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Abstract

Understanding the limiting distributions of translates of measures on subman-
ifolds of homogeneous spaces of Lie groups lead to very interesting number
theoretic and geometric applications. We explore this theme in various general-
ities, and in specific cases. Our main tools are Ratner’s theorems on unipotent
flows, nondivergence theorems of Dani and Margulis, and dynamics of linear
actions of semisimple groups.
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1. Introduction

Several problems in number of theory and geometry involve more than one
groups of symmetries or invariance in a direct or an indirect manner. Under-
standing the dynamics associated to interactions between these groups equips
us with deeper new insights into these problems. The proof of Oppenheim
conjecture on values of quadratic forms at integral points due to Margulis[16]
via study of unipotent flows provided great impetus to the approach of solv-
ing number theoretic problems via homogeneous flows techniques. The work
of Ratner [17, 18] on classification of invariant measures and orbit closures for
unipotent flows as conjectured by Raghunathan and Dani [3] has created the
foundation for this area. Since than significant progress and success have been
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achieved in this field by several authors in terms of deep number theoretic and
dynamical theorems and powerful techniques. We will discuss a class of such
results which are based on describing the limit distributions of sequences of
translates of smooth measures on submanifolds in homogeneous spaces of Lie
groups.

2. Counting Integral Points on Varieties and

Translates of Closed Orbits of Subgroups

Let V be an affine algebraic subvariety of Rn defined over Q. Let B be a
bounded open convex set in Rn−1 with smooth boundary. For T > 0, define

N(T, V ) = Cardinality(V ∩ Zn ∩ TB).

In general, it is a difficult problem to estimate N(T, V ) as T → ∞.
In [9] Duke, Rudnick and Sarnak observed that when V is an orbit of an

algebraic semisimple Q-group G acting linearly on Rn, due a theorem of Borel
and Harish-Chandra, V ∩Zn is a union of finitely many orbits of a finite index
subgroup, say Γ, of G(Z). And hence, if p ∈ V ∩ Zn 6= ∅, we want to obtain
asymptotic estimate of

N(T,Γp) = Cardinality(Γp ∩ TB)

as a function of T for large T > 0. Recognizing the role of symmetry and
invariance groups in this problem, they noted that if H denotes the stabilizer
of p, then under some natural conditions we might expect the following limit
to hold:

lim
T→∞

N(T,Γp)

VolG/H({gH ∈ G/H : g ∈ G, gp ∈ TB})
= 1, (1)

were the G-invariant VolG/H on G/H is determined by the choices of Haar
measures on G and H such that Vol(G/Γ) = Vol(H/H ∩ Γ) = 1.

In [9], they verified this limit for affine symmetric varieties V by introducing
a counting technique, and relating it to the following equidistribution result.

Theorem 2.1 (Duke-Rudnick-Sarnak). Let G be a non-compact simple Lie
group, and H be a symmetric subgroup of G; that is, H is the fixed point set
of an involutive automorphism (for example, a Cartan involution) of G. Let
Γ be a lattice in G, and suppose that H ∩ Γ is a lattice in H. Let µG denote
the G-invariant probability measure on G/Γ, and µH denote the H-invariant
probability measure on G/Γ supported on HΓ/Γ ∼= H/H ∩ Γ. Then for any
sequence {gi} in G which is divergent modulo H, we have

∫

giHΓ/Γ

f d(giµH) :=

∫

y∈HΓ/Γ

f(giy) dµH(y)
i→∞
−−−→

∫

G/Γ

f dµG,
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for any bounded continuous function f on G/Γ.
In other words, the sequence of translated measures giµH converge to µG in

the space of probability measures on G/Γ with respect to the weak-∗ topology.

The proof of this result in [9] is based on deep results of harmonic analysis of
L2(G/Γ). Later Eskin and McMullen [10] deduced Theorem 2.1 as a geometric
or a Lie theoretic consequence the mixing property of the sequence of gi-actions
on G/Γ.

The above counting problem and the equidistribution theorem, in view of
Ratner’s theorem[17] on unipotent flows, motivated the following more general
result of [11].

