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EXPANDING TRANSLATES OF CURVES

AND DIRICHLET-MINKOWSKI THEOREM ON LINEAR FORMS

NIMISH A. SHAH

1. Introduction

Extending Dirichlet’s theorem (1842) on simultaneous Diophantine approxima-
tion in various forms, Minkowski (1896) proved the following theorem as a conse-
quence of his convex body theorem [15, Chapter II]:

Minkowski’s theorem on linear forms. Let (ϕij) ∈ SL(n,R) and α1, . . . , αn be
positive numbers with α1 · · ·αn = 1. Then there exist integers x1, . . . , xn, not all
zero, such that

|ϕ11x1 + · · ·+ ϕ1nxn| ≤ α1,

|ϕi1x1 + · · ·+ ϕinxin| < αi (2 ≤ i ≤ n).
(1.1)

By putting ϕ11 = · · · = ϕnn = 1 and ϕij = 0 for i �= j and i ≥ 2, we obtain a
multiplicative variation of Dirichlet’s theorem: Given (ξ1, . . . , ξk) ∈ R

k and positive
integers N1, . . . , Nk, there exist integers q1, . . . , qk and p, not all zero, such that

|q1ξ1 + · · ·+ qkξk − p| ≤ (N1 · · ·Nk)
−1, |qi| < Ni (1 ≤ i ≤ k).(1.2)

Following Davenport and Schmidt [7], we say that given any infinite set N ⊂ N
k,

Dirichlet’s theorem (DT) cannot be improved along N for (ξ1, . . . , ξk) ∈ R
k, if for

every 0 < µ < 1 there are infinitely many (N1, . . . , Nk) ∈ N such that the following
system of inequalities is insoluble for integers q1, . . . , qk and p, not all zero:

(1.3) |q1ξ1 + · · ·+ qkξk − p| ≤ µ(N1 · · ·Nk)
−1, |qi| < µNi (1 ≤ j ≤ k).

Davenport and Schmidt [7] showed that forN = {(N, . . . , N) ∈ Z
k : N ∈ N}, the

DT cannot be improved along N for almost all points of Rk. The same conclusion
was obtained by Kleinbock and Weiss [11] for sets N ⊂ Z

k with infinite projection
on each coordinate.

In fact, Davenport and Schmidt [8] showed that for k = 2 and for almost every ξ ∈
R, the inequalities (1.3) for (ξ1, ξ2) = (ξ, ξ2) do not have a nonzero integral solution
for infinitely many N1 = N2 and µ < 1

4 . Such results for related quantities, say for
points on a certain type of curve or a submanifold, were subsequently generalized
in [1, 9, 2]. More recently very general results on this problem were obtained in [11]
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by Kleinbock and Weiss, who introduced the dynamical approach to this question
and also considered the multiplicative version of the Dirichlet approximation. All of
these non-improvability results were proved only for µ ≤ µ0 for some small explicit
value of µ0 < 1 depending on the curve or the submanifold.

In the case of N ⊂ {(N, . . . , N) ∈ Z
k : N ∈ N}, in [20] it was shown that for

any analytic curve which is not contained in a proper affine subspace of Rk, the
DT cannot be improved along N for almost all points on the curve, that is, for all
µ < 1. In this article we will extend this result for any N .

Theorem 1.1. Let N be an infinite subset of Nk. Then for any analytic curve
ϕ : [a, b] → R

k whose image is not contained in a proper affine subspace, the DT
cannot be improved along N for ϕ(s) for Lebesgue almost every s ∈ [a, b].

This theorem can be reformulated in terms of dynamics of flows on the homo-
geneous space SL(n,R)/ SL(n,Z); cf. [11, §2.1]. We need to prove that certain
sequences of expanding translates of a curve in this space tend to become uni-
formly distributed. To adapt the strategy of [20] for the general N , we will need
to overcome significant technical difficulties, whose resolution requires making new
observations and developing much sharper methods.

1.1. Asymptotic equidistribution of translated curves. Let n ≥ 2 and G =
SL(n,R). For τ = (τ1, . . . , τn−1) ∈ R

n−1 and ξ = (ξ1, . . . , ξn−1) ∈ R
n−1, define

(1.4) aτ =

⎡
⎣

e(τ1+···+τn−1)

e−τ1

. . .
e−τn−1

⎤
⎦ and u(ξ) =

⎡
⎣

1 ξ1 ... ξn−1

1

. . .
1

⎤
⎦.

Let T = {τ i = (τi,1, . . . , τi,n−1)}i∈N ⊂ R
n−1 be a sequence such that τi,1 ≥

τi,2 ≥ · · · ≥ τi,n ≥ 0 for all i, and for some 1 ≤ m1 ≤ n− 1,

lim
i→∞

τi,r = +∞ if r ≤ m1 and lim
i→∞

τi,r = τ (r) < ∞ if r > m1.

For 2 ≤ m ≤ n, define

(1.5) Qm =
{[ g w

0 In−m

]
∈ G : g ∈ SL(m,R), w ∈ Mm×(n−m)(R)

}
,

where 0 is the (n−m)×m-zero matrix and In−m is the (n−m)× (n−m)-identity
matrix.

The main goal of this article is to prove the following:

Theorem 1.2. Let ϕ : I = [a, b] → R
n−1 be an analytic map whose image is not

contained in a proper affine subspace. Let L be a Lie group and Λ a lattice in L.
Let ρ : G → L be a continuous homomorphism. Let T be a sequence in R

k and
1 ≤ m1 ≤ n − 1 be defined as above. Let x0 ∈ L/Λ and H be a minimal closed
subgroup of L containing ρ(Qm1+1) such that the orbit Hx0 is closed and admits a
unique H-invariant probability measure, say µH . Then for any bounded continuous
function f on L/Λ the following holds:

(1.6) lim
i→∞

1

|b− a|

∫ b

a

f(ρ(aτ i
u(ϕ(s)))x0) ds =

∫
Hx0

f(ρ(aτ0)x0) dµH(x),

where τ 0 = (0, . . . , 0, τ (m1 + 1), . . . , τ (n− 1)).
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Note that ρ(Qm1+1) is generated by Ad-unipotent one-parameter subgroups of
L. Hence by Ratner’s theorem [14], Hx0 is the closure of the ρ(Qm1+1)-orbit of x0.

The above result in the case when τ i = (τi, . . . , τi) ∈ R
n−1 for a sequence

τi
i→∞−→ ∞ was proved in [20]. We will generalize that proof to obtain the above

result. The main new contribution here is a strong general result about dynamics
of intertwined linear actions of various SL(m,R)’s contained in G. Along with new
interesting observations, its proof crucially uses the ‘Basic lemma’ from [20] on joint
linear dynamics of various SL(2,R)’s contained in SL(n,R).

For the basic application of the theorem we will put L = G, Λ = SL(n,Z),
ρ the identity homomorphism, and x0 = SL(n,Z). Then H = Qm1+1, because
Qm1+1 ∩ SL(n,Z) is a lattice in Qm1+1.

For more examples, let σ be an involutive automorphism of SL(n,R) defined by

(1.7) σ(g) := w( tg−1)w−1, ∀g ∈ SL(n,R),

where w ∈ GL(n,R) permutes the standard basis {e1, . . . , en} of Rn such that

(1.8) w(ei) = en+1−i, ∀1 ≤ i ≤ n.

Note that

a′τ := σ(aτ ) =

⎡
⎣

eτn−1

. . .
eτ1

e−(τ1+···+τn−1)

⎤
⎦ ,(1.9)

u′(ξ) := σ(u(ξ)) =

⎡
⎣

1 ξn−1

. . .
...

1 ξ1
1

⎤
⎦ , and

Q′
m := σ(Qm) =

{[
In−m w

0m×(n−m) g

]
: g ∈ SL(m,R), w ∈ M(n−m)×m(R)

}
.

Another application of Theorem 1.2 is obtained as follows: Let L = G×G and
define the homomorphism ρ : G → L by

(1.10) ρ(g) := (g, σ(g)), ∀g ∈ G.

Let Λ = SL(n,Z) × SL(n,Z). Then ρ(SL(n,Z)) ⊂ Λ. Then ρ(Qm1+1) ∩ Λ is a
lattice in ρ(Qm1+1). Put x0 = eΛ. If we apply Theorem 1.2 in this case, then for
its conclusion H = ρ(Qm1+1).

1.2. Some applications. Using the conclusion of the theorem in the above exam-
ple, we obtain the following result on non-improvability of Dirichlet’s theorem on
simultaneous Diophantine approximation in the dual form.

Theorem 1.3. Let k ≥ 1, and let ϕ : I = [a, b] → R
k be an analytic curve whose

image is not contained in a proper affine subspace. Let N be an infinite subset
of Nk. Then for almost every s ∈ I and any µ < 1, there exist infinitely many
(N1, . . . , Nk) ∈ N such that both the following sets of inequalities are simultaneously
insoluble:

(1.11) |q1ϕ(s) + · · ·+ qkϕ(s)− p| ≤ µ(N1 . . . Nk)
−1, |qi| ≤ µNi (1 ≤ i ≤ k)

for (p, q1, . . . , qk) ∈ Z
k+1

� {0}, and
(1.12) |qϕi(s)− pi| ≤ µN−1

i (1 ≤ i ≤ k), |q| ≤ µN1 . . . Nk

for (q, p1, . . . , pk) ∈ Z
k+1

� {0}.
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The above statement is stronger than Theorem 1.1. It also generalizes [20,
Theorem 1.4], which considered the case of N where N1 = N2 = · · · = Nk.

The following statement is an immediate consequence of Theorem 1.3.

Corollary 1.4. Let N ⊂ N
n be an infinite set. Let M be a connected Riemannian

analytic submanifold of Rk such that M is not contained in a proper affine subspace
of Rk. We assume that M can be measurably fibered by analytic curves which are
not contained in proper affine subspaces of Rk. Then with respect to the measure
class on M associated to the Riemannian volume form, for almost every ξ ∈ M ,
the DT cannot be improved for ξ along N .

In fact, the conclusion of Theorem 1.3 holds for almost all ξ ∈ M in place of
ϕ(s).

