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INTEGRAL POINTS ON SYMMETRIC VARIETIES
AND SATAKE COMPATIFICATIONS

By ALEXANDER GORODNIK, HEE OH, and NIMISH SHAH

Abstract. Let V be an affine symmetric variety defined over Q. We compute the asymptotic dis-
tribution of the angular components of the integral points in V . This distribution is described by a
family of invariant measures concentrated on the Satake boundary of V . In the course of the proof,
we describe the structure of the Satake compactifications for general affine symmetric varieties and
compute the asymptotic of the volumes of norm balls.
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1. Introduction. Let V = {x ∈ Rn: f1(x) = · · · = fs(x) = 0} with fi ∈
Z[x1, . . . , xn] be an affine variety. It is a fundamental problem of Diophantine
geometry to understand the set of integral points V(Z) in V . In particular, when
the number of integral points is infinite, one may ask

Question 1.1. Given a norm ‖·‖ on Rn, determine the asymptotic of

NT (V) := #{x ∈ V(Z): ‖x‖ < T}

as T → ∞.
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2 A. GORODNIK, H. OH, AND N. SHAH

We are interested in a more refined question:

Question 1.2. For a radial cone C in Rn centered at the origin, determine the
asymptotic of

NT (V , C) := #{x ∈ V(Z) ∩ C: ‖x‖ < T}

as T → ∞.

One can also state an analogous question in terms of convergence of measures.
We define a probability measure µT on the unit sphere Sn−1 in Rn:

µT :=
1

NT (V)

∑

x∈V(Z): 0<‖x‖<T

δπ(x),

where π: Rn \{0} → Sn−1 denotes the radial projection, and δz denotes the Dirac
measure at z. As T → ∞, these measures characterize the asymptotic distribution
of the angular components of points of V(Z).

Question 1.3. Determine the weak∗ limits of the measures µT as T → ∞.

Recall that a sequence of measures {µi} on Sn−1 converges to µ in weak∗

topology if
∫

Sn−1 φ dµi →
∫

Sn−1 φ dµ for every φ ∈ C(Sn−1).
In this paper we give a complete solution to Questions 1.2 and 1.3 when V

is an affine symmetric variety. In this case, Question 1.1 was answered by Duke,
Rudnick, Sarnak [DRS] and Eskin, McMullen [EM], though explicit asymptotics
in terms of T were not computed in general. Later Eskin, Mozes and Shah de-
veloped an approach using the ergodic theory on homogeneous spaces, based on
the work of Dani, Margulis ([DM1], [DM2]) and Ratner [Ra] on unipotent flows.

We note that the method of [EM] shows that NT (V , C) is asymptotic to the
volume of the set CT := {x ∈ V∩C: ‖x‖ < T}, provided the family {CT} satisfies
the so-called well roundedness property. However it is a highly nontrivial task
to check whether the sets CT are well rounded, and this is precisely where the
main technical difficulties of this paper lies (see section 1.2 for more discussion
on this point).

The above questions 1.2 and 1.3 are motivated by the conjectures of Manin
[BM, FMT], Peyre [P], and Batyrev, Tschinkel [BT], which describe the distri-
bution of rational points on projective Fano varieties (see Remark 1.13 and [Ts]).
Recently, Chambert-Loir and Tschinkel [Ts] proposed an analogous conjecture
for integral points. We expect that our results will support this conjecture (see
Section 8).

We illustrate our main results by the following example of a quadratic surface.
We refer to Section 2 for further examples.

Example 1.4. Fix n ≥ 4 and k ∈ Z\{0}. Let Q be an integral nondegenerate
indefinite quadratic form in n variables such that Q(x) = k has at least one integral
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solution. Let Ω be a Borel subset of Sn−1 such that the interior of Ω intersects
{Q = 0}, and the boundary of Ω has measure zero with respect to a smooth
measure on {Q = 0} ∩ Sn−1. Then setting C = R+ · Ω, we have

NT ({Q = k}, C) ∼T→∞ Vol ({x ∈ C: Q(x) = k, ‖x‖ < T}) ∼T→∞ dC · Tn−2,

where the volume is computed with respect to a suitably normalized SO (Q)-
invariant measure on {Q = k} and dC > 0 is a computable constant.

Q(x)=k

Q(x)=0

Ñ

Figure 1.

We denote by ν the unique SO (Q)-invariant measure on {x ∈ Rn\{0}: Q(x) =
0} normalized so that

ν({x ∈ Rn \ {0}: Q(x) = 0, ‖x‖ < 1}) = 1.

Define the measure µ on Sn−1 by

µ := π∗(ν|B1 )

where B1 = {x ∈ Rn: ‖x‖ < 1}. Then µT → µ as T → ∞.

1.1. Main results. Let G be a connected Q-simple algebraic Q-group
isotropic over R with a given R-irreducible Q-rational representation ι: G →
GL (W). Suppose that there exists v0 ∈ W(Q) such that Gv0 is Zariski closed
and that V := G(R)◦v0 is an affine symmetric (real) variety, that is, the stabilizer
H of v0 in G is the set of fixed point of an involution σ of G. Examples of affine
symmetric varieties are provided by Proposition 3.16.
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Notation. G = G(R)◦, W = W(R), and H = H(R) ∩ G. Then V ∼= G/H. We
assume that V(Z) (= ∅ and that H has no nontrivial Q-characters.

We fix a basis, say B, of W, and define

S(W) =

{

∑

e∈B
xee ∈ W:

∑

e∈B
x2

e = 1

}

.(1.5)

Let π: W \ {0} → S(W) denote the radial projection.
We define the Satake boundary V∞ of V:

V∞ := {limπ(v): v ∈ V , v → ∞} = π(V) − π(V).

For example, when V = {x ∈ Rn: Q(x) = k} is a quadratic surface,

V∞ = {x ∈ Sn−1: Q(x) = 0}.

The map π embeds V homeomorphically into π(V) as an open dense subset
(see Proposition 4.8), and we call π(V) the Satake compactification of V . For
a Riemannian symmetric space, this compactification was introduced by Satake
in [Sa]. We note that Satake [Sa] considered only the special case when ι is a
representation on the space of bi-linear forms.

The action of G on W induces, via π, a G-action on S(W). In Section 4 we
will prove that V∞ is a union of finitely many G-orbits, which are locally closed.

Given a measure µ on V∞ which is a linear combination of smooth positive
measures on some G-orbits, we say that µ is concentrated on the union of these
G-orbits.

Let C be a Borel cone in W centered at the origin. In order to have meaningful
results about the sets V(Z)∩C, it is necessary to assume that the intersection V∩C
is large in a suitable sense. As we will see below, the “size” of V(Z)∩C depends
quite sensitively on the set of G-orbits in V∞ that C intersects.

A Borel cone C ⊂ W centered at 0 is called admissible if the closure of C
has nonempty intersection with V∞, and the boundary of C is of zero measure
with respect to the smooth measure class on each of the finitely many G-orbits
on V∞. A Borel cone C ⊂ W centered at 0 is called generic if the closure of C
and the interior of C intersect the same collection of G-orbits in V∞.