Theorem 2.2 (Eskin-Mozes-Shah). Let G and H ⊂ G be connected real alge-
braic groups defined groups over Q and admitting no nontrivial Q-characters.
Let Γ ⊂ G(Q) be a lattice in G. Let µG and µH be invariant probability mea-
sures G/Γ and HΓ/Γ, respectively. Suppose that for a sequence {gi} in G, the
sequence of translated measures giµH converges to a probability measure λ on
G/Γ with respect to the weak-∗ topology. Then there exists a Q-subgroup L of
G containing H and c ∈ G such that

(i) λ = cµL, were µL is the L-invariant probability measure on LΓ/Γ; and

(ii) there exist sequences {γi} ⊂ Γ and ci → c in G such that giH = ciγiH
and γiH ⊂ Lγi for all large i.

Thus any limit measure is algebraically defined, and the obstruction for this
measure to be G-invariant can be algebraically explained.

To prove this theorem one shows that except for the case when gi is bounded
modulo Z(H) ∩ Γ, there exists a sequence Xi ∈ Lie(H) such that Xi → 0 and
(Ad gi)Xi → Y 6= 0 in Lie(G), and λ is invariant under the action of the one-
parameter subgroup {exp(tY ) : t ∈ R}. Since 0 is the only eigenvalue of Y ,
the measure λ is invariant under a unipotent one-parameter subgroup. Now
Ratner’s theorem describing such measures become applicable to this question.

In [11], using the counting technique introduced by Duke, Rudnick, and
Sarnak, the above result was used for proving (1) under appropriate conditions
for a wide class of varieties V , and in particular, when H is a maximal Q-
subgroup of G. For example, we show the following:

Let p(x) ∈ Z[x] be an irreducible monic polynomial. Then the cardinality
of the set of n × n integral matrices of norm at most T and having p(x) as
the characteristic polynomial is asymptotically equivalent to cTn(n−1)/2, where
c > 0 is a constant which can be described in terms of class number, regulator,
and discriminant associated to the number field generated by a root of p(x) (cf.
[22]).

2.1. Expanding translates of smooth measures on horo-
spherical leaves. The work of Eskin and McMullen [10] also motivated
the following result [21]:
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Theorem 2.3 (Shah). Let G be a noncompact simple Lie group, and g ∈ G be
a semisimple element not contained in a compact subgroup of G . Let U = {u ∈
G : g−nugn → e as n → ∞} denote the expanding horospherical subgroup of g.
Let L be a Lie group containing G, and Γ a lattice in L such that Gx0 is dense
in L/Γ, where x0 = eΓ. Let λ be a probability measure on U which is absolutely
continuous with respect to a Haar measure on U . Let λ̄ be the pushforward of
λ on Gx0 under the map h 7→ hx0 from G to L/Γ. Then as n → ∞, anλ̄
converges weakly to µL, the L-invariant probability measure on L/Γ. In other
words, for any bounded continuous function f on L/Γ,

lim
n→∞

∫

h∈U

f(gnhx0) dλ(h) =

∫

L/Γ

f dµL.

The above result can be generalized as follows: Let

P− = {b ∈ G : {gnbg−n : n ∈ N} is compact}

denote the stable subgroup for g. Let λ be any probability measure on G such
that the pushforward of λ on P−\G is absolutely continuous. Let λ̄ denote the
pushforward of λ on Gx0. Then gnλ̄ converges weakly to µL.

As a special case one generalizes Theorem 2.1 as follows: Let H be a sym-
metric subgroup of G, λ be a probability measure which is absolutely continuous
with respect to a Haar measure on H, and λ̄ denote the pushforward of λ on
Hx0. Then for any sequence {gi} ⊂ G, which diverges modulo H, the sequence
giλ̄ converges weakly to µL as i → ∞. This result has interesting consequences
to equidistribution of dense orbits of lattices on homogeneous spaces [13, 12].

3. Limits of measures on stretching translates

of submanifolds

In view of the results and notation of subsection 2.1, we ask the following
question: Let M be an immersed submanifold of U with dim(M) < dim(U) and
λ be a probability measure on M which is absolutely continuous with respect
to a smooth measure on M . Let λ̄ denote the pushforward of λ on Gx0. Under
what condition on the geometric shape ofM we have that gnλ̄ → µL as n → ∞?

3.0.1. An algebraic obstruction to the limit of gnλ̄ being equal to µL.

Define

P−

L = {b ∈ L : {gnbg−n : n > 0} is compact}.