Remark 1.5. The conclusion of Corollary 1.4 holds without the additional condition
on the manifold M that M can be measurably fibered by analytic curves not con-
tained in proper affine subspaces. In order to prove this, we need the following ex-
tension of Theorem 1.2 for analytic maps of several variables: Let I = [0, 1]d ⊂ R

d,
and let ϕ : I → R

k be an analytic map such that ϕ(I) is not contained in a proper
affine subspace of R

k. Then the conclusion (1.6) of Theorem 1.2 is valid if we
integrate over the box I with respect to the Lebesgue measure, instead of over the
interval [a, b].

This statement can be proved by the method of this article using generalized
versions of Proposition 3.3 and Proposition 6.2 for higher-dimensional maps. The
generalized propositions can be obtained by combining the techniques from [10] and
[17].

It may be noted that in the above results we can take N with bounded projec-
tions on some of the coordinates. In this case the non-improvability results were
not known earlier even for almost all points of Rk. It is also natural to consider
sequences N in (R>0)

k rather than in N
k. In that case we have the following result.

Corollary 1.6. The conclusions of Theorem 1.3 and Corollary 1.4 are valid for
any unbounded sequence N ⊂ (R>0)

k satisfying the condition that none of the
coordinate projections of this sequence has a limit point in R� N.

To deduce this from Theorem 1.3, we replace the vectors in N by integral vectors
whose coordinates are nearest integers of the original coordinates. Then under the
given conditions, the ratios of their corresponding coordinates converge to 1 in the
limit. Given µ < 1, we choose 1 > µ1 > µ. Now the product of these ratios (< 1)
times µ1 is bigger than µ for all but finitely many elements of these sequences.

The condition on limit points of coordinates of N in Corollary 1.6 is also a
necessary condition:

Theorem 1.7. Let N ⊂ (R>0)
k be an unbounded sequence such that one of the

coordinates converges to an element of R � N. Then there exists a positive µ < 1
such that for all but finitely many (N1, . . . , Nk) ∈ N and every ξ ∈ R

k, the system
of inequalities (1.3) admits nonzero integral solutions.

This result is a consequence of a theorem due to Minkowski and Hajós on critical
lattices. In fact, the result generalizes a counterexample given in [11, §4.4], and
combined with Corollary 1.6, it answers a question raised there.



EXPANDING TRANSLATES OF CURVES 567

1.3. Non-improvability of Minkowski’s theorem under different condi-
tions. In the above discussion, we considered a special case of Minkowski’s linear
forms theorem to obtain the multiplicative version of Dirichlet’s approximation
theorem. Now we consider different restrictions in Minkowski’s theorem and the
corresponding non-improvability statements. The following result is a direct con-
sequence of [20, Theorem 1.8]:

Theorem 1.8. Let ϕ = (ϕij) : I = [a, b] → SL(n,R) be an analytic map such that
R-span{ϕ1,j(s) : s ∈ I} = R

n. Let N be an infinite set of positive integers. Then
for almost every s ∈ I, there exists an infinite subset Ns ⊂ N such that for any
µ < 1 the following system of inequalities is insoluble in (x1, . . . , xn) ∈ Z

n
� {0}

for any N ∈ Ns:

|ϕ1,1(s)x1 + · · ·+ ϕ1,n(s)xn| ≤ µN−n,

|ϕi,1(s)x1 + · · ·+ ϕi,n(s)xi,n| ≤ µN (2 ≤ i ≤ n).
(1.13)

Now we ask whether we can obtain a multiplicative version of the above state-
ment. In this direction we can prove the special case, which also generalizes Theo-
rem 1.1.

Theorem 1.9. Let N be an infinite subset of (R>0)
n−1 such that its projection

on each coordinate has no limit point. Let ϕ be as in Theorem 1.8. We further
assume that ϕi1(s) ≡ 0 and ϕij(s) ≡ ϕij are constant functions for all i ≥ 2. Then
for almost every s ∈ I, there exists an infinite subset Ns ⊂ N such that for every
µ < 1 the following system of inequalities is insoluble in (x1, . . . , xn) ∈ Z

n
� {0}

for any (N1, . . . , Nn−1) ∈ Ns:

|ϕ11(s)x1 + · · ·+ ϕ1n(s)xn| ≤ µ(N1 . . . Nn−1)
−1,

|ϕi2x2 + · · ·+ ϕinxn| ≤ µNi−1 (2 ≤ i ≤ n).
(1.14)

It is a question of whether the conditions on ϕi,j(s) can be removed for i ≥ 2.

1.4. Uniform versions of the equidistribution statement. Let the notation
be as in §1.1.

Theorem 1.10. Let ϕ : I = [a, b] → R
n−1 be an analytic map whose image is not

contained in a proper affine subspace. Let L be a Lie group and let Γ be a lattice
in L. Let ρ : G → L be a continuous homomorphism. Let T = {τ i} be a sequence
as in Theorem 1.2. Let x0 ∈ L/Λ be such that ρ(Qm1+1)x0 is dense in L/Λ. Let

xi
i→∞−→ x0 be a convergent sequence in L/Λ. Then for any bounded continuous

function f on L/Λ

(1.15) lim
i→∞

1

|b− a|

∫ b

a

f(ρ(aτ iu(ϕ(s)))xi) ds =

∫
L/Λ

f dµL,

where µL is the unique L-invariant probability measure on L/Λ.

For the special case of L = G, ρ the identity map, and m1 = n − 1, that is,
Qm1+1 = G, we can take any convergent sequence xi → x0 in the above theorem.

A more general uniform version is as follows.

Theorem 1.11. Let the notation be as in Theorem 1.10. Let K be a compact subset
of L/Λ. Then given ε > 0 and a bounded continuous function f on L/Λ, there exist
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finitely many proper closed subgroups H1, . . . , Hr of L such that for each 1 ≤ i ≤ r,
Hi ∩ Λ is a lattice in Hi and there exists a compact set

(1.16) Ci ⊂ N(Hi, ρ(Qm1+1)) := {g ∈ L : ρ(Qm1+1)g ⊂ gHi}
such that the following holds: Given any compact set

F ⊂ K �

r⋃
i=1

CiΛ/Λ,

there exists i0 > 0 such that for any x ∈ F and any i ≥ i0,

(1.17)

∣∣∣∣∣
1

b− a

∫ b

a

f(ρ(aτ iu(ϕ(s)))x) ds−
∫
L/Λ

f dµL

∣∣∣∣∣ < ε.

Both of the above results in the special case, when for each i all coordinates of
τ i are same, were obtained earlier in [20, §1.2].

2. Deduction of Theorem 1.3 from Theorem 1.2

We express N ⊂ N
k as a sequence

(2.1) N = {(Ni,1, Ni,2, . . . , Ni,k) ∈ N
k : i ∈ N}.

Note that the conclusions of Theorem 1.3 does not depend on a fixed permutation
of the coordinates. Since there are at most k! permutations possible, by passing to
a subsequence of N and applying a permutation, without loss of generality we may
assume that

(2.2) Ni,1 ≥ Ni,2 ≥ · · · ≥ Ni,k, ∀i ∈ N.

Since N is infinite, by further passing to a subsequence, we may assume that

there exists m1 ≥ 1 such that Ni,m1

i→∞−→ ∞, and for each m1 < j ≤ k there exists
N0,j ∈ N such that Ni,j = N0,j for every i ∈ N. We define

τ i = (logNi,1, . . . , logNi,k) ∈ (R≥0)
k, ∀i ∈ N,

and put T = (τ i)i∈N. Then T satisfies the conditions of §1.1. We put

(2.3) τ 0 := (0, . . . , 0, logN0,m1+1, . . . , logN0,k).

Let n = k + 1. We identify the space Ω of unimodular lattices in R
n with

SL(n,R)/ SL(n,Z). Given 0 < µ < 1, we define

Bµ = {(ξ1, . . . , ξn) ∈ R
n : sup

1≤i≤n
|ξi| ≤ µ},

Kµ = {∆ ∈ Ω : ∆ ∩Bµ = {0}}.
(2.4)

For (N1, . . . , Nk) ∈ N , let τ = (logN1, . . . , logNk). Then for any s ∈ I, x =
(p, q1, . . . , qk) ∈ Z

n, and x′ = (pk, . . . , p1, q) ∈ Z
k, we have

(2.5) ρ(aτu(ϕ(s)))(x,x
′) =

⎛
⎜⎝
⎛
⎜⎝

(N1···Nk)(p+
∑k

i=1 qiϕi(s))

N−1
1 q1

...
N−1

k qk

⎞
⎟⎠ ,

⎛
⎜⎝

Nk(qϕk(s)+pk)

...
N1(qϕ1(s)+p1)

(N1···Nk)
−1q

⎞
⎟⎠
⎞
⎟⎠ .

Therefore (cf. [11, §2.1], [20, §2])
(1.11) is soluble ⇐⇒ aτu(ϕ(s))x ∈ Bµ ⇐⇒ aτu(ϕ(s))Z

n �∈ Kµ,

(1.12) is soluble ⇐⇒ a′τu
′(ϕ(s))x′ ∈ Bµ ⇐⇒ a′τu

′(ϕ(s))Zn �∈ Kµ.
(2.6)
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Hence Theorem 1.3 will be proved if we prove the following:

Proposition 2.1. Put x0 =: (Zn,Zn) ∈ Ω× Ω. Given µ < 1, define

(2.7) Eµ := {s ∈ [a, b] : ρ(aτ iu(ϕ(s)))x0 �∈ Kµ ×Kµ for all large i}.
Then |Eµ| = 0, where |·| denotes the Lebesgue measure.

In order to deduce this proposition from Theorem 1.2, we need the following
result, especially when m1 < n− 1 = k.

We define a compact set

K1 =
⋂

0<µ<1

Kµ = {∆ ∈ Ω : sup
1≤i≤n

|ξi| ≥ 1, ∀(ξ1, . . . , ξn) ∈ ∆� {0}}.(2.8)

Theorem 2.2. ρ(aτ0
Qm1+1)x0 ∩ (K1 ×K1) �= ∅.

To prove this, we will need the easier inclusion (⊃) part of the following fact,
which was guessed by Minkowski (1896) and proved by Hajós in 1941; see [3, XI.1.3].
Its full strength will be used later for proving Theorem 1.7.

