by Kleinbock and Margulis [13, Proposition 2.3]. The rest of this
section is devoted to obtaining the same conclusion in the case of arbitrary L and �.

3.1

Let H denote the collection of analytic subgroups H of G such that H ∩ � is a lattice
in H , and a unipotent one-parameter subgroup of H acts ergodically with respect to the
H -invariant probability measure on H/H ∩ �. Then H is a countable collection [17, 19].

Let l denote the Lie algebra associated to L. Let V = ⊕dim l

d=1 ∧d l and consider the
(
⊕dim l

d=1 ∧dAd)-action of L on V . Given H ∈ H , let h denote its Lie algebra, and fix
pH ∈ ∧dimhh\{0} ⊂ V . Then

StabL(pH ) = N1
L(H) := {g ∈ NL(H) : det((Adg)|h) = 1}.

Proposition 3.2 [5, Theorem 3.4] The orbit � · pH is a discrete subset of V .

We may note that when L is a real algebraic group defined over Q and � = L(Z) then
the above countability result and the discreteness of the orbit are straightforward to prove.
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3.2 Functions with growth factor C and growth order α

Let F denote the R-span of all the coordinate functions of the map ϒ : I → End(V ) given
by ϒ(s) = (

⊕dim l

d=1 ∧dAd)(u(ϕ(s))) for all s ∈ R. As explained in [21, Sect. 2.1], due to [13,
Proposition 3.4] the family F has the following growth property for some C > 0 and α > 0:
for any subinterval J ⊂ I , ξ ∈ F and r > 0,

|{s ∈ J : |ξ(s)| < r}| < C

(
r

sups∈J |ξ(s)|
)α

J.

As a direct consequence of this property, we have the following [13]: Fix any norm ‖·‖
on V .

Proposition 3.3 Let ε > 0. Then given any r > 0 there exists R > 0 (or given any R > 0
there exists r > 0) such that for any h1, h2 ∈ L and a subinterval J ⊂ I , one of the following
holds:

(I) supt∈J ‖h1u(ϕ(t))h2pH ‖ < R.
(II) |{t ∈ J : ‖h1u(ϕ(t))h2pH ‖ ≤ r}| ≤ ε|{t ∈ J : ‖h1u(ϕ(t))h2pH‖ ≤ R}|.

3.3 The non-divergence criterion

Proposition 3.4 There exist closed subgroups W1, . . . ,Wr ∈ H (depending only on L and
�) such that the following holds: Given ε > 0 and R > 0, there exists a compact set F ⊂
L/� such that for any h1, h2 ∈ L and a subinterval J ⊂ I , one of the following conditions
is satisfied:

(I) There exists γ ∈ � and i ∈ {1, . . . , r} such that

sup
s∈J

‖h1u(ϕ(s))h2γpWi
‖ < R.

(II) 1
|J | |{s ∈ J : (h1u(ϕ(s))h2)�/� ∈ F }| ≥ 1 − ε.

Proof The result follows from the argument as in [20, Theorem 2.2] using the earlier results
of Dani and Margulis [4]; as well as its extensions due to Kleinbock and Margulis [13]. The
main difference is that instead of growth properties of polynomial functions, one uses the
similar properties of functions in F as given by Proposition 3.3. �

Proof of Theorem 3.1 Take any ε > 0. Take a sequence Rk → 0 as k → ∞. For each k ∈ N,
let Fk ⊂ L/� be a compact set as determined by Proposition 3.4 for these ε and Rk . If the
theorem fails to hold, then for each k ∈ N we have μi(Fk) < 1 − ε infinitely may i ∈ N.
Therefore after passing to a subsequences of {μi}, we may assume that μi(Fi ) < 1 − ε for
all i. Then by Proposition 3.4, after passing to a subsequence, we may assume that there
exists W ∈ H such that for each i there exists γi ∈ � such that

∥∥∥ sup
s∈I

ati u(ϕ(s))γipW

∥∥∥ ≤ Ri

i→∞−→ 0.

By Proposition 3.2, there exists r0 > 0 such that ‖γipW‖ ≥ r0 for each i. We put vi =
γipW/‖γipW‖. Then vi → v ∈ V and ‖v‖ = 1. Therefore

sup
s∈I

‖ati u(ϕ(s))vi‖ ≤ Ri/r0 → 0 as i → ∞. (3.2)
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Define

V − = {w ∈ V : lim
t→∞atw = 0},

V + = {w ∈ V : lim
t→∞(at )

−1w = 0},

V 0 = {w ∈ V : atw = w, ∀t ∈ R}.
Since {at } acts on V via commuting R-diagonalizable matrices, we have that V = V + ⊕
V 0 ⊕ V −. Let π0 : V → V 0 denote the associated projection. Then from (3.2) we conclude
that

u(ϕ(s))v ⊂ V −, ∀s ∈ I. (3.3)

The ‘Basic Lemma’ (Proposition 4.2) proved in the next section states that for any finite
dimensional linear representation V of G, any v ∈ V \{0} and any subset B of R

n−1 which
is not contained in a proper affine subspace, if

u(ϕ(e))v ∈ V − + V 0, ∀e ∈ B, (3.4)

then

π0(u(ϕ(e))v) = 0, ∀e ∈ B. (3.5)

By our hypothesis (3.3) implies (3.4) but contradicts its consequence (3.5). �

As a consequence of Theorem 3.1 we deduce the following:

Corollary 3.5 After passing to a subsequence, μi → μ in the space of probability measures
on L/� with respect to the weak∗-topology.