The following theorem gives a natural generalization of Example 1.4. We fix
any norm ‖·‖ on W and set

BT = {v ∈ W: ‖v‖ < T}.
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THEOREM 1.6. For every admissible generic cone C ⊂ W,

#(V(Z) ∩ BT ∩ C) ∼T→∞ Vol (V ∩ BT ∩ C) ∼T→∞ dC · TaC ( log T)bC−1,

where the volume is computed with respect to a suitably normalized G-invariant
measure on V, and dC > 0, aC ∈ Q+, bC ∈ N are computable constants.

Given a Euclidean norm ‖·‖ on W and v0∈V∞, the cone C={v: ‖π(v)−v0‖
< ε} is admissible and generic for all sufficiently small ε > 0 (see subsection 7.1).
Hence, we get the following application of Theorem 1.6 to Diophantine approx-
imation.

COROLLARY 1.7. Let ‖·‖ be a Euclidean norm on W and v0 ∈ V∞. Then for any
sufficiently small ε > 0, there exist c = c(v0, ε) > 0, a = a(v0) ∈ Q+, b = b(v0) ∈ N
such that

#{v ∈ V(Z) ∩ BT : ‖π(v) − v0‖<ε} ∼T→∞ Vol ({v∈V∩BT : ‖π(v)−v0‖<ε})

∼T→∞ c · Ta( log T)b−1.

Now we describe the structure of the Satake boundary V∞ of V . Let K
be a maximal compact subgroup of G compatible with H and a a Cartan sub-
algebra corresponding to the pair K and H, so that the Cartan decomposition
G = K exp (a)H holds ([Sc, Ch. 7]). We fix a system of simple roots ∆σ of a and
denote by a+ ⊂ a the closed positive Weyl chamber. One can choose a subset W
of the normalizer of a in K such that we have a decomposition

G = K exp (a+)WH

where the a+-component and the W-component of each element of G are uniquely
defined (see Section 3).

For any subset J ⊂ ∆σ, we set

V∞
J =











limπ(k exp (a)wv0):

k ∈ K, a ∈ a+, w ∈ W ,

α(a) → ∞ for α ∈ ∆σ \ J,

α(a) is bounded for α ∈ J.











.

Note that V∞
∆σ

= π(V) and

V∞ =
⋃

J!∆σ

V∞
J .(1.8)

Every set V∞
J is a union of finitely many G-orbits (see Theorem 1.22).

Denoting by 2ρ the sum (with multiplicities) of all positive roots of a and by
λι the highest weight of the representation ι with respect to a+ (see Section 3.2),
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we have decompositions

2ρ :=
∑

α∈∆σ

uαα and λι :=
∑

α∈∆σ

mαα.(1.9)

Note that uα > 0, mα > 0, and uα, mα ∈ Q ([OV, p. 85]). Define

aι = max
{

uα
mα

: α ∈ ∆σ

}

,

Iι =
{

α ∈ ∆σ:
uα
mα

< aι
}

,(1.10)

bι = #(∆σ \ Iι) ≥ 1.

THEOREM 1.11. For an admissible cone C ⊂ W, the limits

lim
T→∞

#(V(Z) ∩ BT ∩ C)
Taι( log T)bι−1 and lim

T→∞

Vol (V ∩ BT ∩ C)
Taι( log T)bι−1

exist and are equal, where the volume is computed with respect to a suitably nor-
malized G-invariant measure on V. Moreover, if C◦ ∩ V∞

Iι (= ∅, then the limits are
strictly positive.

We also extend the result about convergence of measures in Example 1.4 to
general affine symmetric spaces. There is an explicitly given G-invariant measure
νι on R+ ·V∞

Iι , normalized such that νι(B1) = 1. The measure νι is homogeneous
of degree aι, and we have a decomposition

dνι(t · θ) = taι−1 dtdθ, t ∈ R+, θ ∈ V∞
Iι ,

where dt is a Lebesgue measure on R+ and dθ is a smooth measure on V∞
Iι . We

define the probability measure µι on V∞
Iι by µι = π∗(νι|B1 ) or equivalently,

dµι(θ) = ‖θ‖−aι dθ, θ ∈ V∞
Iι .

Note that the norm ‖·‖ need not be constant on S(W) for our fixed choice of the
sphere S(W). Later on, we give an explicit formula for µι (see (7.17)).

THEOREM 1.12. As T → ∞, we have

µT → µι.

Theorem 1.12 also holds for representations ι which are not irreducible (see
Remark 6.11).
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In the case of the group variety (i.e., when G = L×L and H = {(l, l): l ∈ L}),
these equidistribution results (Theorem 1.11 and Theorem 1.12) were first proved
by Maucourant [M], although not in terms of the Satake boundary.

Remark 1.13. It is interesting to compare Theorem 1.12 with a result in
[GMO] (see also [STT]), which describes distribution of rational points of
bounded height. Let G be a connected adjoint absolutely simple algebraic Q-
group and ι: G → GLN an absolutely irreducible representation defined over Q.
We denote by ῑ the corresponding map from G to the projective space PN2−1 and
by H = H∞ ·

∏

p:prime Hp a height function on PN2−1(Q) where H∞ is a norm on

RN2
. Let G = G(R)◦, G(Q) = G ∩ G(Q) and G(Z) = G ∩ G(Z). As explained in

Section 2.4, V = ι(G) is an affine symmetric variety, and we have a decomposition

ῑ(G) =
⋃

I⊂∆σ

V∞
I .

It follows from [GMO] that for every φ ∈ C(ῑ(G)),

lim
T→∞

1
#{γ ∈ G(Q): H(ῑ(γ)) < T}

∑

γ∈G(Q): H(ῑ(γ))<T

φ(ῑ(γ)) =
∫

V∞
∆σ

φ(ω)
dω

H∞(ω)a′ι

where dω is a G-invariant measure on V∞
∆σ

= ῑ(G) and a′ι > aι. On the other
hand, it follows from Theorem 1.12 that for every φ ∈ C(ῑ(G)),

lim
T→∞

1
#{γ ∈ G(Z): H∞(ῑ(γ)) < T}

∑

γ∈G(Z): H∞(ῑ(γ))<T

φ(ῑ(γ))=
∫

V∞
Iι

φ(θ)
dθ

H∞(θ)aι
.

Note that for affine symmetric varieties of higher rank, µι = limT→∞ µT is
concentrated on V∞

Iι , which might have empty interior in V∞ (see Section 2 for
examples). In particular, Theorem 1.12 does not imply Theorem 1.6. To prove
Theorem 1.6, we need to investigate the accumulation of integral points on all
components of V∞.

Definition 1.14. A subset I ⊂ ∆σ is called λι-connected if the Dynkin dia-
gram of {λι} ∪ I is connected. In other words, if I ∪ {λι} = S1 ∪ S2, Si (= ∅, then
S1 (⊥ S2 with respect to the identification of a∗ with a via the Killing form.