Theorem 2.3. Let N denotes the group of upper triangular unipotent matrices in
SL(n,R). Let Wn = {w ∈ GL(n,Z): w permutes the standard basis of Rn}. Then

(2.9) K1 =
⋃

w∈Wn

(wNw−1)Zn.

�
Proposition 2.4. Let N− be the lower triangular unipotent subgroup of SL(n,R)
and Γ = SL(n,Z). Let (N1, . . . , Nn−1) ∈ N

n−1 and τ := (logN1, . . . , logNn−1).
Then

(2.10) aτQ1Γ ∩N−Γ �= ∅.
Proof. For the involutive automorphism σ as defined by (1.7), we have σ(N−) =
N−, σ(Γ) = Γ, σ(aτ ) = a′τ , and σ(Q1) = Q′

1. Therefore it is enough to prove that

(2.11) a′τQ
′
1 ∩N−Γ �= ∅.

We write k = n− 1. Note that

(2.12) a′τQ
′
1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣
Nk ξk

. . .
...

N1 ξ1
(N1 · · ·Nk)

−1

⎤
⎥⎥⎥⎦ : ξi ∈ R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

We define

(2.13) γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Nk 1
Nk − 1 Nk−1 1

Nk − 1 Nk−1 − 1
. . .

...
...

...
... N1 1

Nk − 1 Nk−1 − 1 · · · N1 − 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ SL(n,Z).

We express the matrix γ as a sum of a lower triangular matrix L of determinant 1
and a matrix M with only the last column nonzero. Then we choose h ∈ N− such
that hL = diag(N1, . . . , Nk, (N1 · · ·Nk)

−1). Also hM is a matrix with only the last
column nonzero. In particular, hγ = (hL + hM) is an upper triangular matrix of
determinant 1. Hence hγ ∈ a′τQ

′
1 by (2.12). This proves (2.11). �
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Proof of Theorem 2.2. Since Q1 ⊂ Qm1+1, by Proposition 2.4 there exist g ∈
Qm1+1, h ∈ N−, and γ ∈ Γ such that aτ0

g = hγ. Therefore ρ(aτ0
g) = ρ(h)ρ(γ).

Now ρ(γ)x0 = x0 andwNw−1 = N− forw ∈ Wn as in (1.8). Therefore ρ(aτ0g)x0 =
ρ(h)x0 ∈ K1 ×K1 by Theorem 2.3. �

Proof of Proposition 2.1. Let ρ be as in (1.10). Then the orbit ρ(Qm1+1)x0 is
closed and admits a unique ρ(Qm1+1)-invariant probability measure, say λ. Fix
µ < 1. Then Kµ × Kµ contains an open neighbourhood of K1 × K1. Therefore
by Theorem 2.2, Kµ × Kµ contains a nonempty open subset of ρ(aτ0

Qm1+1)x0.
Therefore there exists ε > 0 such that

(2.14) λ(ρ(aτ0)
−1(Kµ ×Kµ)) > ε.

So there exists f ∈ Cc(L/Λ) such that 0 ≤ f ≤ 1, supp(f) ⊂ Kµ ×Kµ, and

(2.15)

∫
x∈ρ(Qm1+1)x0

f(ρ(aτ0
)x) dλ(x) ≥ ε/2.

Let J be any subinterval of [a, b] with nonempty interior. Then by Theorem 1.2
there exists i0 ∈ N such that for all i ≥ i0, we have

(2.16)
1

|J |

∫
J

f(ρ(aτ i
u(ϕ(s)))x0) ds ≥

∫
f(ρ(aτ0

)x) dλ(x)− ε/4 ≥ ε/4.

Therefore by combining the definition of Eµ and the choice of f , we conclude that
|E∩J | ≤ (1−ε/4)|J |. Since J is an arbitrary open subinterval of I, by the Lebesgue
density theorem |Eµ| = 0. �

Thus we have completed the deduction of Theorem 1.3. �

Proof of Theorem 1.8. The result follows by the arguments as above. We need to
consider only the first factor in (2.5) and Qm1+1 = G. Clearly Kµ has strictly
positive measure on G/Γ. The only difference is that to conclude (2.16) we need
to use [20, Theorem 1.8], where the same conclusion as that of Theorem 1.2 was
obtained for the given map ϕ and τ i = (τi, . . . , τi) ∈ R

n−1 for each i such that

τi
i→∞−→ ∞. �

Proof of Theorem 1.9. Again the deduction of this result is as above. One only
considers the first factor. Here by our choice Qm1+1 = G and Kµ has strictly
positive measure on G/Γ. Now note that there exist g0 ∈ G and an analytic curve
ψ : I → R

n−1 such that ϕ(s) = u(ψ(s))g0 for all s ∈ I. By our condition, the
image of ψ is not contained in any proper affine subspace of Rn−1. We then apply
Theorem 1.2 for x0 = g0Z

n. �

Proof of Theorem 1.7. We write N = {(Ni,1, Ni,2, . . . , Ni,k) ∈ (R>0)
k : i ∈ N}.

Since there is no loss of generality if we permute the coordinates, we may assume

that Ni,k
i→∞−→ N0,k and N0,k �∈ N. Let n = k + 1 and x0 = Z

n ∈ Ω. Let
ai = a(0,...,0,logNi,k) for all i. Then by (1.5), aτ iQk = aiQk for all i. Since u(ξ) ∈ Qk

for any ξ ∈ R
k, in view of (2.5), considering only the first factor, it is enough to

show that there exist 0 < µ < 1 and i0 ∈ N such that

(2.17) aiQkx0 ∩Kµ = ∅, ∀i ≥ i0.

If (2.17) fails to hold, then there exists a sequence ij ∈ N, µj < 1, and gj ∈ Qk

such that yj := aijgjx0 ∈ aiQkx0 ∩ Kµj
and µj → 1. Now any Kµj1

is compact
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and contains Kµj2
for every j2 > j1, and K1 =

⋂
j∈N Kµj

. Therefore after passing
to a subsequence, yj → y0 for some y0 ∈ K1.

First we consider the case of N0,k �= 0. Let a0 = a(0,...,logN0,k) ∈ G. Then
ai → a0 as i → ∞. Since Qkx0 is closed, we conclude that y0 ∈ a0Qkx0 ∩K1.

Thus to prove (2.17), it is enough to show that

(2.18) a0Qkx0 ∩K1 = ∅.
Suppose this intersection is nonempty. Then by Theorem 2.3

(2.19) a0Qk ∩WnNΓ �= ∅.
Applying σ on both sets (see (1.7) and (1.9)), we get

(2.20) σ(a0)Q
′
k ∩WnNΓ �= ∅.

Let {e1, . . . , en} denote the standard basis of Rn. Since Q′
ke1 = e1 and σ(a0)e1 =

N0,ke1, there exist v = q1e1 + · · ·+ qnen ∈ Γe1 ⊂ Z
n, w ∈ Wn, and g = (xij) ∈ N

such that

(2.21) N0,ke1 = wgv.

Let 1 ≤ r ≤ n be such that w−1e1 = er. Then we have

N0,k = qr +
∑
j>r

xijqj ,(2.22)

0 = qi +
∑
j>i

xijqj (i > r).(2.23)

Putting i = n in (2.23), we get that qn = 0. Now for any i0 > r, if qj = 0 for all
j > i0, then putting i = i0 in (2.23), we get that qi0 = 0. Therefore by induction
qj = 0 for all j > r. Therefore (2.22) becomes N0,k = qr ∈ Z, a contradiction
because N0,k ≥ 0 and N0,k �∈ N ∪ {0} by our assumption. This shows that the
intersection in (2.18) cannot be nonempty. Hence (2.17) must hold, and the proof
is complete in the case when N0,k �= 0.

Now we consider the case of N0,k = 0. Since aigix0 → y0 as i → ∞, there exists
γi ∈ Γ such that

(2.24) aigiγi → g0, for some g0 ∈ G as i → ∞.

Let xi = σ(γ−1
i )e1 ∈ Z

n
� {0} for each i. Then σ(aigiγi)xi = Ni,ke1 → N0,ke1 = 0

as i → ∞. This contradicts (2.24). This completes the proof that (2.17) holds in
all cases. �

Now we begin the proof of the main theorem, Theorem 1.2.

3. Nondivergence of translates

Let the notation be as in §1.1 and the statement of Theorem 1.2. We consider
the action of G on L/Λ via the homomorphism ρ; that is, for any x ∈ L/Λ and

g ∈ G, we have gx := ρ(g)x. Let {xi}i∈N be a sequence in L/Λ such that xi
i→∞−→ x0.

For any i ∈ N define µi to be the probability measure on L/Λ as

(3.1)

∫
L/Λ

f dµi :=
1

|I|

∫
I

f(aτ i
u(ϕ(s))xi) ds, ∀f ∈ Cc(L/Λ).

Theorem 3.1. Given ε > 0, there exists a compact set F ⊂ L/Λ such that µi(F) ≥
1− ε for all large i ∈ N.
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In the case of L = SL(n,R), ρ the identity map, and Λ = SL(n,Z), the result
was obtained by Kleinbock and Margulis [10].

3.1. Let H denote the collection of analytic subgroups H of G such that H ∩ Λ
is a lattice in H and a unipotent one-parameter subgroup of H acts ergodically
with respect to the H-invariant probability measure on H/H ∩ Λ. Then H is a
countable collection [13, 16].

Let l denote the Lie algebra of L. Let V =
⊕dim l

d=1 ∧dl and consider the

(
⊕dim l

d=1 ∧d Ad)-action of L on V . Given H ∈ H , let h denote its Lie algebra,

and fix pH ∈
∧dim h

h � {0} ⊂ V . Let NL(H) denote the normalizer of H in L.
Then

(3.2) StabL(pH) = N1
L(H) := {g ∈ NL(H) : det((Ad g)|h) = 1}.

Proposition 3.2 ([6]). The orbit Λ · pH is a discrete subset of V . �

Consider the G action on V via ρ; that is, gv = ρ(g)v for all g ∈ G and v ∈ V .
Given a sequence T as in §1.1, we define

V −
T = {v ∈ V : aτ iv

i→∞−→ 0}, V +
T = {v ∈ V : a−1

τ i
v

i→∞−→ 0},

V 0
T = {v ∈ V : aτ iv

i→∞−→ v1 and a−1
τ i

v
i→∞−→ v2 for some v1, v2 ∈ V }.