Before we proceed further from here, we will give a proof of the Basic lemma and obtain
its consequence, which will be used in the later sections.

4 Dynamics of linear actions of intertwined SL(2,R)’s

A triple (X,H,Y ) of elements of a Lie algebra is called an sl2-triple if

[X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y.

The following observation on linear dynamics of SL2-action played a crucial role in
understanding limiting distributions of expanding translates of curves under the geodesic
flows on hyperbolic manifolds [21].

Lemma 4.1 [21, Lemma 2.3] Let W be a finite dimensional irreducible representation of an
sl2-triple (X,H,Y ). Let W− (respectively, W+) denote the sum of strictly negative (respec-
tively, strictly positive) eigenspaces of H . Let π+ : W → W+ denote the projection parallel
to the eigenspaces of H . Then

v ∈ W−\{0} =⇒ π+(exp(X)v) = 0.

The main goal of this section is to obtain a similar result on linear dynamics of SL(n,R)-
actions by considering intertwined actions of copies of SL(2,R)’s contained in SL(n,R).
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Notation Let In−1 denote the (n − 1) × (n − 1) identity matrix. Define

A =
[
(n − 1)

−In−1

]
= diag ((n − 1),−1, . . . ,−1) ∈ sl(n,R).

Then at = exp(t A) for all t ∈ R. Define A = {at : t ∈ R} and a = Lie(A) = R · A. Consider
a linear representation of G on a finite dimensional vector space V . For μ ∈ R, define

V μ = {v ∈ V : Av = μv}.

Let πμ : V → V μ denote the projection parallel to the eigen spaces of A. Put

V − =
∑
μ<0

V μ, V + =
∑
μ>0

V μ

π− =
∑
μ<0

πμ, π+ =
∑
μ>0

πμ.

An affine basis of R
n−1 is a set B ⊂ R

n−1 such that for any e ∈ B, the set {e′ − e : e′ ∈
B � {e}} is a basis of R

n−1.

Proposition 4.2 (Basic Lemma) Given an affine basis B of R
n−1 and a nonzero vector

v ∈ V , suppose that

u(e)v ∈ V 0 + V −, ∀e ∈ B. (4.1)

Then

π0(u(e)v) = 0, ∀e ∈ B. (4.2)

Proof By (4.1) there exists μ0 ≤ 0 and e0 ∈ B such

πμ0(u(e0)v) = 0, and

πμ(u(e)v) = 0, ∀μ > μ0 and ∀e ∈ B.

We write the basis {e − e0 : e ∈ B � {e0}} of R
n−1 as {e1, . . . , en−1}. Put v0 = u(e0)v.

Then

πμ0(v0) =0 and
πμ(u(ei)v0)=0 for all μ > μ0 and 1 ≤ i ≤ n − 1.

(4.3)

To prove (4.2) we need to show that

μ0 = 0 and (4.4)

π0(u(ei)v0) = 0, ∀1 ≤ i ≤ n − 1. (4.5)

Let the set {f1, . . . , fn−1} consisting of real ((n − 1) × 1) column matrices be the dual to
the basis {e1, . . . , en−1} of R

n−1 consisting of (1 × (n − 1))-row matrices; that is,

eifj = δi,j , ∀i, j ∈ {1, . . . , n − 1}. (4.6)
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For i ∈ {1, . . . , n − 1}, let

Xi := X(ei) =
[

0 ei

0n−1

]
and Yi := Y (fi) =

[
0
fi 0n−1

]
,

where 0n−1 is the ((n − 1) × (n − 1))-zero matrix. Then u(ei) = exp(Xi). Let

Hi := [Xi,Yi] =
[
eifi

−fiei

]
=

[
1

−fiei

]
∈ sl(n,R).

Then (Xi,Hi, Yi) is an sl2-triple. Let gi = span{Xi,Hi, Yi} ⊂ sl(n,R). Then

H1 + · · · + Hn−1 =
n−1∑
i=1

[
1

−fiei

]
=

[
(n − 1)

−In−1

]
= A,

because by (4.6), (
∑n−1

i=1 fiei)fj = ∑n−1
i=1 δij fi = fj . Also

b := span{Hi : i = 1, . . . , n − 1} (4.7)

is a maximal R-diagonalizable subalgebra of sl(n,R). We can verify that

[H,gi] = gi, ∀H ∈ b.

Thus b + gi is a reductive Lie algebra which is isomorphic to R
n−2

⊕
sl2. Note that the Lie

groups associated to these gi ’s are our intertwined copies of SL2’s, and we want to study
their joint linear dynamics.