We show (see Theorem 1.22) that

V∞ =
⊔

λι-connected I ! ∆σ

V∞
I ,

and for λι-connected I, J ⊂ ∆σ,

I ! J ⇐⇒ V∞
I ⊂ ∂(V∞

J ).(1.15)
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For λι-connected I ! ∆σ, we set

aι(I) := max
{

uα
mα

: α ∈ ∆σ \ I
}

> 0,(1.16)

Iι(I) := I ∪
{

α ∈ ∆σ \ I:
uα
mα

< aι(I)
}

! ∆σ,

bι(I) := #(∆σ \ Iι(I)) ≥ 1.

Note that Iι(∅) = Iι. We will show in Proposition 5.12 that Iι(I) is λι-
connected. We consider the lexicographical order on the set of pairs (a, b) ∈ R×R.
Note that for λι-connected subsets I and J of ∆σ,

I ⊂ J ⇒ Iι(I) ⊂ Iι(J) ⇒ (aι(I), bι(I)) ≥ (aι(J), bι(J)).

For Ω ⊂ W with π(Ω \ {0}) ∩ V∞ (= ∅, we define

ΘΩ := {I ! ∆σ: I is λι-connected and π(Ω \ {0}) ∩ V∞
I (= ∅},(1.17)

(aι(Ω), bι(Ω)) := max{(aι(I), bι(I)): I ∈ ΘΩ},

Θι(Ω) := {Iι(I): I ∈ ΘΩ, (aι(I), bι(I)) = (aι(Ω), bι(Ω))} ⊂ ΘΩ.

Roughly speaking, we show that the asymptotic number of points in V(Z), with
norm less than T , whose images under π accumulate on Ω, is of the order
Taι(Ω)( log T)bι(Ω)−1.

It might happen that in Theorem 1.11, both of the limits are zero. This simply
means that the normalization term Taι( log T)bι−1 is not suitable. We prove a
refined version of Theorem 1.11.

THEOREM 1.18. For every admissible cone C ⊂ W, the limits

lim
T→∞

#(V(Z) ∩ BT ∩ C)
Taι(C)( log T)bι(C)−1 and lim

T→∞

Vol (V ∩ BT ∩ C)
Taι(C)( log T)bι(C)−1

exist and are equal, where the volume is computed with respect to a suitably nor-
malized G-invariant measure on V. Moreover, if C◦ ∩ V∞

I (= ∅ for some I ∈ Θι(C),
then the limits are strictly positive.

Moreover if C is generic, then for any I ∈ ΘC , C◦ ∩ V∞
I (= ∅; and by (1.15),

we get C◦ ∩ V∞
Iι(I) (= ∅. Therefore Theorem 1.18 implies Theorem 1.6.

Let Dι = {Iι(I): λι-connected I ! ∆σ}. To state the next result, we will
introduce a family of smooth measures µI on V∞

I for I ∈ Dι. For each I ∈ Dι,
here is an explicitly given G-invariant measure νI on R+ · V∞

I , which is a finite
union of G-orbits. Note that aI = uα

mα
is constant for α ∈ ∆σ \ I, and the measure
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νI is homogeneous of degree aI . We have a decomposition

dνI(t · θ) = taI−1 dtdθ, t ∈ R+, θ ∈ V∞
I ,

where dt is a Lebesgue measure on R and dθ is a smooth measure on V∞
I . We

define µI = π∗(νI|B1 ) or equivalently,

dµI(θ) = ‖θ‖−aI dθ, θ ∈ V∞
I .

An explicit formula for µI is given in (7.18). For I ⊂ Dι, we define

µI =
∑

I∈I
µI and νI =

∑

I∈I
νI .

THEOREM 1.19. For every φ ∈ C(S(W)) with suppφ ∩ V∞ (= ∅, we have

lim
T→∞

1
Taι(φ)( log T)bι(φ)−1

∑

x∈V(Z): 0<‖x‖<T

φ(π(x)) = c
∫

S(W)
φ dµΘι(φ),

where c > 0 depends only on V(Z), and aι(φ) = aι( suppφ), bι(φ) = bι( suppφ),
Θι(φ) = Θι( suppφ).

Note that if suppφ ∩ V∞ (= ∅, then φ(π(x)) = 0 for all but finitely many
x ∈ V(Z).

The measures µI are analogues of the Patterson-Sullivan measures, which
are concentrated on the visual boundary of a Riemannian symmetric space.

In order to prove Theorems 1.18 and 1.19, we compare the asymptotic distri-
bution of integral points to the corresponding continuous asymptotic distribution,
which is given in the following theorem.

THEOREM 1.20. For every f ∈ Cc(W \ {0}) with π( supp f ) ∩ V∞ (= ∅,

lim
T→∞

1
Taι( f )( log T)bι( f )−1

∫

G/H
f (gv0/T)dµ(g) =

∫

W
f dνΘι( f ),

where aι( f ) = aι(π( supp f )), bι( f ) = bι(π( supp f )), and Θι( f ) = Θι(π( supp f )).

Note that the limit measure νΘι( f ) is homogeneous of degree aι( f ).
Also note that if f ∈ Cc(W \ {0}) and π( supp f )∩ V∞ = ∅, then for all large

T , f (gv0/T) = 0 for all g ∈ G.

Remark 1.21. The condition that the group G is Q-simple can be relaxed. In
fact, it suffices to assume that every Q-simple factor G0 of G is isotropic over
R and G = G0H. A small modification in the proof is required only in Section 7
(see Remark 7.2).
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1.2. Ingredients of the proof. A common strategy for estimating the number
of integral points in various domains involves two steps:

(1) establishing suitable regularity of domains and their volumes;
(2) comparing the number of integral points with the volumes of the domains.
The second step, discussed in Section 7, is essentially done using standard

techniques developed in [DRS, EM] in view of the equidistribution theorem
(Theorem 7.1) available in the symmetric setting. Checking the first step for the
domains defined by the intersection of a cone with the norm balls contains the
main technical difficulties of the paper and requires, in particular, the analysis
of the structure of the Satake boundary (Section 4) and asymptotic estimates for
renormalized volumes with respect to the invariant measure (Sections 5 and 6).
For instance, one of the reasons we are working in the setting of a symmetric
space, rather than of a general homogeneous space, is the lack of the structure
theory for Satake compactification needed to establish (1), since Theorem 7.1 is
available in a more general setting of homogeneous spaces as obtained in [EMS].

We mention that checking the well-roundedness property of [EM] for the
domains amounts to carrying out the first step. Setting, for a radial cone C and
T > 0,

CT := {x ∈ V ∩ C: ‖x‖ < T},

{CT : T 1 1} is in general not well-rounded. We introduce the notion of an
admissible generic cone in terms of its intersection with the Satake boundary
of V . Showing that the family {CT : T 1 1} is well-rounded for an admissible
generic cone C is a consequence of two main ingredients of the paper:

(i) Tube Lemma (Coro 1.23); in showing this lemma, we needed to generalize
Satake’s theory in an affine symmetric setting.

(ii) The computation of the asymptotic limit of the invariant measures on V
(Theorem 1.20).

We emphasize that in order to compute the explicit volume asymptotic of CT ,
we need only the part (ii). However in order to obtain that NT (V , C) ∼ Vol(CT )
(not to mention the explicit asymptotic), we need to use both (i) and (ii).