(3.3)

Since {aτ : τ ∈ R
n−1} acts on V by R-diagonalizable commuting automorphisms,

by passing to a subsequence of T , we have

(3.4) V = V −
T ⊕ V 0

T ⊕ V +
T .

Let πT
0 : V → V 0

T denote the corresponding projection.

3.2. Margulis-Dani nondivergence criterion. We recall the following criterion
based on [5, 18, 10]. Here we use the information that ϕ is an analytic map.

Proposition 3.3 ([20, Proposition 3.4]). There exists a finite collection W ⊂ H
(depending only on L and Λ) such that the following holds: Given ε > 0 and R > 0,
there exists a compact set F ⊂ L/Λ such that for any h1, h2 ∈ L and a subinterval
J ⊂ I, one of the following conditions is satisfied:

(I) There exists γ ∈ Λ and W ∈ W such that

sup
s∈J

‖h1u(ϕ(s))h2pW ‖ < R.

(II) 1
|J| |{s ∈ J : h1u(ϕ(s))h2Λ/Λ ∈ F}| ≥ 1− ε.

In view of the above nondivergence criterion, it will follow that the main new
ingredient in the proof of Theorem 3.1 is the following linear dynamical lemma,
which is at the core of this article and is proved in the next section (see Lemma 4.1
and Corollary 4.10).

Lemma 3.4. For any finite-dimensional linear representation V of G, any v ∈
V � {0}, and any B ⊂ R

n−1 not contained in a proper affine subspace of Rn−1,

(3.5) if u(e)v ∈ V −
T + V 0

T for all e ∈ B, then πT
0 (u(e)v) �= 0 for all e ∈ B.
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Proof of Theorem 3.1. Let g0 ∈ L such that x0 = g0Λ. Suppose that Theorem 3.1
fails to hold for some ε > 0. Then for any R > 0 and any compact set F and
infinitely many i ∈ N, the condition (II) of Proposition 3.3 fails to hold for J = I,
h1 = aτ i , and h2 = g0; and hence the condition (I) holds.

Now take any sequence Rk
k→∞−→ 0 of positive reals. Then after passing to

subsequences, there exists W ∈ H , and for each i there exists γi ∈ Λ such that

(3.6) sup
s∈I

‖aτ i
u(ϕ(s))g0γipW ‖ ≤ Ri

i→∞−→ 0.

By Proposition 3.2, there exists r0 > 0 such that ‖g0γipW ‖ ≥ r0 for each i. We put
vi = g0γipW /‖g0γipW ‖. Then

(3.7) sup
s∈I

‖aτ iu(ϕ(s))vi‖ ≤ Ri/‖g0γipW ‖ ≤ Ri/r0
i→∞−→ 0.

After passing to a subsequence, vi → v ∈ V and ‖v‖ = 1. Now from (3.3), (3.4),
and (3.7) we deduce that

(3.8) u(ϕ(s))v ∈ V −
T , ∀s ∈ I.

Since {ϕ(s) : s ∈ I} is not contained in a proper affine subspace of Rn−1, (3.8)
implies the if condition of (3.5) in Lemma 3.4 but contradicts its implication. �

From Theorem 3.1 we deduce the following:

Corollary 3.5. After passing to a subsequence, µi → µ as i → ∞ in the space of
probability measures on L/Λ with respect to the weak-∗ topology; that is,

(3.9)

∫
L/Λ

f dµi
i→∞−→

∫
L/Λ

f dµ, ∀f ∈ Cc(L/Λ).

4. Dynamics of the intertwined linear actions of various SL(m,R)’s
contained in G

In this section we will give proofs of the new technical results of this article,
including the one used above. We will also derive their further consequences, which
will be crucially needed for applying the linearization techniques in combination
with Ratner’s theorem, in order to describe the limit measure µ in later sections.

4.1. Layered presentation for the infinite sequence T . Let T = (τ i)i∈N be
an unbounded sequence as in §1.1; that is, τ i = (τi,1, . . . , τi,n−1) ∈ R

n−1 such that
τi,1 ≥ τi,2 ≥ · · · ≥ τi,n−1 ≥ 0. By passing to a subsequence, we may further assume
that there exist k ∈ {1, . . . , n− 1} and integers n− 1 ≥ m1 > m2 > · · · > mk ≥ 1
such that the following hold:

lim
i→∞

τi,r < ∞ (m1 < r ≤ n− 1),

lim
i→∞

τi,m1
= ∞,

lim
i→∞

(τi,m�+1
− τi,m�

) = ∞ (1 ≤ � ≤ k − 1),

lim
i→∞

(τi,r − τi,m�
) < ∞ (m�+1 < r ≤ m�, 1 ≤ � ≤ k),
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where mk+1 = 0. Define

τ̄i,r = 0 (m1 < r ≤ n− 1),

τ̄i,r = τi,m�
(m�+1 < r ≤ m�, 1 ≤ � ≤ k),

τ̄ i = (τ̄i,1, . . . , τ̄i,n−1).

Then limi→∞(τ i − τ̄ i) exists in R
n−1. Define

ti,1 = τ̄i,m1
,

ti,� = τ̄i,m�
− τ̄i,m�−1

(2 ≤ � ≤ k),

ti = (ti,1, . . . , ti,k) ∈ (R≥0)
k.

Thus we obtain a sequence T = (ti)i∈N associated to the given sequence T as

above. Now ti,�
i→∞−→ ∞ (1 ≤ � ≤ k).

4.2. Notation and set up. We are given natural numbers n, k < n, and n− 1 ≥
m1 > · · · > mk ≥ 1. Let Ei,j denote the n × n-matrix with 1 in the (i, j)-th
coordinate and 0 in the rest. For 1 ≤ � ≤ k, we define

(4.1) A� = m�E1,1 −
m�+1∑
j=2

Ej,j .

Given 1 ≤ � ≤ k, let T = (ti)
∞
i=1 ⊂ (R≥0)

� be a sequence such that each
coordinate of ti tends to infinity as i → ∞. For t = (t1, . . . , t�) ∈ R

�, define

(4.2) A(t) := t1A1 + · · ·+ t�A�.

Note that for the sequences T and T as described in §4.1, we have

(4.3) aτ̄ i
= exp(A(ti)), ∀i ∈ N.

Let V be a finite-dimensional linear representation of SL(n,R).
For µ = (µ1, . . . , µ�) ∈ R

�, we define

(4.4) Vµ = {v ∈ V : Aiv = µiv for 1 ≤ i ≤ �}.

Thus if v ∈ Vµ, then A(t)v = (µ · t)v. The set ∆� := {ν ∈ R
� : Vν �= 0} is finite,

and

(4.5) V =
⊕
ν∈∆�

Vν .

Let πT
µ : V → Vµ denote the corresponding projection. We put

(4.6) ∆ := ∆k.
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We define

V −(T ) = {v ∈ V : exp(A(ti))v
i→∞−→ 0}

=
∑

{µ∈∆�:limi→∞ µ·ti=−∞}
Vµ,

V +(T ) = {v ∈ V : exp(−A(ti))v
i→∞−→ 0}

=
∑

{µ∈∆�:limi→∞ µ·ti=∞}
Vµ,

V 0(T ) =
{
v ∈ V :

both exp(−A(ti))v and exp(A(ti))v
converge in V as i → ∞

}

=
∑

{µ∈∆�:|limi→∞ µ·ti|<∞}
Vµ.

(4.7)

Then after passing to a subsequence of T , we have

(4.8) V = V +(T )⊕ V 0(T )⊕ V −(T ).

Let πT
0 : V → V 0(T ) denote the corresponding projection.

In view of (4.3) we have the following:

Lemma 4.1. Let T and T be as defined in §4.1. Let V −
T , V +

T , and V 0
T be as

defined in (3.3). Then

V −
T = V +(T ), V 0

T = V 0(T ), and V +
T = V 0(T ).

In particular, the corresponding projections πT
0 = πT

0 . �
4.3. Main result. In the following discussion, let T = (ti)

∞
i=1 ⊂ (R≥0)

k, where

k ≥ 2 is a sequence such that (each coordinate of ti)
i→∞−→ ∞ and V = V 0(T ) ⊕

V +(T ) ⊕ V −(T ). For t = (t1, . . . , tk) ∈ R
k, let t′ = (t1, . . . , tk−1) ∈ R

k−1. Given
T as above, let

(4.9) T ′ = (t′i)
∞
i=1 ⊂ (R≥0)

k−1.

Proposition 4.2 (Basic Lemma II). Let B be an affine basis of R
n−1; that is,

{f − e : f ∈ B} is a basis of Rn−1 for any e ∈ B. Suppose that v ∈ V is such that

(4.10) u(e)v ∈ V 0(T ) + V −(T ), ∀ e ∈ B.
Then for any e ∈ B,
(4.11) u(e)v ∈ V 0(T ′) + V −(T ′).

Moreover for any e ∈ B,
if πT ′

0′ (u(e)v) �= 0, then πT
0 (u(e)v) �= 0,(4.12)

where 0 and 0′ are the zero vectors of Rk and R
k−1, respectively.

Remark 4.3. Our goal is to show that if condition (4.10) holds, then πT
0 (u(e)v) �= 0

for all e ∈ B. To prove this, we apply conclusion (4.11) of Proposition 4.2 repeatedly
and reduce the coordinates in T each time, till we are left with a sequence, say
T (1), corresponding to only the first coordinates of elements of T . Thus for all
e ∈ B, (4.11) is valid for T (1) in place of T ′. Then we use the ‘Basic Lemma’

of [20] to conclude that π
T (1)
0 (u(e)v) �= 0 for all e ∈ B. But V 0(T (1)) = V0(1),

where 0(1) = (0). Hence π0(1)(u(e)v) �= 0. At that stage we use conclusion (4.12)
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repeatedly to increase one coordinate each time and finally get πT
0 (u(e)v) �= 0 (see

Corollary 4.10). Since V0 ⊂ V 0(T ), we get πT
0 (u(e)v) �= 0.

The rest of §4.3 is devoted to the proof of Proposition 4.2.

4.3.1. Notation. Let c = span{A1, . . . ,Ak}. Let h denote the Lie algebra generated
by elements

(4.13) E1,1, E1,j , Ej,1, Ej,j , where 2 ≤ j ≤ mk + 1.