For a linear functional δ ∈ b∗, let

V (δ) = {v ∈ V : Hv = δ(H)v}.
The set  = {δ ∈ b∗ : V (δ) = 0} is finite and V = ⊕

δ∈ V (δ). Let qδ : V → V (δ) be the
associated projection.

Claim 4.2.1 Let δ ∈  be such that v(δ) := qδ(πμ0(v0)) = 0. Then δ(Hi) ≥ 0 for all 1 ≤
i ≤ n − 1.

To prove the claim, take any 1 ≤ i ≤ n − 1. Consider the decomposition

V = W1 ⊕ · · · ⊕ Ws,

where Wj ’s are irreducible subspaces for the action of the Lie subalgebra b + gi and s ∈ N.
Therefore each Wj is an irreducible representation of the sl2-triple (Xi,Hi, Yi). Let Pj :
V → Wj denote the associated projection. We note that

πμ ◦ Pj = Pj ◦ πμ, for all 1 ≤ j ≤ s and μ ∈ R, and (4.8)

qδ ◦ Pj = Pj ◦ qδ, for all 1 ≤ j ≤ s. (4.9)

There exists 1 ≤ j ≤ s such that

Pj (v(δ)) = 0, (4.10)
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we take any such j . In particular, by (4.8) and (4.9),

Wj ∩ Vμ0 � Pj (πμ0(v0)) = 0. (4.11)

By the standard description of finite dimensional representations of sl2, let k ≥ 0 and w−k ∈
Wj be such that

Yi · w−k = 0 and Hi · w−k = −k · w−k.

For any r ≥ 0, put w−k+2r := Xr
i · w−k . Then

Hi · w−k+2r = (−k + 2r)w−k+2r

and Wj = span{w−k, . . . ,wk}. Since [Hi,b] = 0 and Wj is b-invariant, for each 0 ≤ r ≤ k,
there exists δr ∈  such that w−k+2r ∈ V (δr) and

δr = δr ′ , if r = r ′. (4.12)

Put λ = δ0(A). Then

A · w−k = λ · w−k.

Since [A,Xi] = n, we have

A · w−k+2r = (λ + nr)w−k+2r , ∀0 ≤ r ≤ k.

Thus, if Pj (Vμ) = 0 for any μ, then Pj (Vμ) ⊂ R · w−k+2r for some r ≥ 0 such that λ +
nr = μ.

Therefore by (4.11) there exists r0 ≥ 0 such that

μ0 = λ + nr0 and

Wj ∩ Vμ0 = R · w−k+2r0 . (4.13)

Recall that u(ei) = exp(Xi). By (4.3) and (4.8), for all μ > μ0, we have

πμ(Pj (v0)) = Pj (πμ(v0)) = 0, and

πμ(exp(Xi)Pj (v0)) = πμ(Pj (exp(Xi)v0)) = Pj (πμ(exp(Xi)v0)) = 0.

Therefore

{Pj (v0), exp(Xi)Pj (v0)} ⊂ span{w−k, . . . ,w−k+2r0}. (4.14)

Therefore by Lemma 4.1 applied to the sl2-triple (Xi,Hi, Yi), since Pj (v0) = 0, we have

−k + 2r0 ≥ 0. (4.15)

By (4.10), (4.12) and (4.13),

0 = Pj (v(δ)) = Pj (qδ(πμ0(v0))) = qδ(Pj (πμ0(v0))) = Pj (πμ0(v0)).

Also

Hi(Pj (v(δ))) = Pj (Hi(v(δ))) = Pj (δ(Hi)v(δ)) = δ(Hi) · Pj (v(δ)),
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and

Hi(Pj (πμ0(v0))) = (−k + 2r0)Pj (πμ0(v0)).

Therefore by (4.15)

δ(Hi) = −k + 2r0 ≥ 0. (4.16)

This completes the proof of the Claim 4.2.1.
Since πμ0(v0) = 0, there exists δ ∈  such that

v(δ) := qδ(πμ0(v0)) = 0.

Now since A · v(δ) = μ0v(δ) and A = H1 + · · · + Hn−1, by Claim 4.2.1

0 ≥ μ0 =
n−1∑
i=1

δ(Hi) ≥ 0.

Therefore

μ0 = 0 and δ(Hi) = 0, ∀1 ≤ i ≤ n − 1. (4.17)

Thus (4.4) is verified.
Going back to the representation Wj of gi considered above, by (4.16) and (4.17) −k +

2r0 = δ(Hi) = 0 and A · w0 = 0. Therefore by (4.14), we have

{Pj (v0), exp(Xi)Pj (v0)} ⊂ span{w−k, . . . ,w0}.
Therefore, since Pj (v0) = 0, by Lemma 4.1

exp(Xi)Pj (v0) ⊂ span{w−k, . . . ,w−2}.
Hence by (4.13) and (4.8),

Pj (π0(exp(Xi)v0)) = π0(Pj (exp(Xi)v0)) = π0(exp(Xi)Pj (v0)) = 0.