In the rest of this section, we explain the generalization of Satake’s result
[Sa] on Riemannian symmetric spaces, which summarizes properties of the de-
composition (1.8) and Tube lemma.

THEOREM 1.22. (a) For every J ⊂ ∆σ, V∞
J is a union of finitely many G-orbits.

(b) For every J ⊂ ∆σ,

V∞
J =

⋃

I⊂J

V∞
I .

(c) For every J ⊂ ∆σ, V∞
J = V∞

I where I is the largest λι-connected subset
of J.

(d) For distinct λι-connected subsets I, J ⊂ ∆σ, V∞
I ∩ V∞

J = ∅.
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Similar constructions can be also found in [Sa], [Os], and [CP], but they are
not suitable for our purpose: Satake [Sa] considered only representations on the
space of bilinear forms, the Oshima compactification [Os] is defined abstractly,
and the de Concini–Procesi compactification [CP] is defined with respect to the
Zariski topology and applies only to a specific type of representations which have
regular highest weights.

While Theorem 1.22 is not used in the proofs of Theorem 1.11 and The-
orem 1.12, it is essential for the proofs of Theorem 1.6, Theorem 1.18, and
Theorem 1.19. The crucial observation is the following corollary that describes
neighborhoods of subsets in V∞. For I ⊂ ∆σ, we set

aI = ker I = {a ∈ a: α(a) = 0, ∀α ∈ I},

and a+
I = aI ∩ a+, which is a face of the closed Weyl chamber a+.

COROLLARY 1.23. (Tube lemma) Let I be a λι-connected subset of ∆σ and Ω
a compact subset of S(W) contained in

⋃

J⊃I V∞
J . Then there exists a compact set

U ⊂ a+ such that

Ω ∩ π(V) ⊂ π(K exp (U + a+
I )Wv0).

Note that by Theorem 1.22(b),
⋃

J⊃I V∞
J is the smallest open subset of π(V) =

V∞ ∪ π(V) which contains V∞
I and is a union of cells. The following picture

illustrates the structure of the Satake boundary for an affine symmetric variety
associated to an R-irreducible representation of SL3 (see Section 2.4) with the
highest weight λι which is not orthogonal to the simple roots α and β. The
shaded regions correspond to neighborhoods of points in the components of V∞.

Figure 2.

On the other hand, if λι ⊥ α, we get

Figure 3.
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As in the earlier works on counting integral points [DRS, EM], the basic
dynamical or ergodic theoretic ingredient in our proof is the result on limiting
distributions of translates of closed H-orbits in G/G(Z) as established in [EM]
(see Theorem 7.1).

1.3. Organization of the paper. Section 2 contains examples. In Section 3,
we review some basic properties of affine symmetric spaces and representation.
The structure of the Satake boundary, including the proofs of Theorem 1.22
and Corollary 1.23, is discussed in Section 4. Explicit formula for the measures
νI are obtained in Section 5. Section 6 contains results on volume asymptotics
(Theorem 1.20), which are described via G-invariant measures on the boundary.
Finally, the main theorems are proved in Section 7. In Section 8, we state a
version of our main result using the language of arithmetic geometry.

Acknowledgments. The authors would like to thank Gopal Prasad for pro-
viding us with some important arguments used in the proof of Proposition 4.4.

2. Examples.

2.1. Quadric. We start with an example of a rank-one symmetric space
where the structure of the Satake boundary is quite simple. Let Q be an integral
nondegenerate quadratic form on Rp+q of signature (p, q), p, q ≥ 1, p + q ≥ 4,
and k ∈ N. We are interested in the distribution of integral points lying on the
the quadratic surface V := {Q = k2}. To simplify notation, we assume that

Q(x1, . . . , xp+q) = x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

p+q.(2.1)

Let v0 = (k, 0, . . . , 0) ∈ V and H = StabG (v0). Note that H is the set of fixed
points of the involution of G:

σ: g 3→ diag ( − 1, 1, . . . , 1) · g · diag ( − 1, 1, . . . , 1),

which commutes with the Cartan involution θ(g) = tg−1. We have the Cartan
decomposition G = K exp (a+)WH where

K = SO (p) × SO (q), a+ = R≥0 · (Ep+q,1 + E1,p+q),

and W = {e} if q > 1 and W = diag ( ± 1, 1, . . . , 1) if q = 1. (Here Eij is the
matrix with 1 at (i, j)-entry and 0 at the other entries.) For p > 1, V = Gv0 and
for p = 1, V = Gv0 ∪ G( − v0). Setting v∞

0 = (1/
√

2, 0, . . . , 0, 1/
√

2), we have

V∞ =

{

Kv∞
0 for p, q > 1,

Kv∞
0 5 −Kv∞

0 otherwise.
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Note that in all cases, V∞ 6 Sp−1 × Sq−1, where we set S0 = {±1}. One can
check that aι = p + q − 2 and bι = 1. If V(Z) (= ∅, the limiting distribution of the
points {π(v): v ∈ V(Z), ‖v‖ < T} as T → ∞ is given by the probability measure

dv
‖v‖p+q−2 where dv is the suitably normalized invariant measure on Sp−1 × Sq−1

(see (7.17)); note that ‖·‖ can be any given norm on Rp+q.

2.2. Determinant surface. For k ∈ Z \ {0}, let

V = {v ∈ M (n, R): det (v) = k}.

Fix v0 ∈ V . Note that V is a homogeneous space of G = SL (n, R)×SL (n, R) for
the action

(g1, g2) · v 3→ g1v(v−1
0 g−1

2 v0), (g1, g2) ∈ G, v ∈ V ,

and H = StabG (v0) is the diagonal embedding of SLn (R) in G, which is the
fixed point set of the involution σ(g1, g2) = (g2, g1) commuting with the standard
Cartan involution. We have Cartan decomposition G = K exp (a+)H (note that
W = {e}), where

K = SO (n) × SO (n),

a+ = {(a,−a): a = diag (s1, . . . , sn),
∑

i

si = 0, si − sj ≥ 0 if i < j}.

The simple roots are αi = si − si+1, i = 1, . . . , n − 1, the fundamental weights are
ωi =

∑i
j=1 si, and i = 1, . . . , n− 1, and the highest weight is λι = 2ω1. Hence, the

λι-connected subsets of the set of simple roots are I0 = ∅ and Ij = {α1, . . . ,αj},
j = 1, . . . , n − 1. We have

V∞ = {v ∈ S( M (n, R)): det (v) = 0},

V∞
Ij = {v ∈ S( M (n, R)): rank (v) = j + 1}.

Since

2ρ = 2
∑

j

j(n − j)αj and λι = 2ω1 = 2
∑

j

n − j
n

αj,

we have aι = n2 − n, bι = 1, Iι = In−2. Hence, the results from Section 1 (see
Remark 1.21) imply that for any admissible cone C ⊂ M (n, R) that contains a
degenerate matrix in its interior,

#{v ∈ M (n, Z) ∩ C: det (v) = k, ‖v‖ < T} ∼T→∞ c(C, k) · Tn2−n,
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where c(C, k) > 0, and the measures

T−(n2−n)
∑

v∈V(Z): ‖v‖<T

δπ(v)

converge as T → ∞ to a finite smooth measure concentrated on the set of matrices
of rank n − 1 in S( M (n, R)).