Then h is naturally isomorphic to sl(mk +1,R). Since [c, h] = h, we have that c+ h

is a reductive subalgebra isomorphic to zc(h)⊕h, where zc(h) denotes the centralizer
of h in c.

We define a preorder � on ∆ by

(4.14) µ � ν ⇐⇒ (µ · t ≤ ν · t for all t ∈ T ).

By passing to a subsequence of T , we may assume that � is a total preorder. Note
that (µ � ν and ν � µ) does not imply µ = ν.

For µ = (µ1, . . . , µk) ∈ R
k we define µ′ = (µ1, . . . , µk−1) ∈ R

k−1.

Lemma 4.4 (Positivity Lemma). Let W be an irreducible (c+ h)-submodule of V .
Let

(4.15) ∆(W ) := {µ ∈ ∆ : πT
µ (W ) �= 0}.

Then for any µ,ν ∈ ∆(W ) and t ∈ (R>0)
k, where k ≥ 2, we have

(4.16) µ · t ≥ ν · t ⇐⇒ µk ≥ νk ⇐⇒ µ′ · t′ ≥ ν′ · t′,
where µ = (µ1, . . . , µk) ∈ R

k and ν = (ν1, . . . , νk) ∈ R
k.

Proof. In view of the expression c+ h = zc(h) + h, for any t = (t1, . . . , tk) ∈ R
k,

A(t) = z(t′) + (f(t′) + tk)Ak,(4.17)

A(t′) = z(t′) + f(t′)Ak,(4.18)

where z(t′) ∈ zc(h) and

f(t′) =
k−1∑
�=1

m� + 1

mk + 1
t�.(4.19)

Here we observe that since k ≥ 2,

(4.20) t′ ∈ (R>0)
k−1 =⇒ f(t′) > 0.

Since the action of c is via commuting R-diagonalizable elements and W is an
irreducible zc(h)+h-module, the center zc(h) of c+h acts onW by scalars. Therefore
for each t ∈ (R>0)

k, there exists a constant c(t′) ∈ R such that

(4.21) z(t′)w = c(t′)w, ∀w ∈ W.

For any µ ∈ ∆(W ), there exists 0 �= w ∈ πT
µ (W ) ⊂ W . Now

(µ · t)w = A(t)w = z(t′)w + (f(t′) + tk)Akw(4.22)

= (c(t′) + (f(t′) + tk)µk)w,(4.23)

where µ · t = µ1t1 + · · ·+ µktk. Similarly,

(4.24) (µ′ · t′)w = A(t′)w = (c(t′) + f(t′)µk)w.
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Therefore, since w �= 0,

µ · t = c(t′) + (f(t′) + tk)µk,(4.25)

µ′ · t′ = c(t′) + f(t′)µk.(4.26)

Therefore, since f(t′) > 0, for any µ,ν ∈ ∆(W ),

(4.27) µ · t ≥ ν · t ⇐⇒ µk ≥ νk ⇐⇒ µ′ · t′ ≥ ν′ · t′.
�

Notation. We express R
n−1 = R

mk ⊕ R
n−1−mk and let q : R

n−1 → R
mk and

q⊥ : Rn−1 → R
n−1−mk denote the associated projections. Let

W = {ω ∈ NG(u(R
n−1)) : exp(tAk)ω exp(−tAk)

t→∞→ e}

=

{
ω(w) :=

[
1 0 0
Imk

w

In−1−mk

]
: w ∈ M(mk × (n− 1−mk),R)

}
.

(4.28)

Lemma 4.5. Let E ⊂ R
n−1 be such that q(E) is a basis of Rmk . Then there exists

ω ∈ W such that

(4.29) ωu(e)ω−1 = u(q(e)), ∀e ∈ E .

Proof. We fix the standard basis of Rn−1−mk and consider the basis q(E) of Rmk .
Then there exists a unique

(4.30) w ∈ End(Rmk ,Rn−1−mk) ∼= M(mk × (n− 1−mk),R)

such that w(q(e)) = q⊥(e) for all e ∈ E . Then ω(w) ∈ W satisfies (4.29). �

Lemma 4.6. For any ω ∈ W the following statements hold:

ω(V 0(T ) + V −(T )) ⊂ V 0(T ) + V −(T ),(4.31)

x ∈ V 0(T ) + V −(T ) ⇒ πT
0 (x) = πT

0 (ωx),(4.32)

ω(V 0(T ′) + V −(T ′)) ⊂ V 0(T ′) + V −(T ′),(4.33)

x ∈ V 0(T ′) + V −(T ′), πT ′

0′ (x) �= 0 ⇒ πT ′

0′ (ωx) �= 0.(4.34)

Proof. Let w denote the Lie subalgebra of g associated to W. Then w is contained
in the sum of strictly negative eigenspaces of ad(A(T )) acting on g. Therefore
(4.31) and (4.32) hold.

Similarly (4.33) and (4.34) hold, because w is contained in the sum of zero
eigenspaces and strictly negative eigenspaces of ad(A�) acting on g for all 1 ≤ � ≤
k − 1. �

One of the crucial ingredients in the proof of Proposition 4.2 is following ‘Basic
Lemma I’ [20, Proposition 4.2].

Proposition 4.7. Let m ≥ 1 and A = diag(m,−1, . . . ,−1) ∈ sl(m + 1,R). For
any x ∈ R

m, let u(x) =
(
1 x
0 Im

)
∈ sl(m + 1,R). Let W be a finite-dimensional

representation of SL(m + 1,R). Let W− (respectively W+) be the sum of strictly
negative (respectively positive) eigenspaces of A and let W 0 be the null space of A.
Let π0 : W → W 0 denote the projection parallel to W− ⊕W+. Let B̄1 be an affine
basis of Rm and let w ∈ W . Suppose that

(4.35) u(e)w ∈ W 0 +W−, ∀e ∈ B̄1.
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Then

(4.36) π0(u(e)w) �= 0, ∀e ∈ B̄1.

�

Corollary 4.8. In Proposition 4.7, suppose further that π0(u(e0)w) is fixed by
SL(m+ 1,R) for some e0 ∈ B̄1. Then w is fixed by SL(m+ 1,R).

Proof. Let w0 = u(e0)w−π0(u(e0)w). Put B̄2 = {e− e0 : e ∈ B̄1}. Then u(e′)w0 ∈
V 0 + V − for all e′ ∈ B̄2. Since B̄2 is an affine basis of Rm, by Proposition 4.7, if
w0 �= 0, then π0(w0) �= 0, which contradicts the choice of w0. Therefore w0 = 0.
Hence u(e0)w = π0(u(e0)w) is fixed by SL(m + 1,R). In turn, w is fixed by
SL(m+ 1,R). �

Proof of Proposition 4.2. Let e0 ∈ B. We want to prove (4.11) and (4.12) for e0 in
place of e. By replacing v by u(e0)v and replacing every element e ∈ B by e − e0,
without loss of generality we may assume that e0 = 0. Let B1 ⊂ B containing 0
such that q(B1) � {0} is a basis of Rmk . By Lemma 4.5 there exists ω ∈ W such
that

(4.37) ωu(e)ω−1 = u(q(e)) ∀e ∈ B1.

We put v0 := ωv. Then by (4.10), (4.31), and (4.37), we have

(4.38) u(q(e))v0 = ω(u(e)v) ⊂ V 0(T ) + V −(T ), ∀e ∈ B1.

By (4.34), if πT ′

0′ (v) �= 0, then πT ′

0′ (v0) �= 0. By (4.32), if πT
0 (v0) �= 0, then πT

0 (v) �=
0. Therefore by (4.33), in order to prove (4.11) and (4.12), it is enough to show
that

v0 = ωv ∈ V 0(T ′) + V −(T ′) and(4.39)

if πT ′

0 (v0) �= 0, then πT
0 (v0) �= 0.(4.40)

We decompose V into irreducible (c+ h)-submodules as

V = W1 ⊕ · · · ⊕Ws.(4.41)

For each 1 ≤ j ≤ s, let Pj : V → Wj denote the associated projection, which is
(c+ h)-equivariant. To show the validity of (4.39) and (4.40), it is enough to prove
that for every 1 ≤ j ≤ s,

Pj(v0) ∈ V 0(T ′) + V −(T ′) and(4.42)

Ak · Pj(π
T ′

0′ (v0)) = 0.(4.43)

Now henceforth we will fix j as above and put W = Wj and P = Pj .
Without loss of generality we may suppose that P (v0) �= 0. Let

∆(W,B1) = {ν ∈ ∆(W ) : πν(P (u(q(e))v0)) �= 0 for some e ∈ B1}.(4.44)

We now recall that by (4.38) we have

(4.45) ν · t ≤ 0, ∀ν ∈ ∆(W,B1), ∀t ∈ T .

Let µ be the maximal element of ∆(W,B1) �= ∅ with respect to the total preorder
defined on ∆; that is,

ν · t ≤ µ · t, ∀t ∈ T , ∀ν ∈ ∆(W,B1).(4.46)
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Therefore by Lemma 4.4, for all ν ∈ ∆(W,B1) we have

νk ≤ µk and(4.47)

ν′ · t′ ≤ µ′ · t, ∀t ∈ T .(4.48)

For λ ∈ R, let

Wλ = {w ∈ W : Akw = λw}.(4.49)

Then for any ν = (ν1, . . . , νk) ∈ ∆,

πν(P (u(q(e))v0)) ∈ Wνk
.(4.50)

Hence by (4.44), (4.47), and (4.50) we conclude that

u(q(e))P (v0) = P (u(q(e))v0) ∈
∑
λ≤µk

Wλ, ∀e ∈ B1.(4.51)

Let H be the Lie subgroup of G associated to the Lie algebra h. Then H is
naturally isomorphic to SL(mk + 1,R). We now apply Proposition 4.7 in the case
of m = mk and A = Ak, B̄1 = q(B1) and w = P (v0). Note that if µk < 0, then by
(4.51) we have

(4.52) u(ē)w ∈ W−, ∀ē ∈ B̄1.

Therefore the condition (4.35) of Proposition 4.7 is satisfied but its conclusion (4.36)
fails to hold. Thus we conclude that

(4.53) µk ≥ 0.