Therefore π0(exp(Xi)v0) = 0. Thus (4.5) is verified. �

Consider the linear action of ZG(A) on R
n−1 such that

u(g · e) = gu(e)g−1, ∀g ∈ ZG(A), ∀e ∈ R
n−1.

Note that under this action ZG(A) maps onto GL(n − 1,R). We also note that for any basis
C of R

n−1, the set

DC := {g ∈ ZG(A) : each e ∈ C is an eigenvector of g}
is a maximal R-diagonalizable subgroup of G.

Corollary 4.3 Let the notation be as in Proposition 4.2. Then for any e ∈ B,

gπ0(u(e)v) = π0(u(e)v), ∀g ∈ DC, (4.18)

where C = {e′ − e : e′ ∈ B\{e}}.
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Proof As a consequence of Proposition 4.2, μ0 = 0 and πμ0(u(e)v) = 0. Let the notation be
as in the proof of Proposition 4.2. Then u(e)v = v0. Now C = {e1, . . . , en−1} and for any i,
we have Hiei = 2ei and Hiej = ej if j = i. Therefore by (4.7), DC = exp(b).

For any δ ∈ , if qδ(πμ0(v0)) = 0 then by (4.17)

Hiqδ(πμ0(v0)) = δ(Hi)qδ(πμ0(v0)) = 0, ∀1 ≤ i ≤ n − 1.

Therefore Hiπμ0(v0) = ∑
δ∈ Hiqδ(πμ0(v0)) = 0 for all i. Hence b · π0(v0) = 0. Therefore

DCπ0(v0) = π0(v0) = π0(u(e)v) and we obtain (4.18). �

Corollary 4.4 Let a set E ⊂ R
n−1 and e ∈ E be such that the set Ee := {e′ − e : e′ ∈ E } is not

contained a union of n − 1 proper subspaces of R
n−1. Suppose that v ∈ R

n−1 is such that

u(e′)v ∈ V 0 + V −, ∀e′ ∈ E .

Then

π0(u(e)v) = 0 and

ZG(A) ⊂ StabG(π0(u(e)v)). (4.19)

Proof We note that the first conclusion follows from Proposition 4.2.
Replacing v by u(e)v and E by Ee , without loss of generality we may assume that e =

0 ∈ E and we only need to prove that

ZG(A) ⊂ StabG(π0(v)). (4.20)

By our hypothesis there exists a basis {b1, . . . , bn−1} of R
n−1 contained in E . Let {ei : i =

1, . . . , n− 1} denote the standard basis of R
n−1. We put e0 = 0. Then there exists z ∈ ZG(A)

such that zbi = ei for 1 ≤ i ≤ n − 1. Now by (4.4),

z(u(b)v) = (zu(b)z−1)(zv) = u(z · b)(zv) ∈ V 0 + V −, ∀b ∈ E .

Also π0(zw) = zπ0(w) for all w ∈ V . Therefore to prove the result, without loss of general-
ity, we can replace E with z · E and v with zv, and assume that

B := {ei : 0 ≤ i ≤ n − 1} ⊂ E .

Let C = {e1, . . . , en−1}. Let D denote the maximal diagonal subgroup of SL(n,R). Then
DC = D and by Corollary 4.3,

D ⊂ Stab(π0(v)). (4.21)

By our hypothesis on E , there exists e′
1 ∈ E such that

e′
1 =

n−1∑
i=1

λiei and λi = 0, ∀1 ≤ i ≤ n − 1.
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For x = (x1, . . . , xn−2) ∈ R
n−2, let

w(x) =

⎡
⎢⎢⎢⎢⎢⎣

1
1 x2 . . . xn−2

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎦

. (4.22)

Put x = (−λ−1
1 λ2, . . . ,−λ−1

1 λn−1). Then w(x)e1 = λ−1
1 e′

1 and w(x)ei = ei for 2 ≤ i ≤ n−1.
Let C′ = {e′

1, e2, . . . , en−1}. Then

DC′ = w(x)−1Dw(x). (4.23)

Since B′ := {0, e′
1, e2, . . . , en−1} ⊂ E , by Corollary 4.3 applied to B′ in place of B, we

obtain that

w(x)−1Dw(x) = DC′ ⊂ Stab(π0(v)). (4.24)

Since each coordinate of x is nonzero, the group generated by D and w(x)−1Dw(x)

contains W := {w(y) : y ∈ R
n−2}. Then by (4.21) and (4.24), DW ⊂ StabG(π0(v)). Let

α > 1. Then W is the expanding horospherical subgroup of ZG(A) associated to

g0 = diag(1, αn−2, α−1, . . . , α−1) ∈ D.