Suppose that H is a proper subgroup of L containing g, and q ∈ L is such
that the orbit Hqx0 is closed and carries a finite H-invariant measure. Suppose
that M ⊂ U ∩ P−

L Hq. Then any weak-∗ limit of probability measures gnλ̄ is
a direct integral of measures which are supported on closed sets of the form
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bHqx0, where b ∈ P−

L is such that {gnbg−n : n < 0} is compact. Such limiting
measures are concentrated on strictly low dimensional submanifolds of L/Γ.

We ask if this is the only condition on the geometric shape of M . In the
remaining article we will show that this is indeed the case in certain specific
situations, and obtain new number theoretic and geometric consequences.

3.1. Translates of a finite arc under geodesic flow. Let
G = SO(n, 1) and {at} be a connected maximal R-diagonalizable subgroup of
G. Let P− = {b ∈ G : {atba−t : t > 0} is compact} and U be the corresponding
expanding horospherical subgroup of G. Here P−\G ∼= Sn−1 and U ∼= Rn−1,
and the map u 7→ P−u from U to P−\G correspond to the inverse-stereographic
projection, and the right action of G on P−\G ∼= Sn−1 is via conformal trans-
formations. If H is a proper closed subgroup of G containing {at} and some
nontrivial unipotent subgroup, then P−H correspond to a proper subsphere of
Sn−1. Therefore U ∩ P−Hg is an affine subspace or a subsphere in U ∼= Rn−1.
In [23] we show the following:

Theorem 3.1 (Shah). Let φ : (0, 1) → U be an analytic map such that φ(0, 1)
is not contained in a proper subsphere or a proper affine subspace. Then for
any lattice Γ in G, x ∈ G/Γ and any bounded continuous function f on G/Γ,

lim
t→∞

∫ 1

0

f(atφ(s)x) ds =

∫

G/Γ

f dµG

where µG is the G-invariant probability measure on G/Γ.

The above result was generalized for smooth maps in [24]. We can obtain
its following geometric application:

Let Hn denote the hyperbolic n-ball. Let Γ ⊂ SO(n, 1) be a torsion free
discrete group of isometries of Hn such that the hyperbolic manifold M = Hn/Γ
has finite Riemannian volume. Let π : T 1(Hn) → T 1(M) denote the natural
quotient map of the unit tangent bundles, and let gt denote the geodesic flow on
T 1(M). For v ∈ T 1(Hn), let v+ ∈ ∂Hn denote the end of the directed geodesic
starting from v.

Theorem 3.2 (Shah). Let φ : [0, 1] → T 1(Hn) be a continuous map such
that the map s 7→ φ(s)+ : (0, 1) → ∂Hn is C1 and its derivative dφ(s)+/ds is
Lipschitz and nonzero for almost all s. Suppose that the set {s ∈ (0, 1) : φ(s)+ ∈
S} has zero Lebesgue measure for any proper subsphere S ⊂ ∂Hn such that S
is the boundary of an isometric copy of Hk (2 ≤ k < n) in Hn whose image on
M is a closed subset. Then for any bounded continuous function f on T 1(M),

lim
t→∞

∫ 1

0

f(gtπ(φ(s)) ds =

∫

T 1(M)

f dµ̃M ,

where µ̃M is the probability measure on T 1(M) corresponding to the natural
Riemannian volume form on T 1(M).
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When φ is analytic, the condition of the theorem holds if the image of φ+

is not contained in a proper subsphere of ∂Hn.

4. Applications to Diophantine approximation

The above study was also prompted by the following result due to Kleinbock and
Margulis [14]: Let n ≥ 2 and Ω := {gZn : g ∈ SL(n,R)} ∼= SL(n,R)/SL(n,Z)
denote the space unimodular lattices in Rn. Given ε > 0, define Ω(ε) = {Λ ∈
Ω : ‖v‖ ≥ ε, ∀v ∈ Λr {0}}. Then Ω(ε) is compact, and ∪ε>0Ω(ε) = Ω.

For t = (t1, . . . , tn−1) ∈ Rn−1 and v = (v1, . . . , vn−1) ∈ Rn−1, define

a(t) =





et1+···+tn−1

e−t1

. . .
e−tn−1



 , u(v) =





1 v1 ... vn−1

1

. . .
1



 .