Therefore for any t ∈ T , by (4.45), we have

µ′ · t′ = µ · t− µktk ≤ 0.(4.54)

Then from (4.48) we conclude that

ν ′ · t′ ≤ µ′ · t′ ≤ 0, ∀ν ∈ ∆(W,B1), ∀t′ ∈ T ′.(4.55)

Now in view of (4.44) this implies (4.42).
Next in order to prove (4.43), suppose that ν ∈ ∆(W,B1) and ν′ = 0′. We need

to show that ν = 0.
Let i ∈ N. By (4.55),

(4.56) 0 = ν′ · t′i ≤ µ′ · t′i ≤ 0.

Therefore, by (4.53) and since ti,k > 0,

(4.57) 0 ≥ µ · ti = µ′ · t′i + µkti,k ≥ 0,

and hence

(4.58) µk = 0.

Therefore by (4.26) and (4.56), applied first to ν and then to µ, we get

(4.59) f(t′i)νk = ν ′ · t′i − c(t′i) = −c(t′i) = f(t′)µk − µ′ · t′i = 0.

Since f(t′i) > 0, we conclude that ν = 0. �
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4.4. Consequences of the Basic Lemma II. For any 1 ≤ � ≤ k and t =
(t1, . . . , tk) ∈ R

k define t(�) = (t1, . . . , t�) and T (�) = (ti(�))
∞
i=1, where T = (ti)

∞
i=1

such that ti ∈ (R≥0)
k, each coordinate of ti tends to infinity as i → ∞. By passing

to a subsequence, we will further assume that

V = V −(T (�))⊕ V 0(T (�))⊕ V −(T (�)) (1 ≤ � ≤ k).(4.60)

By applying Proposition 4.2 repeatedly, we can decrease k and obtain the fol-
lowing:

Proposition 4.9. Let B be an affine basis of Rn−1 and let v ∈ V be such that

(4.61) u(e)v ∈ V 0(T ) + V −(T ), ∀ e ∈ B.
Then for any 1 ≤ � ≤ k and any e ∈ B,

u(e)v ∈ V 0(T (�)) + V −(T (�)) and(4.62)

if π
T (�)
0(�) (u(e)v) �= 0, then πT

0 (u(e)v) �= 0.(4.63)

�
By specializing this result to the case of � = 1, we deduce the following general-

ization of Proposition 4.7.

Corollary 4.10. Let B be an affine basis of Rn−1 and let v ∈ V be such that

(4.64) u(e)v ∈ V 0(T ) + V −(T ), ∀ e ∈ B.
Then

(4.65) πT
0 (u(e)v) �= 0, ∀e ∈ B.

Proof. We apply Proposition 4.9 for � = 1. Then from (4.62) we get

(4.66) u(e)v ∈ V 0(T (1)) + V −(T (1)), ∀e ∈ B.
Take any e0 ∈ B and choose B1 ⊂ B containing e0 such that q(B1) is an affine
basis of Rm1 . Let W be defined as in (4.28) associated to A1 in place of Ak. Then
by Lemma 4.5 there exists ω ∈ W such that ωu(e − e0)ω

−1 = u(q(e − e0)) for all
e ∈ B1. Therefore

(4.67) u(q(e− e0))(ωu(e0)v) ∈ V 0(T (1)) + V −(T (1)), ∀e ∈ B1.

Therefore by Proposition 4.7 applied tom = m1, A = A1, B̄1 = {q(e−e0) : e ∈ B1},
and w = ωu(e0)v, we get

(4.68) π
T (1)
0(1) (ωu(e0)v) �= 0.

Therefore in view of (4.32) of Lemma 4.6 for W and T defined for the case of k = 1,
we get

(4.69) π
T (1)
0(1) (u(e0)v) = π

T (1)
0(1) (ωu(e0)v) �= 0.

Now from (4.63) of Proposition 4.9 we conclude that πT
0 (u(e0)v) �= 0. �

Corollary 4.11. Let T ⊂ (R≥0)
k be as in §4.3. Assume that m1 = n − 1. Let

ϕ : I = [a, b] → R
n−1 be a differentiable curve whose image is not contained in a

proper affine subspace of Rn−1. Let v ∈ V be such that

(4.70) u(ϕ(s))v ∈ V 0(T ) + V −(T ).

Then v is G-fixed.
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Proof. Given any s0 ∈ I, there exists a set {s1, . . . , sn−1} ⊂ I such that B :=
{ϕ(si) : 0 ≤ i ≤ n− 1} is an affine basis of Rn−1. Therefore by (4.62) of Proposi-
tion 4.9 applied to � = 1 we get

(4.71) u(ϕ(s0))v ∈ V 0(T (1)) + V −(T (1)).

Therefore by [20, Corollary 4.6] G fixes v. �

We will now generalize the above result for all 1 ≤ m1 ≤ n− 1.

Proposition 4.12. Let T ⊂ (R≥0)
k be as §4.3. Let ϕ : I = [a, b] → R

n−1 be a
differentiable curve which is not contained in a proper affine subspace of Rn−1. Let
v ∈ V be such that

(4.72) u(ϕ(s))v ∈ V 0(T ) + V −(T ), ∀s ∈ I.

Then v is fixed by the subgroup Qm1+1.

Proof. Without loss of generality we may assume that v �= 0. In view of Proposi-
tion 4.9

(4.73) u(ϕ(s))v ∈ V 0(T (1)) + V −(T (1)), ∀s ∈ I.

At this stage we will take k = 1 and replace T by T (1). Let L = R
m1 , L⊥ =

R
n−1−m1 , and let q : Rn−1 → L and q⊥ : Rn−1 → L⊥ be the projections associated

to the decomposition R
n−1 = L⊕ L⊥.

Take any s0 ∈ I and put e0 = ϕ(s0). Due to the hypothesis on ϕ there exists a
finite set E ⊂ ϕ(I) containing e0 such that {q(e) − q(e0) : e ∈ E} is not contained
in a union of (m1 + 1) proper subspaces of L.

Let B1 ⊂ E containing e0 be such that the set {q(e) − q(e0) : e ∈ B1 � {e0}} is
a basis of L. Let W be defined as in (4.28) for k = 1. Then there exists ω ∈ W

such that ωu(e − e0)ω
−1 = u(q(e − e0)) for all e ∈ B1. We put v0 = u(e0)v. Now

by (4.73) and (4.31) for the case of k = 1,

u(q(e− e0))ωv0 = ωu(e− e0)v0

= ωu(e)v ∈ V 0(A1)⊕ V −(A1).
(4.74)

Let H ∼= SL(m1 + 1,R) be the Lie group associated to the Lie algebra h as defined
through (4.13) for k = 1. Let C = {q(e − e0) : e ∈ B1 � {e0}}. Let DC consist of
those g ∈ ZH(exp(RA1)) such that for each e′ ∈ C, we have gu(e′)g−1 = u(λe′) for
some λ > 0; cf. [20, eq. (4.48)]. Then by [20, Proposition 2.3], for all e ∈ B1,

πA1
0 (ωu(e)v) �= 0 and DC ⊂ StabG(π

A1
0 (ωu(e)v)).(4.75)

By (4.32), applied to the case of k = 1, πA1
0 (ωv0) = πA1

0 (v0), and hence

(4.76) πA1
0 (v0) �= 0 and DC ⊂ StabG(π

A1
0 (v0)).

This equation holds for all choices of B1 ⊂ E containing e0 such that q(B1) spans
L; here it is important that (4.76) does not involve ω. Therefore in view of the
hypothesis on E , by [20, Corollary 2.4] we can deduce that

πA1
0 (v0) �= 0 and(4.77)

ZH(exp(RA1)) ⊂ StabG(π
A1
0 (v0)).(4.78)

Next we want to show that

(4.79) u(λq(ϕ̇(s))) ∈ StabG(π
A1
0 (u(ϕ(s)v))), ∀s ∈ I and λ ∈ R.
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To see this, put a(t) = exp(tA1) for all t ∈ R. For ξ ∈ R
n−1, we define a(t) · ξ by

the relation u(a(t) · ξ) = a(t)u(ξ)a(t)−1. Then a(t) · q(ξ) = em1tq(ξ), a(t) · q⊥(ξ) =
e(m1−1)tq⊥(ξ), and hence

(4.80) e−m1ta(t) · ξ t→∞−→ q(ξ).

Take λ ∈ R and ti
i→∞−→ ∞. Put si = s+ λe−m1ti . Then

a(ti)u(ϕ(si))v = πA1
0 (u(ϕ(si))) + a(ti)π

A1
− (u(ϕ(si)))

i→∞−→ πA1
0 (u(ϕ(s))).

(4.81)

Also a(ti)u(ϕ(s))v
i→∞−→ πA1

0 (u(ϕ(s))v). Since

ϕ(si)− ϕ(s) = (si − s)ϕ̇(s) +O((si − s)2)

= e−m1ti ϕ̇(s) +O(e−2m1ti),
(4.82)

by (4.80),

(4.83) ai · (ϕ(si)− ϕ(s0))
i→∞−→ λq(ϕ̇(s)).

Therefore

aiu(ϕ(si))v = aiu(ϕ(si)− ϕ(s))u(ϕ(s))v

= u(ai · (ϕ(si)− ϕ(s)))aiu(ϕ(s))v

i→∞−→ u(λq(ϕ̇(s)))πA1
0 (u(ϕ(s))v).

(4.84)

Thus (4.79) follows from (4.81) and (4.84).
Due to our hypothesis on ϕ(s), we could choose s0 ∈ I such that q(ϕ̇(s0)) �= 0.

Let Q denote the subgroup of H generated by ZH(exp(RA1)) and u(Rq(ϕ̇(s0))).
It may be verified that Q is a parabolic subgroup of H. By (4.77) and (4.79),

Q ⊂ StabG(π
A1
0 ). Therefore we conclude that

(4.85) H ⊂ StabG(π
A1
0 (v0)).

Therefore H fixes πA1
0 (ωv0) = πA1

0 (v0). Now by (4.74) and Corollary 4.8 we con-
clude that

(4.86) H ⊂ StabG(ωv0).