2.3. Space of symmetric matrices. Let V be the space of real symmetric
matrices of signature (p, q) of determinant ( − 1)q. Put

J = diag ( 1, . . . , 1
︸ ︷︷ ︸

p

,−1, . . . ,−1
︸ ︷︷ ︸

q

) ∈ V .

Then

V = {gJ tg: g ∈ SL (p + q, R)} 6 SL (p + q, R)/SO (p, q).

Let n = p + q, G = SL (n, R) and H = SO (p, q). Note that V is the orbit of J for
the representation ι of G on the space W of symmetric n × n matrices given by

g · w 3→ gw tg, g ∈ G, w ∈ W.

Also, H is the the set of fixed points of the involution σ: g 3→ J tg−1J, which
commutes with the Cartan involution θ: g 3→ tg−1. We have Cartan decomposi-
tion G = K exp (a+)WH where K = SO (n), a+ is the standard Weyl chamber in G,
and W is the subset of the monomial matrices which gives coset representatives
for

NK(a)/NK∩H(a)ZK(a) 6 Sn/(Sp × Sq),

where Sn denotes the group of symmetries on n elements. The simple roots αi

and the fundamental weights ωi are defined as in Section 2.2, and the highest
weight is given by λι = 2ω1. In particular, it follows that the λι-connected sets
are I0 = ∅, Ij = {α1, . . . ,αj}, j = 1, . . . , n − 1, and we have

V∞
Ij = {v ∈ S(W): sign (v) = (r, s), r + s = j, r ≤ p, s ≤ q},

V∞ = {v ∈ S(W): sign (v) = (r, s), r + s < n, r ≤ p, s ≤ q}.

Note that in this case, the sets V∞
Ij

are unions of several orbits of G if p, q > 0.
For example, V∞

In−1
is a union of two open orbits which consist of matrices of

signature (p− 1, q) and (p, q− 1) respectively. One can check (as in Section 2.2)
that aι = (n2 − n)/2, bι = 1, Iι = In−2. Hence, the results of Section 1 imply that
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for every admissible cone C ⊂ W which contains a degenerate symmetric matrix
in its interior,

#{r ∈ V(Z): ‖r‖ < T} ∼T→∞ c(C) · T
n2−n

2 ,

where c(C) > 0, and the measures

T− n2−n
2

∑

v∈V(Z): 0<‖v‖<T

δπ(v)

converge as T → ∞ to a measure concentrated on the set of matrices of signature
(p − 1, q) and (p, q − 1) in S(W).

2.4. Group variety. Let G be a connected Q-simple algebraic group iso-
tropic over R and ι: G → GL(W) an R-irreducible Q-representation of G. We
consider the distribution of integral points in the variety V := ι(G). Note that
V(R) consists of finitely many orbits of G = G(R)◦. For simplicity, we make the
computation for the orbit V = ι(G).

Let K be a maximal compact subgroup of G, a a Cartan subalgebra associated
to K, and a+ a positive Weyl chamber. We denote by ∆ the set of simple roots
of G with respect to a+, and let ωα, α ∈ ∆, be the set of fundamental weights.
We consider the action of G̃ = G × G on V:

(g1, g2) · v 3→ g1vg−1
2 , (g1, g2) ∈ G̃, v ∈ V .

Then V 6 G̃/H, where H = {(g, g): g ∈ G}. We have Cartan decomposition
G̃ = K̃ exp (ã+)H (note that W = {e}), where

K̃ = K × K and ã+ = {(a,−a): a ∈ a+}.

Note that in this case every V∞
I is a single G-orbit. Let ρ and ρ̃ be half of the

sums of positive roots for G and G̃, and λι and λ̃ι be the highest weights for
a and ã respectively. Since ρ̃ = 2ρ and λ̃ι = 2λι, the parameters aι, bι, Iι are
computed as in (1.10), and the distribution of integral points is described by the
results from Section 1 (see Remark 1.21). Let us consider “generic” case, that is,

2ρ =
∑

α∈∆
uαα and λι =

∑

α∈∆
mαα =

∑

α∈∆
nαωα(2.2)

with all nα > 0 and uα
mα

(= uβ
mβ

for all α (= β. Then the Satake boundary V∞ is

a union of 2dim a orbits of G, and there are exactly dim a open orbits V∞
∆\{α},
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α ∈ ∆, but the measures

T−maxα (uα/mα)
∑

v∈V(Z): ‖v‖<T

δπ(v)

converge as T → ∞ to a measure concentrated on the single open G-orbit V∞
∆\{α0}

such that uα0
mα0

= maxα uα
mα

(compare with nongeneric case in Section 2.2). The

number of integral points in V with norm less than T is of order Tmaxα (uα/mα)

as T → ∞, and the number of points whose projections accumulate on the open
G-orbit V∞

∆\{α} is of order Tuα/mα as T → ∞.

2.5. General affine symmetric variety. Let G be a connected noncompact
semisimple Lie group and H a symmetric subgroup. We fix a Cartan decompo-
sition

G = K exp (a+)WH.

By Proposition 3.16, given an integral dominant weight λ of a+, there exists an
R-irreducible H-spherical representation ι: G → GL (W) with the highest weight
λι being a multiple of λ. Then W contains a symmetric variety V 6 G/H. The
structure of the Satake boundary V∞ of V is determined by the combinatorial
data (2.2) of 2ρ and λι. Assume that G and H are the groups of real points of
algebraic semisimple Q-groups G and H such that G is Q-simple and H has
no nontrivial Q-characters, and that ι is defined over Q. Then if V(Z) (= ∅, the
distribution of integral points V(Z) is determined by (2.2) as well. We mention
two examples.

The “generic” case (i.e., all nα > 0 and uα
mα

(= uβ
mβ

for α (= β) is quite similar
to the discussion in Section 2.4 except that when V is not a group variety, the
sets V∞

I may be unions of several G-orbits.
It is well known that 2ρ is an integral dominant weight and all nα > 0.

Hence, by Proposition 3.16, there exists an H-spherical representation with the
highest weight λι = 20ρ for some 0 ∈ N. Moreover, if G is an inner form, then the
corresponding representation is defined over Q (see Remark 3.22). We compute:
aι = 1/0, bι = dim a, Iι = ∅. Hence, the number of integral points in V with norm
less than T is of order T1/'( log T)dim a−1, and the measures

1
T1/'( log T)dim a−1

∑

v∈V(Z): ‖v‖<T

δπ(v)

converge as T → ∞ to a measure µι supported on V∞
∅ . Note that K acts tran-

sitively on V∞
∅ (see Proposition 4.35), and µι = ‖v‖−aι dv where dv is a suit-

ably normalized K-invariant measure on V∞
∅ (cf. (7.17)). On the other hand, for
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f ∈ C(S(W)) such that supp f ∩ V∞ ⊂ V∞
∆σ−{α} for some α ∈ ∆σ, we have

T−1/'
∑

v∈V(Z): ‖v‖<T

f (π(v)) → µ∆σ−{α}( f )

where µ∆σ−{α} is a measure concentrated on V∞
∆σ−{α}.