Theorem 4.1 (Kleinbock-Margulis). Let φ : (0, 1) → Rn−1 be a non-degenerate
Cn-map; that is, for almost all t ∈ (0, 1), the derivatives φ(i)(t), 1 ≤ i ≤ n− 1,
span Rn−1. Then there exist constants C > 0 and α > 0 such that

`({s ∈ (0, 1) : a(t)u(φ(s))Zn 6∈ Ω(ε)}) ≤ Cεα, ∀ε > 0, ∀t ∈ Rn−1
+ .

Kleinbock and Margulis [14] used this result to settle conjectures on metric
properties of diophantine approximation on submanifolds of Rn due to Mahler,
Sprindzuk and Baker.

The result raises the following dynamical question: Let ν denote the push-
forward of the Lebesgue measure on (0, 1) under the map s 7→ u(φ(s))x0 on Ω.
Let ti ∈ Rn−1

+ be a sequence such that all coordinates of ti tend to infinity. Then
as i → ∞, does the measure a(ti)ν tend to µ, the unique SL(n,R)-invariant
probability measure on Ω?

It was observed by Kleinbock and Weiss [15] that an affirmative answer to
this question would resolve a problem proposed by Davenport and Schmidt [7]
in the late 60’s on non-improvability of Dirichlet’s simultaneous approximation
theorem. To describe the problem, consider the following definition:

Given λ > 0 we say that ξ ∈ Rk is DT(λ) if for all but finitely many N ∈ N,
there exist 0 6= q = (q1, . . . , qk) ∈ Zk and p ∈ Z such that

|q · ξ + p| ≤ λ/Nk and |qi| ≤ N, ∀i. (2)

Similarly, we say that ξ = (ξ1, . . . , ξk) ∈ Rk is DT′(λ) if for all but finitely
many N ∈ N, there exist 0 6= q ∈ Z and p ∈ Zk such that

|qξi + p| ≤ λ/N, ∀i, and |q| ≤ Nk.

Dirichlet’s simultaneous approximation theorem states that every ξ ∈ Rk

is DT(1) and DT′(1). Davenport and Schmidt [6] showed that for any λ < 1,
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almost every ξ ∈ Rk is not DT(λ) and not DT′(λ). In [7] they showed that for
almost any ξ ∈ R the vector (ξ, ξ2) is not DT(1/4). The result was generalized
by Baker [1] for points on more general curves on R2, by Dodson, Rynne and
Vickers [8] for points on ‘low co-dimensional curved submanifolds’ of Rn, by
Bugeaud [2] for the curve (ξ, ξ2, . . . , ξn), and by Kleinbock and Weiss [15] for
all nondegenerate curves on Rk. In each case, it was proved that almost all
points of the parametrized submanifold with respect to the parameter measure
are not DT(λ) for some very small value of λ > 0 depending on the submanifold.

In [25] we provide the following answer to the above problem:

Theorem 4.2 (Shah). Let B be a ball in Rd for some d ≥ 1, and φ : B → Rk

be an analytic map whose image is not contained in a proper affine subspace of
Rk. Then for almost every b ∈ B, the point φ(b) is neither DT(λ) nor DT′(λ)
for any λ < 1.

The above statement is a consequence of the following equidistribution re-
sult [25]:

Theorem 4.3 (Shah). Let L be any Lie group and ρ : G = SL(n,R) → L
be a continuous homomorphism. Let Γ be a lattice in L. Let B be a bounded
open subset in Rd (d ≥ 1). Let φ : B → SL(n,R) be an analytic map such that
the image of the first row of this map is not contained in a proper subspace of
Rn. Put at = a((t, t, . . . , t)) ∈ SL(n,R) (t ∈ R). Let x ∈ L/Γ and suppose that
ρ(G)x is dense in L/Γ. Then for a bounded continuous function f on L/Γ,

lim
t→∞

1

Vol(B)

∫

b∈B

f(ρ(atu(φ(b))x) db =

∫

L/Γ

f dµL, (3)

where db denotes the Lebesgue integral on Rd, and µL is the L-invariant prob-
ability measure on L/Γ.

4.0.1. Expanding translates of shrinking submanifolds. Fix any b ∈ B
and let Bt denote a ball of radius e−t about b. If B is replaced by the shrinking
balls Bt in (3) then we still expect the limiting measure to be µL. This has
been verified in the case of n = 3. This type of result would allows us to deduce
the above theorem when φ to is a non-degenerate Cn curve as in Theorem 4.1.