Let {e1, . . . , em1
} denote the standard basis of Rm1 = L ⊂ R

n−1. Note that any
z ∈ ZH(RA1) acts on e ∈ L via the relation u(z · e) = zu(e)z−1. This action of
ZH(RA1) surjects onto GL(m1,R). Therefore there exists z ∈ ZH(RA1) such that

(4.87) {z · q(e− e0) : e ∈ B1} = {0, e1, . . . , em1
}.

Since ω ∈ Qm1+1 and

(4.88) zω(V 0(A1) + V −(A1)) = V 0(A1) + V −(A1),

replacing ϕ(s) by the curve ϕ1(s) such that

(4.89) zωu(ϕ(s)− e0)ω
−1z−1 = u(ϕ1(s)), ∀s ∈ I,

and replacing v by zωv0 and B1 by {0, e1, . . . , em1
}, without loss of generality we

may assume the following:

H · v = v, and u(ϕ(s))v ∈ V 0(A1) + V −(A1), ∀s ∈ I.(4.90)
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Let q1 : Rn−1 → Rem1+1 denote the coordinate projection. Put

F = {ϕ(s) : s ∈ I, q1(ϕ(s)) �= 0}; then L⊥ = span({q⊥(e) : e ∈ F}).(4.91)

Now take any e ∈ F . Then there exists ze ∈ ZH(exp(RA1)) such that

ze · q(e) = e1 and ze · ei = ei (2 ≤ i ≤ mk).(4.92)

Therefore, since elements of H and u(L⊥) commute, we have

(4.93) zeu(e)ze
−1 = u(e1 + q⊥(e)).

Write q⊥(e) = (xm1+1(e), . . . , xn−1(e)) ∈ L⊥ ∼= R
n−1−m1 , and let

(4.94) ωe := In +
n−1∑

j=m1+1

xj(e)E2,(1+j) ∈ W.

Then ωeu(e1+q⊥(e))ωe
−1 = u(e1) and ωe commutes with u(ei) for i ≥ 2. Therefore

by (4.90), (4.92), and (4.93),

V 0(A1) + V −(A1) � ωezeu(e)v = u(e1)(ωev),

V 0(A1) + V −(A1) � ωezeu(ei)v = u(ei)(ωev) (2 ≤ i ≤ mk).
(4.95)

Therefore, since πA
0 (ωev) = πA

0 (v) = v is fixed by H, by Corollary 4.8

(4.96) H ⊂ StabG(ωev).

Now H ∪ (ωeHωe
−1) ⊂ Stab(v), exp(RA1) ⊂ H, and exp(tA1)ωe exp(−tA1) con-

verges to the identity element as t → ∞. Therefore ωe ∈ Stab(v) for all e ∈ F .
Let Q be the subgroup generated by H and {ωq⊥(e) = ωe : e ∈ F}. Then

Q ⊂ Stab(v). By (4.91), Q is generated by H and ωL⊥ := {ωx : x ∈ L⊥}. Now in
view of (4.94) it is easily verified that the subgroup generated by ZH(exp(A1)) and
ωL⊥ contains W. The group generated by W and u(L) contains u(L⊥). Therefore

�(4.97) Stab(v) ⊃ Q ⊃ H ·Wu(L⊥) = Qm1+1.

We will need the following property of Qm1+1.

Lemma 4.13. Let x ∈ R
m1 �{0}. Then there is no closed proper normal subgroup

of Qm1+1 containing u(x).

Proof. Let N be a closed normal subgroup of Qm1+1 containing u(x). Then u(x)
belongs to N ∩H, which is a normal subgroup of H. Since H ∼= SL(m1 + 1,R) is
a simple Lie group with finite center, it does not contain an infinite proper normal
subgroup. Therefore H ⊂ N . We note that if ω ∈ W ∪ u(L⊥), then the closure
of the group generated by ω exp(RA1)ω

−1 and exp(RA1) contains ω. Since N is
normal in Qm1+1 and exp(RA1) ⊂ H, we conclude that W∪u(L⊥) ⊂ N . Therefore
N = Qm1+1. �

5. Invariance under a unipotent flow

Our aim is to prove that the measure µ as in Corollary 3.5 is an algebraic
measure. For this purpose, we will first ‘stably’ modify the measures µi and then
show that a stable modification of µ is invariant under a unipotent flow. This will
allow us to use Ratner’s theorem in our investigation.
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5.1. Stably twisted trajectory. Let q : Rn−1 → R
mk denote the projection on

the span of the first mk-coordinates. We suppose that ϕ : I = [a, b] → R
n−1

satisfies the following condition for all s ∈ I:

(5.1) q(ϕ̇(s)) �= 0.

It may be noted that since ϕ is an analytic curve whose image is not contained in
a proper affine subspace of Rn−1, ϕ satisfies (5.1) at all but finitely many s ∈ I.

Fix w0 ∈ R
mk � {0}, and define

(5.2) W = {u(sw0) : s ∈ R}.

Let Z denote the centralizer of exp(RAk) in SL(mk + 1,R). Then Z acts on R
mk

via the correspondence u(z · v) = zu(v)z−1 for all z ∈ Z and v ∈ R
mk . This action

is transitive on R
mk � {0}. By (5.1) there exists an analytic function z : I → Z

such that

(5.3) z(s) · q(ϕ̇(s)) = w0, ∀s ∈ I,

where ϕ̇(s) = dϕ(s)/ds. In view of §4.1 and (4.3), we set

(5.4) ai := aτ̄ i
= exp(A(ti)), ∀i ∈ N.

As in (3.1), for any i ∈ N, let λi be the probability measure on L/Λ defined by

(5.5)

∫
L/Λ

f dλi :=
1

|I|

∫
s∈I

f(z(s)aiu(ϕ(s))xi) ds, ∀f ∈ Cc(L/Λ).

Since {aτ ia
−1
i : i ∈ N} and z(I) are contained in compact subsets of Z, from

Theorem 3.1 we deduce that there exists a probability measure λ on L/Λ such
that, after passing to a subsequence, λi → λ in the space of probability measures
on L/Λ with respect to the weak-∗ topology.

Theorem 5.1. The measure λ is W -invariant.

Proof. Let q⊥ : Rn−1 → R
n−1−mk denote the projection on the last (n− 1−mk)-

coordinates. Let αi = exp(
∑n−1

j=1 τ ′i,j + τ ′i,mk
). Then for any ξ ∈ R

n−1,

(5.6) v = q(ξ) + q⊥(ξ), ai · q(ξ) = αiq(ξ), and α−1
i (ai · q⊥(ξ))

i→∞−→ 0.

Let t ∈ R. Take any ε > 0. For i ∈ N, let Ni := [ε|I|αi] ∈ N. Then

(5.7) αi/Ni
i→∞−→ (ε|I|)−1 and αi/N

2
i

i→∞−→ 0.

We partition I =
⋃Ni

r=1 Ir, where Ir = [sr, sr+1] and sr+1 − sr = |I|/Ni. Let

ψr(s) := ϕ(sr) + (s− s0)ϕ̇(sr), ∀s ∈ R; then

ϕ(s) = ψr(s) + εr(s) and εr(s) = O(N−2
i ), ∀s ∈ Ir.

(5.8)

By (5.6) and (5.7), sups∈Ir‖ai ·εr(s)‖
i→∞−→ 0. Since z(·) is continuous and bounded,

for all large i and 1 ≤ r ≤ Ni,

(5.9) |f(z(s)aiu(ϕ(s))xi)− f(zraiu(ψr(s))xi)| ≤ ε, ∀s ∈ Ir,

where zr = z(u(sr)); and the same holds for fu(tw0) in place of f , where we define
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fu(tw0)(x) := f(u(tw0)x) for all x ∈ L/Λ. Therefore

(5.10)

∣∣∣∣∣
∫
L/Λ

f(x) dλi(x)−
1

|I|

Ni∑
i=1

∫
Ir

f(zraiu(ψr(s))xi) ds

∣∣∣∣∣ ≤ ε,

and the same for fu(tw0) in place of f .
Next, for any s ∈ Ir, by (5.3) and (5.6),

u(tw0)zraiu(ψr(s)) = zru(tq(ϕ̇(sr)))aiu(ψr(s))

= zraiu(tα
−1
i q(ϕ̇(sr)))u(ψr(s))

= zraiu(−tα−1
i q⊥(ϕ̇(sr)))u(ψr(s) + tα−1ϕ̇(sr))

= u(zrai · (−tα−1
i q⊥(ϕ̇(sr))))zraiu(ψr(s+ tα−1

i )).

(5.11)

By (5.6), sups∈Ir‖zrai · (−tα−1
i q⊥(ϕ̇(sr)))‖

i→∞−→ 0. Hence for large enough i,

(5.12)

Ni∑
r=1

∫
Ir

∣∣f(u(tw0)zraiψr(s)xi)− f(zraiψr(s+ tα−1
i )xi)

∣∣ ds ≤ ε|I|.

Now by (5.7)

Ni∑
r=1

∣∣∣∣
∫
Ir

f(zraiu(ψr(s))xi) ds−
∫
Ir

f(zraiu(ψr(s+ tα−1
i )xi)) ds

∣∣∣∣
≤ Ni(2‖f‖∞tα−1

i )
i→∞−→ 2t‖f‖∞ε|I|.

(5.13)

For all large i, combining (5.10), (5.12), and (5.13):

(5.14)

∣∣∣∣∣
∫
L/Λ

f(u(tw0)y) dλi(y)−
∫
L/Λ

f(y) dλi(y)

∣∣∣∣∣ ≤ (3 + 2t‖f‖∞)ε.

Since ε > 0 is arbitrary, λ is u(tw0)-invariant. �

6. Ratner’s theorem and dynamical behaviour of translated

trajectories near singular sets

Next we will analyze the measure λ using Ratner’s description of ergodic and
invariant measures for unipotent flows.

Let H be as defined in §3.1 and let W be an Ad-unipotent one-parameter
subgroup of G. For H ∈ H , define

N(H,W ) = {g ∈ G : g−1Wg ⊂ H} and S(H,W ) =
⋃

F∈H
F�H

N(F,W ).(6.1)

Let π : L → L/Λ denote the natural quotient map. By Ratner’s theorem [13],
as explained in [12, Theorem 2.2]:

Theorem 6.1 (Ratner). Given a W -invariant probability measure λ on L/Λ, there
exists H ∈ H such that

(6.2) λ(π(N(H,W ))) > 0 and λ(π(S(H,W ))) = 0.