Note that W− := { tw(y) : y ∈ R
n−2} is the contracting horospherical subgroup of ZG(A)

associated to g0. Therefore π0(v) is stabilized by W− [20, Lemma 5.2]. Since ZG(A) ∼=
A · SL(n − 1,R), one verifies that ZG(A) is generated by W , W− and D. Therefore ZG(A)

stabilizes π0(v); that is (4.20) holds. �

Lemma 4.5 Let xi → x be a convergent sequence in R
n−1. Suppose there exists v ∈ V such

that

u(xi)v ∈ V 0 + V −, ∀i ∈ N, (4.25)

and a sequence δi → 0 of nonzero reals such that f = lim
i→∞

(xi − x)/δi exists. Then

u(f ) ∈ Stab(π0(u(x)v)). (4.26)

Proof For any sequence ti → ∞ and wi → w in V − + V 0, we have ati wi → π0(w) as
i → ∞. In particular,

ati u(xi)v
i→∞−→ π0(u(x)v). (4.27)

Put ti = (1/n) log(δ−1
i ) for all i. Then

ati u(xi) = ati u(xi − x)u(x)v

= u(enti (xi − x))(ati u(x)v)
i→∞−→ u(f )π0(u(x)v).

Therefore u(f ) stabilizes π0(u(x)v). �



526 N.A. Shah

Corollary 4.6 Let ϕ : I = [a, b] → R
n−1 be a differentiable curve which is not contained in

a union of finitely many proper affine subspaces of R
n−1. Let 0 = v ∈ V be such that

u(ϕ(s))v ∈ V 0 + V −, ∀s ∈ I. (4.28)

Then v is stabilized by G.

Proof We apply Corollary 4.4 to the set E = {ϕ(s) : s ∈ I } and conclude that π0(u(ϕ(s))v) =
0 and it is stabilized by ZG(A) for all s ∈ I . Now let s0 ∈ I be such that ϕ̇(s0) = 0. Let
δi → 0 be a sequence of nonzero reals. Then ϕ̇(s0) = limi→∞(ϕ(si) − ϕ(s0))/δi . Therefore
by Lemma 4.5 π0(u(ϕ(s0))v) is stabilized by u(ϕ̇(s0)). Now the subgroup, say Q, generated
by u(ϕ̇(s0)) and ZG(A) contains {u(x) : x ∈ R

n−1}. Therefore Q is a parabolic subgroup
of G. Since Q stabilizes π0(u(ϕ(s0))v), we conclude that G stabilizes π0(u(ϕ(s0))v).

We put v0 = u(ϕ(s0)v) − π0(u(ϕ(s0)v)). Then

u(ϕ(s) − ϕ(s0))v0 = u(ϕ(s))v + π0(u(ϕ(s0))v) ∈ V 0 + V −, ∀s ∈ I.

We choose a finite subset I1 ⊂ I containing s0 such that {ϕ(s) − ϕ(s0) : s ∈ I1} is an affine
basis of R

n−1, and apply Proposition 4.2. Therefore if v0 = 0 then π0(v0) = 0. Since by our
choice π0(v0) = 0, we conclude that v0 = 0. Therefore u(ϕ(s0))v is stabilized by G. Hence
v is stabilized by G, because u(ϕ(s0)) ∈ G. �

Proof of Theorem 1.6 If the conclusion of the theorem fails to hold then there exists C > 0
and a sequence ti → ∞ and convergent sequence vi → v in V such that ‖v‖ = 1, and

sup
s∈I

‖ati u(ϕ(s))vi‖ ≤ C‖vi‖, ∀i ∈ N.

Therefore we conclude that for any s ∈ I ,

π+(u(ϕ(s)v)) = lim
i→∞

π+(u(ϕ(s))vi) = 0.

In other words,

u(ϕ(s))v ⊂ V − + V 0, ∀s ∈ I.

Then by Corollary 4.6, v is fixed by G. But this contradicts our hypothesis and the proof is
complete. �

5 Ratner’s theorem and dynamical behaviour of translated trajectories near singular
sets

Our aim is to prove that μ, as obtained in Corollary 3.5, is L-invariant. As explained in
Sect. 1.1, we will use a technique from [21].

5.1 Twisted curves and limit measure

Let ϕ̇(s) denotes the tangent to the curve ϕ at s. Now onward we shall assume that ϕ̇(s) = 0
for all s ∈ I .
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Fix w0 ∈ R
n−1\{0}, and define

W = {u(sw0) : s ∈ R}. (5.1)

Recall that ZG(A) acts on R
n−1 via the correspondence u(z · v) = zu(v)z−1 for all z ∈

ZG(A) and v ∈ R
n−1. This action is transitive on R

n−1\{0}. Therefore there exists an analytic
function z : I → ZG(A) such that

z(s) · ϕ̇(s) = w0. (5.2)

From the first paragraph of Sect. 3 we recall that we have Gx0 = L/� and xi → x0 in
L/�. For any i ∈ N, let λi be the probability measure on L/� defined by

∫
L/�

f dλi := 1

|I |
∫

s∈I

f (z(s)ati u(ϕ(s))xi) ds, ∀f ∈ Cc(L/�). (5.3)

Corollary 5.1 After passing to a subsequence, λi → λ with respect to the weak∗-topology
on the space of probability measures on L/�.