3. Affine symmetric spaces and representations.

3.1. Affine symmetric spaces. (see [Sc, Ch. 7], [HS, Part II], [OS], [Ro]).
Let G be a connected noncompact semisimple Lie group with finite center and g
the Lie algebra of G. A closed subgroup H of G, with the Lie algebra h ⊂ g, is
called symmetric if h is the set of fixed points of an involution σ of g. Then the
factor space G/H is called an affine symmetric space.

There exists a Cartan involution θ of g which commutes with σ. We denote
by K the maximal compact subgroup of G that corresponds to θ and by k its Lie
algebra. We have decompositions

g = h ⊕ q and g = k ⊕ p

into +1 and −1 eigenspaces of σ and θ respectively.
There exists a Cartan subalgebra c of g stable under θ and σ such that b := c∩p

is a maximal abelian subalgebra of p, c∩ q is a maximal abelian subalgebra of q,
and a := c ∩ p ∩ q is a maximal abelian subalgebra of p ∩ q. We call b a Cartan
subalgebra associated to θ and a a Cartan subalgebra associated to (θ,σ). We
denote by ΣC ⊂ cC

∗, Σ ⊂ b∗, and Σσ ⊂ a∗ the root systems. One can choose a
set of positive roots Σ+

C ⊂ ΣC so that Σ+ = Σ+
C|b \ {0} and Σ+

σ = Σ+|a \ {0} are
systems of positive roots in Σ and Σσ.

Let ∆C ⊂ Σ+
C denote the system of simple roots. Then

∆ = ∆C|b \ {0} and ∆σ = ∆|a \ {0}.(3.1)

are systems of simple roots for Σ and Σσ respectively. We also set ∆0 = {α ∈
∆: α|a = 0}.

The space a is a real split Cartan subalgebra associated to θ of the reductive
Lie algebra (k∩h)⊕ (p∩ q), which is the set of fixed points of the involution σθ.
We denote by Σσ,θ ⊂ Σσ the corresponding root system and choose a set positive
roots Σ+

σ,θ ⊂ Σσ,θ such that Σ+
σ,θ ⊂ Σ+

σ.
The Weyl groups of Σσ and Σσ,θ are given by

Wσ = NK(a)/ZK(a) and Wσ,θ = NK∩H(a)/ZK∩H(a),

and one can choose a set W⊂NK(a)∩NK(b) of coset representatives of Wσ/Wσ,θ.
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Denoting by a+ the closed positive Weyl chamber for Σ+
σ, we have Cartan

decomposition:

G = K exp (a)H = K exp (a+)WH.(3.2)

Note that for any g ∈ G, a+-component of g and the W-component of g are
uniquely defined.

For a root α ∈ Σσ ∪ {0}, we denote by gα the corresponding root space
associated to a. Also for a root α̃ ∈ Σ, we denote by gα̃(b) the corresponding
root space associated to b.

Let 〈·, ·〉 denote the Killing form on g. We consider a positive definite sym-
metric bilinear form B on g:

B(X, Y) = −〈X, θ(Y)〉 = Tr ( ad X ◦ ad (θ(Y)).(3.3)

Note that

B(gα, gβ) = 0 for all α (= β ∈ Σσ ∪ {0},(3.4)

Bθ = Bσ = B.

Remark 3.5. For β̃ ∈ Σ, take any X ∈ gβ̃(b) such that B(X, X) = 1, and put
bβ̃ = [X,−θ(X)]. Then θ(bβ̃) = −bβ̃ . Since θ(gβ̃) = g−β̃ , we have bβ̃ ∈ g0(b).
Hence bβ̃ ∈ b. Moreover for all b ∈ b,

〈

b, bβ̃
〉

= 〈b, [X,−θ(X)]〉 = 〈[b, X], −θ(X)〉 = β̃(b) 〈X, −θ(X)〉 = β̃(b).(3.6)

Since the Killing form restricted to b is nondegenerate, bβ̃ is the unique element,
say b∗, of b such that 〈b, b∗〉 = β̃(b) for all b ∈ b.

For each α ∈ Σσ, the root space gα is invariant under the involution σθ, and
it decomposes into ( ± 1)-eigenspaces of σθ:

gα = g+
α ⊕ g−α ;

we define

l±α = dim g±α , and lα = l+α + l−α .

We have

2ρ =
∑

α∈Σ+
σ

lαα.
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A Haar measure on G/H is given by the formula

∫

G/H
f dµ =

∫

K

∑

w∈W

∫

a+
f (k exp (a)wH)ξ(a) da dk, f ∈ Cc(G/H),(3.7)

where da and dk denote Haar measures on a and K, and

ξ(a) =
∏

α∈Σ+
σ

( sinhα(a))l+α( coshα(a))l−α .(3.8)

To match (3.7) with the integral formula given in [Sc, Ch. 7], we note that the
function |ξ| is invariant under the Weyl group.

Remark 3.9. For α ∈ Σσ, let X ∈ g+
α ∪ g−α such that B(X, X) = 1 and put

aα := [X,−θ(X)] ∈ g0. Then σ(aα) = −aα and θ(aα) = −aα. Therefore aα ∈ a
and by (3.6), we have 〈a, aα〉 = α(a) for all a ∈ a. Hence aα is the unique
element of a satisfying the last equation.

3.2. Representations. (see [GJT, Ch. IV], [Sa], [CP]) Let ι: G → GL (W)
be an irreducible over R representation of G on a real vector space W. We denote
by gC, cC, hC the complexifications of g, c, h. Note that σ extends to an involution
of gC, and hC is the subalgebra of the fixed points of σ in gC.

Let W0 be a complex g-irreducible subspace of C⊗W. Then either C⊗W =
W0 or C ⊗ W = W0 ⊕ W̄0, where bar denotes the standard complex conjugation
on C ⊗ W. Note that if C ⊗ W is not complex irreducible, then the map

W0 = v 3→ (v + v̄) ∈ W(3.10)

is a g-equivariant isomorphism over R; and hence in this case W can be treated
as vector space over C with C-linear action of g. By abuse of notation, the
representation of g on W0 over C will also be denoted by ι.

We denote by Λι ∈ c∗C the highest weight of ι with respect to the ordering
defined by ∆C. Then all other weights of cC with respect to ι are of the form

λ = Λι −
∑

α∈∆C

nα(λ)α(3.11)

for some nonnegative integers nα(λ).
The action of a on W is diagonalizable (over R) and

W = ⊕λ∈ΦιW
λ,

where Φι ⊂ a∗ is the set of weights and

Wλ = {w ∈ W: a · w = λ(a)w, ∀a ∈ a}
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denotes the weight space with weight λ. Given w ∈ W, we have a decomposition

w =
∑

λ∈Φι

wλ, wλ ∈ Wλ.