Moreover, almost all W -ergodic components of the restriction of λ to π(N(H,W ))
are of the form gµH , where g ∈ N(H,W )�S(H,W ) and µH is a finite H-invariant
measure on π(H) ∼= H/H ∩ Λ.

In particular if H is a normal subgroup of L, then λ is H-invariant. �
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6.1. Algebraic criterion for zero limit measure on singular sets. Similar
to the nondivergence criterion given by Proposition 3.3, the next result provides a
criterion for ‘non-accumulation on singular sets’ in terms of linear actions of groups;
it is also referred to as the ‘linearization technique’. Let the notation be as in §3.1.
Let w0 ∈ Lie(W )� {0}. Let A = {v ∈ V : v ∧ w0 = 0}. Then
(6.3) N(H,W ) = {g ∈ L : g · pH ∈ A }.

The following linearization statement from [19, Proposition 4.4] uses the fact
that ϕ is analytic; cf. [14, 6, 12].

Proposition 6.2. Let C be any compact subset of N(H,W )�S(H,W ). Let ε > 0 be
given. Then there exists a compact set D ⊂ A such that given any neighbourhood
Φ of D in V , there exists a neighbourhood O of π(C) in L/Λ such that for any
h1, h2 ∈ L and a subinterval J ⊂ I, one of the following holds:

(a) There exists γ ∈ Λ such that (h1z(s)u(ϕ(s))h2γ)pH ∈ Φ, ∀s ∈ J .
(b) |{s ∈ J : π(h1z(s)u(ϕ(s))h2) ∈ O}| ≤ ε|J |. �

Just as in the proof of Theorem 3.1 we will apply this criterion to obtain an
algebraic condition leading to the hypothesis of Corollary 4.10.

Theorem 6.3. Suppose that there is no proper closed subgroup H of L containing
ρ(Qm1+1) such that the orbit Hx0 is closed and admits a finite H-invariant measure.

Let {λi}∞i=1 be the sequence of measures as defined by (5.5). Then λi
i→∞−→ λ in the

space of probability measures on L/Λ and λ is L-invariant.

Proof. Earlier, using Theorem 3.1, we have shown that after passing to a subse-
quence, λi → λ in the space of probability measures on L/Λ, and by Theorem 5.1,
λ is invariant under the Ad-unipotent one-parameter subgroup W . In order to com-
plete the proof, it is enough to show that any such limiting measure λ is L-invariant.
For notational convenience we will identify any g ∈ G with ρ(g) ∈ L.

By Theorem 6.1 there exists H ∈ H such that

(6.4) λ(π(N(H,W ))) > 0 and λ(π(S(H,W ))) = 0.

Let C be a compact subset of N(H,W )� S(H,W ) such that λ(C) > ε for some

ε > 0. Let gi
i→∞−→ g0 be a sequence in G such that x0 = π(g0) and xi = π(gi) for

all i. Then given any neighbourhood O of π(C) in L/Λ, there exists i0 > 0 such
that for all i ≥ i0, we have λi(O) > ε and hence

(6.5)
1

|I| |{s ∈ I : z(s)aiu(ϕ(s))xi = π(aiz(s)u(ϕ(s))gi) ∈ O}| > ε.

Let D ⊂ A be as in the statement of Proposition 6.2. Choose any compact
neighbourhood Φ of D in V . Then there exists a neighbourhood O of π(C) in L/Λ
such that one of the statements (a) or (b) of Proposition 6.2 holds for J = I and
any h1 = ai and h2 = gi. For any i > i0, (a) cannot hold due to (6.5), and hence
(b) must hold; that is, there exists γi ∈ Λ such that

(6.6) (z(s)aiu(ϕ(s))giγi)pH = (aiz(s)u(ϕ(s))giγi)pH ∈ Φ, ∀s ∈ I.

Let Φ1 = {z(s)−1 : s ∈ I}Φ. Then Φ1 is contained in a compact subset of V , and
the following holds:

(6.7) aiu(ϕ(s))(giγi)pH ∈ Φ1, ∀s ∈ I, ∀i > i0.
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Let ‖·‖ be a norm on V . First suppose that after passing to a subsequence,

(6.8) ri := ‖γipH‖ → ∞ as i → ∞.

Then vi := γipH/ri
i→∞−→ v for some v ∈ V , ‖v‖ = 1. Let R = sup{‖w‖ : w ∈ Φ1}.

Then by (6.7)

(6.9) aiu(ϕ(s))givi ≤ R/ri, ∀s ∈ I, ∀i > i0.

Since R/ri
i→∞−→ 0 and givi

i→∞−→ g0v, we conclude that

(6.10) u(ϕ(s))g0v0 ⊂ V −(T ), ∀s ∈ I.

Since there exists a finite set F ⊂ I such that B = {ϕ(s) : s ∈ F} is an affine basis
of Rn−1, (6.10) satisfies the condition (4.64) of Corollary 4.10 but contradicts its
conclusion (4.65). Thus (6.8) fails to hold after passing to a subsequence. Therefore
the set {γipH : i ∈ N} is bounded. It is discrete by Proposition 3.2. Hence it is a
finite set. Therefore by passing to a subsequence, there exists γ ∈ Γ such that

(6.11) γipH = γpH , ∀i ∈ N.

Therefore by (6.7) we get

(6.12) aiu(ϕ(s))gi(γpH) ⊂ Φ1, ∀s ∈ I, ∀i ∈ N.

Let πT
+ : V → V +(T ) be the projection parallel to V 0(T )+V −(T ). First suppose

that πT
+(u(ϕ(s))g0γpH) �= 0 for some s0 ∈ I. Then there exists c > 0 and i1 ∈ N

such that ‖πT
+(u(ϕ(s0))giγpH)‖ ≥ c for all i ≥ i1. But then ‖aiu(ϕ(s0)giγpH)‖ i→∞−→

∞, which contradicts (6.12). Therefore

(6.13) u(ϕ(s))(g0γpH) ⊂ V 0(T )⊕ V −(T ), ∀s ∈ I.

Therefore by Proposition 4.12, Qm1+1 stabilizes g0γpH . By (3.2),

(6.14) g−1
0 Qm1+1g0 ⊂ N1

L(H) = StabL(γpH).

Since ΛpH is discrete, ΛN1
L(H) is a closed subset of L. Hence π(N1

L(H)) is
closed in L/Λ. By [16, Theorem 2.3] there exists a closed subgroup H1 of N1

L(H)
containing all Ad-unipotent one-parameter subgroups of L contained in N1

L(H)
such that H1 ∩ Λ is a lattice in H1 and π(H1) is closed. Since Qm1+1 is generated
by unipotent one-parameter subgroups of SL(n,R), by (6.14), g−1

0 Qm1+1g0 ⊂ H1.
Thus Qm1+1 ⊂ g0H1g

−1
0 and (g0H1g

−1
0 )x0 = g0π(H1) is closed and admits a finite

g0Hg−1
0 -invariant measure. Hence by the hypothesis of the theorem, g0H1g

−1
0 = L.

ThereforeH is a normal subgroup of L. Therefore by Theorem 6.1, λ isH-invariant.
By (6.4) there exists g ∈ N(H,W ) �= ∅. Then W ⊂ gHg−1 = H. Thus

W ⊂ Qm1+1∩H, which is a normal subgroup of Qm1+1∩H. Hence by Lemma 4.13
we have Qm1+1 ⊂ H. Since Hx0 = π(Hg0) = g0π(H) is closed and admits a finite
H-invariant measure, by our hypothesis H = L. Therefore λ is L-invariant. �
Proof of Theorem 1.2. Let the notation be as in §4.1. Then

τ i − τ̄ i
i→∞−→ τ̃ 0 := (τ (1), . . . , τ (n− 1)) ∈ R

n−1, as i → ∞.

Therefore aτ ia
−1
τ̄ i

i→∞−→ aτ̃0 . Hence in G/Qm1+1,

(6.15) aτ iQm1+1
i→∞−→ aτ̃0Qm1+1 = aτ0Qm1+1.

Therefore to prove (1.6), it is enough to prove the theorem in the case of τi = τ̄i.
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We put xi = x0 for all i. As noted earlier, there exists a smallest closed subgroup
H of L containing ρ(Qm1+1) such that the orbit Hx0 is closed and admits a finite
H-invariant measure. Therefore without loss of generality we may replace L by
H. Now to complete the proof of the theorem, we only need to prove that µ is
L-invariant.

Since ϕ is analytic, the condition (5.3) fails to hold only for finitely many points,
and it is straightforward to reduce the proof of the theorem to the case where
(5.3) holds for all s ∈ I. Now the difference between µi and λi is only through
{z(s) : s ∈ I}. Given ε > 0, there exists δ > 0 such that if J = [s1, s2] ⊂ I and
0 < s2 − s1 < δ, then |f(z(s1)−1z(s)x) − f(x)| ≤ ε for all s ∈ J and x ∈ L/Λ.
We define λJ

i by putting J in place of I in (5.5); we define µJ
i similarly. Then by

Theorem 6.3, λJ
i → λL, where λL is the unique L-invariant probability measure on

L/Λ. Since aiz(s) = z(s)ai, we deduce that

(6.16)

∣∣∣∣
∫

f dµJ
i −

∫
f(z(s1)

−1x) dλL(x)

∣∣∣∣ ≤ ε,

for all large i. Since λL is z(s1)-invariant, the second integral is the same as
∫
f dλL.

Now partitioning I into finitely many J ’s with |J | ≤ δ, we deduce

(6.17)

∣∣∣∣
∫

f dµi −
∫

f dλL

∣∣∣∣ ≤ ε,

for all large i. Thus µi
i→∞−→ λL. �

Proof of Theorem 1.10. The above proof applies to this case also. Here we are given
that xi → x0 is a convergent sequence and there is no proper closed subgroup H
of G containing ρ(Qm1+1) such that Hx0 is closed and admits a finite H-invariant
measure. Therefore there is no need to replace H by L as in the above proof. �

The proof of Theorem 1.11 can be obtained by combining the ideas of the proof
of Theorem 6.3, Proposition 4.2, and the general strategy of the proof of [6, Theo-
rem 3].
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