Proof Given ε > 0, by Theorem 3.1 there exists a compact set F ⊂ L/� such that μi(F ) ≥
1 − ε for all i > 0. Since z(I ) is compact, there exists a compact set F1 ⊃ z(I )F . Then
λi(F1) ≥ 1 − ε for all i. Now the corollary is deduced by standard arguments using the
one-point compactification of L/�. �

5.2 Invariance under unipotent flow

Proposition 5.2 Suppose that λi

i→∞−→λ in the space of probability measures on L/� with
respect to the weak∗-topology. Then λ is W -invariant.

Proof This statement can be deduced by an argument identical to that of the proof of [21,
Theorem 3.1]. An idea of this proof is based on the explanation related to (1.10)–(1.12). �

Now we shall describe the measure λ using Ratner’s [17] description of ergodic invariant
measures for unipotent flows. Let π : L → L/� denote the natural quotient map. Let W be
as defined in (5.1). For H ∈ H , define

N(H,W) = {g ∈ G : g−1Wg ⊂ H } and

S(H,W) =
⋃
F∈H
F�H

N(F,W).

Then by Ratner’s theorem [17], as explained in [16, Theorem 2.2]:

Theorem 5.3 (Ratner) Given a W -invariant probability measure λ on L/�, there exists
H ∈ H such that

λ(π(N(H,W)) > 0 and λ(π(S(H,W)) = 0. (5.4)

Moreover almost every W -ergodic component of λ on π(N(H,W)) is a measure of the
form gμH , where g ∈ N(H,W) � S(H,W) and μH is a finite H -invariant measure on
π(H) ∼= H/H ∩ �. In particular if H is a normal subgroup of L then λ is H -invariant. �
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5.3 Algebraic criterion for non-accumulation of measure on singular set

Let V be as in Sect. 3.1 and w0 as in (5.1). Let A = {v ∈ V : v ∧ w0 = 0}. Then A is the
image of a linear subspace of V . We observe that

N(H,W) = {g ∈ L : g · pH ∈ A}. (5.5)

Proposition 5.4 (Cf. [5]) Given a compact set C ⊂ A and ε > 0, there exists a compact
set D ⊂ A containing C such that given any neighbourhood � of D in V , there exists a
neighbourhood � of C in V contained in � such that for any h ∈ G, any v ∈ V and any
open interval J ⊂ I , one of the following holds:

(I) hz(t)u(ϕ(t))v ∈ � for all t ∈ J .
(II) |{t ∈ J : hz(t)u(ϕ(t))v ∈ �}| ≤ ε|{t ∈ J : hz(t)u(ϕ(t))v ∈ �}|.

Proof As noted in [21, Proposition 4.6], the argument in the proof of [5, Proposi-
tion 4.2] goes through with straightforward changes using the Proposition 3.3 instead of
[5, Lemma 4.1]. �

The next criterion is the main outcome of the linearization technique.

Proposition 5.5 (Cf. [16]) Let C be any compact subset of N(H,W) � S(H,W). Let ε > 0
be given. Then there exists a compact set D ⊂ A such that given any neighbourhood � of
D in V , there exists a neighbourhood O of π(C) in L/� such that for any h1, h2 ∈ L, and
a subinterval J ⊂ I , one of the following holds:

(a) There exists γ ∈ � such that (h1z(t)u(ϕ(t))h2γ )pH ∈ �, ∀t ∈ J .
(b) |{t ∈ J : h1z(t)u(ϕ(t))π(h2) ∈ O}| ≤ ε|J |.

Proof Again this result and its proof are essentially same as those of [21, Proposition 4.7]. �

5.4 Applying the criterion and the basic lemma

Let {λi} be the measures as defined in (5.3). By our assumption Gx0 = L/�.

Theorem 5.6 Suppose that λi

i→∞−→ λ in the space of probability measures on L/� with
respect to weak∗-topology. Then λ is L-invariant.

Proof By Proposition 5.2, λ is invariant under the action of the nontrivial unipotent sub-
group W . Therefore by Theorem 5.3 there exists H ∈ H such that

λ(π(N(H,W)) > 0 and λ(π(S(H,W)) = 0. (5.6)

Let C be a compact subset of N(H,W)�S(H,W) such that λ(C) > ε for some ε > 0. In
other words, if we write x0 = π(g0) for some g0 ∈ G, then there exists a sequence gi → g0

such that xi = π(gi). Given any neighbourhood O of π(C) in L/�, there exists i0 > 0 such
that for all i ≥ i0, we have λi(O) > ε for all i > i0 and hence

1

|I | |{s ∈ I : z(s)ati u(ϕ(s))xi = π(ati z(s)u(ϕ(s))gi) ∈ O}| > ε. (5.7)



Equidistribution and Dirichlet’s approximation 529

Let D ⊂ A be as in the statement of Proposition 5.5. Choose any compact neighbourhood
� of D in V . Then there exists a neighbourhood O of π(C) in L/� such that one of the two
possibilities of the Proposition 5.5 holds. Therefore due to (5.7), for all i > i0 there exists
γi ∈ � such that

(z(s)ati u(s)giγi)pH = (ati z(s)u(s)giγi)pH ∈ �, ∀s ∈ I.