The weight λι := Λι|a is the maximal element of Φι with respect to the
ordering defined by ∆σ. All the other weights λ ∈ Φι are of the form

λ = λι −
∑

α∈∆σ

nα(λ)α(3.12)

for some nonnegative integers nα(λ). Let

suppλ = {α ∈ ∆σ: nα(λ) > 0}.

For a subset I of ∆σ and a vector w ∈ W, we set

wI =
∑

λ: suppλ⊂I

wλ and WI =
∑

λ: suppλ⊂I

Wλ.

Recalling Definition 1.14, a subset of a∗ is called connected if it is not a
union of nonempty subsets orthogonal with respect to the form B; that is, if its
Dynkin diagram is connected. We say that I ⊂ ∆σ is λι-connected, if I ∪ {λι} is
a connected subset of ∆σ.

PROPOSITION 3.13. For any λ ∈ Φι, supp (λ)∪{λι} is connected, and for every
λι-connected I ⊂ ∆σ there exists λ ∈ Φι such that supp (λ) = I.

Proof. The similar statement for the set of weight of b was shown in [Sa,
Sec. 2], and the proof applies to our situation with minor changes. The key fact
is that there exists an involution α 3→ α′ of the set ∆ − ∆0 such that

−ασ = α′ +
∑

β∈∆0

nα,ββ, α ∈ ∆ \ ∆0,

for some nα,β ∈ Z≥0 (see [Sc, Lemma 7.2.3]). Using that the proposition holds
for the weights of b, one can complete the proof as in [Sa].

Remark 3.14. We set K = R when W ⊗ C = W0, and K = C when W ⊗ C =
W0 ⊕ W̄0. Then W can be treated as a K-vector space with K-linear action of g.

H-spherical representations. Let WH denote the space of fixed points of
H on W. If WH (= 0, then the representation ι is called H-spherical.

LEMMA 3.15. ([CP, Lemma 1.5]) If ι is H-spherical then the K-dim (Wh) = 1;
and Λσ

ι = −Λι.
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Using the form B defined in (3.3), we introduce a scalar product on c∗, b∗,
a∗. An element λ ∈ c∗ is called integral if 2〈λ,α〉

〈α,α〉 ∈ Z for all α ∈ ∆C, and it
is called dominant if 〈λ, α〉 ≥ 0 for all α ∈ ∆C. For β ∈ ∆C, we define the
fundamental weights ωβ by

2 〈ωβ , α〉
〈α, α〉 = δαβ , ∀α ∈ ∆C,

where δαβ denotes the Kronecker symbol. Similarly, we define these notions
for b∗ and a∗. It is well known that the the highest weight Λι is integral and
dominant, and conversely, every integral dominant weight is the highest weight
of an irreducible representation of gC. We prove an analogous result for real
spherical representations:

PROPOSITION 3.16. (cf. [GJT, Proposition 4.15]) The highest weight λι is inte-
gral and dominant. There exists 0 ∈ N such that for every integral dominant λ ∈ a∗,
0λ is a highest weight of a real absolutely irreducible H-spherical representation
of g.

Proof. The fact that λι is integral and dominant follows from the representa-
tion theory of sl(2, R) (see [GJT, Lemma 4.12]).

For α ∈ ∆C (or α ∈ ∆σ), we take hα ∈ c and h∗α ∈ c∗ (or hα ∈ a and
h∗α ∈ a∗) such that

〈hβ , hα〉 = β(hα) = 〈β, α〉 and 〈h∗α, β〉 = h∗α(hβ) = δαβ

for all α,β ∈ ∆C (or α,β ∈ ∆σ). For λ ∈ c∗, we denote by λ̄ ∈ a∗ its restriction
to a, and for x ∈ c, we denote by x̄ ∈ a its orthogonal projection to a. It follows
from (3.1) and (3.4) that for α ∈ ∆C such that ᾱ (= 0 and β ∈ ∆σ,

h̄α = hᾱ and h∗β =
∑

α∈∆C: ᾱ=β

h̄∗α.

Suppose that λ =
∑

β∈∆σ
nβωβ for nβ ∈ Z≥0. Since ωβ = 1

2 〈β, β〉 h∗β , we have

λ =
∑

α∈∆C: ᾱ 1=0

nᾱ
〈ᾱ, ᾱ〉
〈α, α〉 · ω̄α.(3.17)

It is well known that 〈α1, α2〉 ∈ Q for α1,α2 ∈ ΣC. Hence, using that

ᾱ =
1
4

(α− αθ − ασ + ασθ),
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we deduce that the coefficients in (3.17) are rational numbers. We take 0 ∈ N
such that

0λ =
∑

α∈∆C: ᾱ 1=0

mαω̄α

for mα ∈ 2Z≥0 and consider an irreducible complex representation ι: gC →
GL (W0) with the highest weight

Λ =
∑

α∈∆C: ᾱ 1=0

mαωα.(3.18)

Let ∆θ
C = {α ∈ ∆C: α|b = 0}. It was shown in [Sa] that there exists an

involution α 3→ θ̃(α) of the set ∆C \ ∆θ
C such that

−αθ = θ̃(α) +
∑

β∈∆θ
C

uα,ββ, α ∈ ∆C \ ∆θ
C,

for some uα,β ∈ Z≥0. Moreover, according to [On, §9], the involution θ̃ is induced
by an automorphism of the Dynkin diagram of ∆C. In particular, 〈θ̃(α), θ̃(α)〉 =
〈α, α〉 for all α ∈ ∆C \ ∆θ

C. Also, it is clear that α|a = θ̃(α)|a. This shows that
mα = mθ̃(α) and by [On, §8], the restriction of ι to g leaves the a real form W of
W0 invariant.

It remain to check that the representation ι is spherical. Recall that d :=
c∩ q = {x ∈ c: σ(x) = −x} is a maximal abelian subalgebra of q. Let ∆σ

C = {α ∈
∆C: α|d = 0}. It was shown in [CP] that there exists an involution α 3→ σ̃(α) of
the set ∆C \ ∆σ

C such that

− ασ = σ̃(α) +
∑

β∈∆σ
C

vα,ββ, α ∈ ∆C \ ∆σ
C,(3.19)

for some vα,β ∈ Z≥0. Since mα’s are even, according to [CP], the representation ι
is spherical provided that mα = mσ̃(α) for α ∈ ∆C \∆σ

C. Hence, it suffices to show
that the involution σ̃ is induced by an automorphism of the Dynkin diagram of
∆C. Without loss of generality, we may assume that ∆σ

C (= ∅. Then one can check
that c∩ h is a Cartan subalgebra of [zh(d), zh(d)] with the system of simple roots
∆σ
C. The corresponding Weyl group Wσ

C is generated by reflections

wβ(α) = α− 2
〈α, β〉
〈β, β〉β, β ∈ ∆σ

C.