4.1. Multiplicative Dirichlet-Minkowski approximation.
The following generalization of Dirichlet’s theorem is known as Minkowski’s
theorem on simultaneous approximation of Linear forms: For n ≥ 2, let
(φij) ∈ SL(n,R). Let α1, . . . , αn > 0 be such that α1 · · ·αn = 1. Then there
exist x1, . . . , xn ∈ Z, not all 0s, such that

|φ11x1 + · · ·+ φ1nxn| ≤ α1; |φi1x1 + · · ·+ φinxn| < αi (i ≥ 2). (4)

By putting φ11 = · · · = φnn = 1 and φij = 0 for i ≥ 2 and j 6= i, we get
a multiplicative version Dirichlet’s theorem. Now we define the corresponding
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λ-version: For k = n − 1, let N ⊂ Nk be an infinite sequence and 0 < λ ≤ 1.
We say that (ξ1, . . . , ξk) ∈ Rk is MDT(λ) along N if for all but finitely many
(N1, . . . , Nk) ∈ N , there exist q1, . . . , qk ∈ Z, not all zero, and p ∈ Z such that

|p+ q1ξ1 + · · ·+ qkξk| ≤ λ/(N1N2 . . . Nk) and |qi| < Ni, ∀i. (5)

We also define MDT′(λ) in a similar way. Minkowski’s result implies that all
points are MDT(1) and MDT′(1) along any N .

Kleinbock and Weiss [15] proved that if each coordinate projection of N is
a divergent sequence then almost all ξ ∈ Rk are neither MDT(λ) nor MDT′(λ)
along N for any λ < 1. They also showed that given a non-degenerate smooth
curve in Rk, there exists a very small λ > 0 so that for almost every ξ on this
curve is not MDT(λ) along N .

For analytic curves not contained in proper affine subspaces of Rk we extend
their result for any λ < 1 in [26] as follows:

Theorem 4.4 (Shah). Let N be an infinite subset of Nk. Let B be an open ball
in Rd and φ : B → Rk be an analytic map whose image is not contained in a
proper affine subspace. Then for almost all b ∈ B with respect to the Lebesgue
measure on Rd and λ < 1 there exist infinitely many (N1, . . . , Nk) ⊂ N such
that both the following sets of inequalities are simultaneously insoluble:

|q1φ1(b) + · · ·+ qkφk(b) + p| ≤ λ/(N1 · · ·Nk), |qi| ≤ Ni (∀i), (6)

for p, q1, . . . , qk ∈ Z, not all zeros; and

|qφi(b) + pi| ≤ λN−1
i (∀i), |q| ≤ N1N2 . . . Nk, (7)

for p1, . . . , pk, q ∈ Z, not all zeros.

In particular, φ(b) is neither MDT(λ) nor MDT′(λ) along N for any λ < 1
and almost all b ∈ B.

It may be noted that, due to a theorem of Minkowski and Hajosh on critical
lattices, the analogue of the above theorem on multiplicative non-improvability
alongN fails to hold if we take an unbounded sequenceN contained (R+)

k such
that one of the coordinates of N converges to an element of Rr N (see [26]).

The deductions of the above results are based on the following relation be-
tween the approximation inequality and matrix action on the space of unimod-
ular lattices in Rk+1 (see[4, 14, 15]); that is, the inequalities (5) are equivalent
to







N1···Nk

N−1

1

. . .
N−1

k











1 ξ1 ... ξn−1

1

. . .
1









p
q1

...
qk



 ∈ [−λ, λ]× [−1, 1]k,

or in other words a(t)u(ξ)x0 ∈ Lλ, where t = (logN1, . . . , logNk), x0 = Zn ∈
Ω, and

Lλ = {gZn ∈ Ω : g ∈ SL(n,R), gZn ∩ [−λ, λ]× [−1, 1]k 6= {0}}
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is the complement of a nonempty open subset of Ω if 0 < λ < 1. In view of this
relation, the dynamical result needed to prove theorem 4.4 is as follows [26]:
Given an unbounded sequence {ti} in Rn−1

+ , after permuting coordinates and
passing to a subsequence, we will assume that its first m coordinate projections
are divergent sequences (1 ≤ m ≤ n − 1), and its remaining (n − 1 − m)
coordinate projections are convergent sequences. Let

Q =
{

(gi,j) ∈ SL(n,R) : for i > m+ 1,
gi,j = 0 if j 6= i
gi,i = 1

}

. (8)

Then as i → ∞, a(ti)Q → a(t0)Q in SL(n,R)/Q for some t0 ∈ Rn−1. In
particular, if all coordinates of ti are divergent then Q = G and t0 = 0.