Let �1 = {z(s)−1 : s ∈ I }�. Then �1 is contained in a compact subset of V , and the follow-
ing holds:

ati u(s)(giγi)pH ⊂ �1, ∀s ∈ I, ∀i > i0. (5.8)

Now we express V = W0 ⊕ W1, where W0 is the subspace consisting of all G-fixed
vectors and W1 is its G-invariant complement. For i ∈ {0,1}, let Pi : V → Wi denote the
associated projection. Consider any norm ‖·‖ on V such that

‖w‖ = max{‖P0(w)‖,‖P1(w)‖}, ∀w ∈ V. (5.9)

Let R = sup{‖w‖ : w ∈ �1}. By (5.8), for all i ≥ i0 and s ∈ I we have

‖atu(ϕ(s))(giγipH )‖ = ‖P0(giγipH )‖ + ‖atu(ϕ(s))P1(giγipH )‖ < R. (5.10)

Therefore, by Theorem 1.6 applied to W1 in place of V and C = 1, there exists i1 > i0 such
that

‖P1(giγipH )‖ < R, ∀i > i1. (5.11)

Combining (5.9), (5.10) and (5.11) we have

‖giγipH ‖ < R, ∀i ≥ i1. (5.12)

The orbit � · pH is discrete due to Proposition 3.2. And gi → g0 as i → ∞. Therefore
by passing to a subsequence we may assume that γipH = γi1pH for all i ≥ i1. Put δ0 =
‖P1(g0γi1pH )‖ > 0 and C = 2Rδ−1

0 . Then By Theorem 1.6, there exists i2 ≥ i1 such that for
all i ≥ i2 we have

sup
s∈I

‖a(ti)u(ϕ(s))P1(giγi1pH )‖ ≥ C‖P1(giγi1pH )‖ > R.

This contradicts (5.10) for all i ≥ i2, unless P1(g0γi1pH ) = 0. Hence g0γi1pH is G-fixed.
Since � · pH is closed in V , �Stab(pH ) = �N1

L(H) is closed in L. Therefore by taking
the inverse N1

L(H)� is closed in L. Hence the orbit π(N1
L(H)) is closed in L/�. By [19,

Theorem 2.3] there exists a closed subgroup H1 of N1
L(H) of L containing all Ad-unipotent

one-parameter subgroups of L contained in N1
L(H) such that H1 ∩ � is a lattice in H1 and

π(H1) is closed. Now ρ(G) is generated by unipotent one-parameter subgroups. Therefore if
we put F = g0γi1H1(g0γi1)

−1, then ρ(G) ⊂ F . Also Fx0 = g0γi1π(H1) is closed and admits
a finite F -invariant measure. Hence by our assumption that ρ(G)x0 = L/�, we have F = L.
Therefore L = H1 ⊂ N1

L(H). Therefore, since N(H,W) = 0, we have N(H,W) = L. In
particular, W ⊂ H . Thus H ∩ ρ(G) is a normal subgroup of ρ(G) containing W . Since
ρ(G) is a simple Lie group, ρ(G) ⊂ H . Since H is a normal subgroup of L and π(H) is a
closed orbit with finite H -invariant measure, every orbit of H on L/� is closed and admits
a finite H -invariant measure. Since ρ(G)x0 = L/�, we have H = L. Now in view of (5.6),
by Theorem 5.3 we conclude that the measure λ is H = L-invariant. �
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Corollary 5.7 The measure μ as in the statement of Corollary 3.5 is the unique L-invariant
probability measure on L/�.

Proof Since ϕ is analytic, the set of points where ϕ̇(s) = 0 is finite. Therefore it is enough
to prove the theorem separately for each closed subinterval J of I , in place of I , under the
additional hypothesis that ϕ̇(s) = 0 for all s ∈ J . Since ϕ is analytic, if J is any subinterval
of I with nonempty interior, then ϕ(J ) is not contained in a proper affine subspace of R

n−1.
Therefore without loss of generality we assume that ϕ̇(s) = 0 for all s ∈ I . Let z(s) ∈ ZG(A)

be as defined in (5.2). Given ε > 0 there exists a neighbourhood O of the e in ZG(A) such
that |f (zx) − f (x)| < ε for all x ∈ L/� and z ∈ O . We consider a partition I = J1 ∪· · ·∪Jk

such that for any s, s ′ ∈ Jj , we have z(s)−1z(s ′) ∈ O . For each j ∈ {1, . . . , k}, choose sj ∈Jj ,
and define the function fj (x) = f (z(sj )

−1x) for all x ∈ L/�. Then by Theorem 5.6, applied
to the interval Jj in the place of I , there exists ij > 0 such that for all i > ij , we have

∣∣∣∣
∫

Jj

fj (z(s)ati u(ϕ(s))xi) ds − |Jj |
∫

L/�

fj (x) dμL(x)

∣∣∣∣ ≤ ε|Jj |. (5.13)

Since μL is ZG(A)-invariant,
∫

L/�

fj (x) dμL(x) =
∫

L/�

f (x) dμL(x) =: Sj . (5.14)

Now
∣∣∣∣
∫

Jj

f (ati u(ϕ(s))xi) ds − |Jj |Sj

∣∣∣∣

=
∣∣∣∣
∫

Jj

f ((z(s)−1z(sj ))z(sj )
−1z(s)ati u(ϕ(s))xi) ds − |Jj |Sj

∣∣∣∣

≤
∣∣∣∣
∫

Jj

fj (z(s)ati u(ϕ(s))xi) ds − |Jj |Sj

∣∣∣∣ + ε|Jj | (5.15)

≤ 2ε|Jj |, (5.16)

where (5.15) follows from the choice of O and the partition of I into Jj ’s, and (5.16) follows
from (5.13) and (5.14).

Therefore for any i ≥ max{i1, . . . , ik}, we have

|I | ·
∣∣∣∣
∫

f dμi −
∫

f dμL

∣∣∣∣ =
∣∣∣∣
∫

I

f (ati u(ϕ(s))xi) ds − |I |
∫

f (x)dμL

∣∣∣∣

≤
k∑

j=1

∣∣∣∣
∫

Jj

f (ati u(ϕ(s))xi) ds − |Jj |
∫

f dμL

∣∣∣∣

≤ 2ε

k∑
j=1

|Jj | ≤ 2ε|I |.

This shows that μ is L-invariant. �

Proof of Theorem 1.3 By [19, Theorem 2.3] there exists the smallest subgroup H of L

containing ρ(G) such that the orbit Hx0 is closed and admits a finite H -invariant measure.
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Therefore replacing L by H and � by the stabilizer of x0 in H , without loss of generality
we may assume that H = L.

If (1.5) fails to hold then there exist ε > 0 and a sequence ti → ∞ such that for each i,

∣∣∣∣
1

|b − a|
∫ b

a

f (ρ(ati u(ϕ(s)))x0) ds −
∫

L/�

f dμL

∣∣∣∣ ≥ ε.

If we put xi = x0 for each i, then in view of (3.1) and Corollary 3.5, this statement contradicts
Corollary 5.7. �

Proof of Theorem 1.9 Note that if the theorem fails to hold then, there exist sequences
xi → x0 in K and ti → ∞ in R such that

∣∣∣∣
1

|b − a|
∫ b

a

f (ati u(ϕ(s))xi) ds −
∫

f dμG

∣∣∣∣ > ε, ∀i.

This statement contradicts Corollary 5.7. �

Proof of Theorem 1.8 Without loss of generality we may assume that I is a box in R
d with

sides parallel to the coordinate axis. Since ψ(I) is not contained in a proper affine subspace
of R

n and ψ is analytic, there exists a line � in R
d such that for almost every s ∈ I the set

ψ((s + �) ∩ I ) is not contained in a proper affine subspace of Rn. It is enough to prove that
the limiting distributions of translates of conditional measures on ψ((s + �)∩ I )x0 are same
as μH for almost all s ∈ I . Therefore without loss of generality it is enough to prove the
theorem in the case of d = 1 and I = [a, b].

Let ψi,j (s) denote the (i, j)-th coordinate of ψ(s) for all s ∈ I . By our hypothesis, the
set {t : ψ1,1(t) = 0} is finite. Therefore arguing as in the proof of Corollary 5.7, without loss
of generality we may assume that ψ1,1(s) = 0 for all s ∈ I := [a, b]. Define

ϕ(s) =
(

ψ1,2(s)

ψ1,1(s)
, . . . ,

ψ1,n(s)

ψ1,1(s)

)
∈ R

n−1, ∀s ∈ I.

Let U− = {g ∈ G : atga−1
t

t→∞−→ e}. Then there exist continuous maps ψ− : I → U− and
ψ0 : I → ZG(A) such that

ψ(s) = ψ−(s)ψ0(s)u(ϕ(s)), ∀s ∈ I.

We observe that the curve {ϕ(s) : s ∈ I } is contained in a proper affine subspace of R
n−1

if and only if the curve {(ψ1,j (s))1≤j≤n) : s ∈ I } is contained in a proper subspace of R
n.

Given any ε > 0 and f ∈ Cc(L/�), there exists t0 > 0 such that for all t ≥ t0 and x ∈ L/�,
we have |f (atψ−(s)x) − f (atx)| < ε. Therefore without loss of generality we may replace
ψ(s) by ψ0(s)u(ϕ(s)) for all s ∈ I to prove the theorem.

Now we apply the argument of the proof of Corollary 3.5 to ψ0(s) in place of z(s), and
Theorem 1.3 in place of Theorem 5.6, to complete the proof of the theorem. �

Proof of Theorem 1.10 The result can be obtained by following the general strategy of [5]
and the method of this article. �
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