Theorem 4.5 (Shah). Let B be a bounded open subset of Rd (d < n). Let
φ : B → Rn−1 be an analytic map whose image is not contained in a proper
affine subspace. Let L be a Lie group, ρ : SL(n,R) → L be a continuous homo-
morphism, and Γ be a lattice in L. Let {ti} be a sequence as above. Let x ∈ L/Γ.
Then for any bounded continuous function f on L/Γ,

lim
i→∞

1

Vol(B)

∫

B

f(ρ(a(ti)u(φ(b)))x) db =

∫

y∈Hx

f(ρ(a(t0))y) dµH(y),

where H is the smallest closed subgroup of L containing ρ(Q) such that Hx is
closed and admits an H-invariant probability measure, say µH .

5. Unipotent flows, Linearization and Linear

dynamics

To prove the above dynamical results one shows that if λ is the normalized
parameter measure on the submanifold ρ(u(φ(B)))x of L/Γ, which is being
translated by a sequence gi = ρ(a(ti)), and if we prove that giλ converges to a
measure µ on L/Γ, then µ turns out to be a direct integral of finite measures
which are invariant under actions unipotent subgroups of G. Due to Ratner’s
measure classification theorem, if µ is not L-invariant, then µ is strictly pos-
itive on the image of a proper algebraic subvariety, say V of L projected to
L/Γ. This variety is right invariant under certain subgroup, say N , containing
unipotents and such that NΓ is closed. At this stage one applies linearization
technique [19, 5, 20] in conjunction with functions of (C,α)-growth (as intro-
duced in [14]) to show that for each a(ti) there exists γi ∈ L stabilizing x such
that ρ(a(ti)u(φ(B)))γi, a lift of the entire translated trajectory, lives in a thin
neighbourhood of the subvariety V in L modulo N . At this stage we invoke
the following new observation of linear dynamical nature, to deduce that there
exist some fixed γ ∈ L stabilizing x such that ρ(a(ti)u(φ(B))γ gets arbitrarily
close to V in L modulo N . The linear dynamical observation, which turns out
to be one of the most crucial part of the argument, is as follows [23, 24, 25, 26]:
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Theorem 5.1 (Shah). Let φ : (0, 1) → Rn−1 be a C1-map such that for some
interval B ⊂ (0, 1), φ(B) is not contained in a proper affine subspace of Rn−1.
Suppose that SL(n,R) acts linearly on a finite dimensional vector space V . Let
a sequence {ti} and the associated subgroup Q be as in (8). Then for any v ∈ V
which is not fixed by Q, and any compact set C ⊂ V ,

atiu(φ(B))v 6⊂ C for all large i. (9)

Note that if v is fixed by Q then atiu(φ(B))v = ativ → at0v as i → ∞.

Our proof of this result uses the description of finite dimensional represen-
tations of SL(2,R) to understand the intertwined linear dynamics of various
copies of SL(2,R)s and SL(m,R)s sitting in SL(n,R).

In the case when φ is a nondegenerate Cn-map, we expect that (9) will hold
even if we put Bi in place of B where Bi’s are intervals around some s ∈ (0, 1)
shrinking at some specific rate depending on a(ti). For example, in the case
when ti = (ti, . . . , ti) (all same coordinates) then we can shrink Bi (around any
s except for finitely many s ∈ B) at the rate of e−ti as i → ∞, and (9) can be
expected to hold.

The basic strategy behind the dynamical theorems of the previous section
is that in very general situations, using Ratner’s theorem and Linearization
techniques we can reduce the equidistribution problem to a problem about
‘Dynamics of subgroup actions on finite dimensional linear representations’. At
that stage n we need to prove the results that are very similar to Theorem 5.1,
possibly with B also shrinking at a very specific rate as i → ∞. Proving a
suitable linear dynamical result remains to be the the main difficulty in de-
scribing the limiting distributions of stretching translates of submanifolds on
homogeneous spaces of very general Lie groups.
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