This implies that for every w ∈ Wσ
C,

(Σ+
C \ 〈∆σ

C〉)w ⊂ Σ+
C \ 〈∆σ

C〉,(3.20)

αw ∈ α + 〈∆σ
C〉, α ∈ ∆C.(3.21)
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Take w0 ∈ Wσ
C such that (∆σ

C)w0 = −∆σ
C. It follows from (3.19) and (3.20) that

the map α 3→ −ασw0 preserves Σ+
C, and hence, it induces an automorphism of

the Dynkin diagram of ∆C. On the other hand, it follows from (3.19) and (3.21)
that for α ∈ ∆C \ ∆σ

C,

−ασw0 ∈ σ̃(α) + 〈∆σ
C〉.

This implies that σ̃(α) = −ασw0 , α ∈ ∆C \ ∆σ
C, and finishes the proof.

Remark 3.22. Suppose that G = G(R)o for a semisimple algebraic Q-group
G. Choosing the Cartan subalgebra c to be defined over Q, we have the 2-action of
the Galois group Gal (Q̄/Q) on the set of simple roots ∆C. By [T, Theorem 3.2],
the representation constructed in Proposition 3.16 is defined over Q provided
that the highest weight Λ is in the root lattice, and the coefficients in (3.18) are
invariant under the 2-action. In particular, if G is an inner form, then the 2-action
is trivial, and 0λ is realized as a highest weight of a representation defined over
Q for some 0.

4. Structure of the Satake compactification. Let G be a connected non-
compact semisimple Lie group with a finite center and ι: G → GLR(W) an
irreducible almost faithful representation of G on a finite dimensional real vector
space W. Let σ be an involution of G and H the symmetric subgroup of G with
respect to σ. We assume that H fixes a nonzero v0 ∈ W.

We start with some basic observations: let

n =
∑

α∈Σ+
σ

gα.

LEMMA 4.1. We have Wλι = {v ∈ W: nv = 0}.

Proof. Let α ∈ Σ+
σ. Then gαWλι ⊂ Wλι+α. Since λι is the highest weight in

Φι, we conclude that Wλι+α = 0. This shows that nWλι = 0.
Now let v ∈ W such that nv = 0. Suppose v /∈ Wλι . Then there exists y ∈

W ′ :=
∑

λ<λι
Wλ such that ny = 0. Let n− =

∑

α∈Σ+
σ

g−α. Then g = n− ⊕ g0 ⊕ n.
Note that

U0(n)y = 0; U0(g0)W ′ ⊂ W ′; U0(n−)W ′ ⊂ W ′,

where U0(n) denotes the linear span of (nonconstant) monomials formed from
a basis of n, and the others are defined similarly. By Poincare-Birkhoff-Witt’s
theorem, it follows that

U(g)y ⊂ W ′,
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where U(g) is the universal enveloping algebra of g. This is a contradiction,
because U(g)y = W by the irreducibility of the g-action on W.

LEMMA 4.2. For every λι-connected I ⊂ ∆σ and every w ∈ W , there exists
λ ∈ Φι such that suppλ = I and (wv0)λ (= 0.

Proof. First, we consider the case of I = ∅; that is, we show that (wv0)λι (= 0.
We denote by σw = Ad (w) ◦ σ ◦ Ad(w−1) the involution of g corresponding to
the symmetric subgroup wHw−1. Take a maximal λ ∈ Φι such that (wv0)λ (= 0
and suppose that λ (= λι. Then by Lemma 4.1 there exist α ∈ Σ+

σ and X ∈ gα
such that X(wv0)λ (= 0. Since X + σw(X) belongs to the Lie algebra of wHw−1,

(X + σw(X))(wv0) = 0.

Therefore there exists µ ∈ Φι such that (wv0)µ (= 0 and λ + α = µ + ασw . Since
σw(a) = −a for all a ∈ a, we have ασw = −α. Therefore µ = λ + 2α > λ, which
contradicts the choice of λ.

Now we prove the general case. Given a λι-connected I ⊂ ∆σ, there exists
w0 ∈ Wσ such that the weight λι ◦Ad(w0) has support equal to I ([GJT, Lemma
B.8]). Then by the above case

w0(wv0)λι◦Ad w0 = (w0wv0)λι (= 0.

This proves the lemma.

4.1. Symmetric subgroup as a stabilizer.

PROPOSITION 4.3. The map G/H → V given by gH 3→ gv0, for all g ∈ G, is
proper. In particular, the orbit Gv0 is closed.

Proof. Take any w ∈ W . By Lemma 4.2, (wv0)λι (= 0. Since the representation
is almost faithful,

λι =
∑

α∈∆σ

mαα,

where mα > 0 for all α. Therefore the map

a 3→ exp (a)(wv0) =
∑

λ∈Φι

eλ(a)(wv0)λ

from a+ to V is proper. Now, since G = K exp (a+)WH, the map g 3→ gv0 is
proper.

PROPOSITION 4.4. H is a subgroup of finite index in StabG (v0).
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Proof. Let L = StabG (v0). Then H ⊂ L, and by Proposition 4.3 L/H is
compact. Therefore, since H is reductive and L is a real almost algebraic subgroup
of G, we conclude that the unipotent radical of L is trivial. Hence L is reductive.
Let l denote the Lie subalgebra of g associated to L, and l⊥ = {X ∈ g: 〈X, l〉 =
0}. Since l is reductive, the Killing form of g restricted to l is nondegenerate.
Therefore we get

[l, l⊥] ⊂ l⊥ and g = l ⊕ l⊥.(4.5)

Since H is a symmetric subgroup and H ⊂ L, we note that

h ∩ l⊥ = {0}, [h⊥, h⊥] ⊂ h, [h, h] ⊂ h, and [h, h⊥] ⊂ h⊥.(4.6)

Put m = h⊥ ∩ l. Then

[l⊥, m] ⊂ [l⊥, h⊥] ∩ [l⊥, l] ⊂ [h⊥, h⊥] ∩ [l⊥, l] ⊂ h ∩ l⊥ = {0},

[h, m] ⊂ [h, h⊥] ∩ [h, l] ⊂ h⊥ ∩ l = m,

[m, m] ⊂ [h⊥, h⊥] ⊂ h.

We put m1 = [m, m] ⊕ m. Then m1 is stable under ad (h), ad (l⊥), and ad (m).
Since h⊥ = m + l⊥, we conclude that m1 is an ideal in G. Since m1 ⊂ l, we have
that m1 · v0 = 0. Hence

m1 · Xv0 ⊂ X · m1 · v0 + [m1, X] · v0 = {0}, ∀X ∈ g.

Therefore, since g acts irreducibly on W, m1 acts trivially on W. Since G acts
almost faithfully on W, we get m1 = {0}, and hence l = h. Now the conclusion
of the proposition follows because L/H is compact.

Using Proposition 4.3 and the proof of Proposition 4.4 it is straightforward
to deduce the following:

COROLLARY 4.7. Suppose that G acts linearly and almost faithfully on a finite
dimensional vector space E over K = R or C. Suppose that there exists 0 (= w0 ∈ E
such that Hw0 = w0 and K-span (Gw0) = E. Then the map gH 3→ gv from G/H to
E is proper. Moreover H is a subgroup of finite index in StabG (w0).

Let S(W) denote the unit sphere in W, and π: W \ {0} → S(W) denote the
radial projection.

PROPOSITION 4.8. The map π: V → π(V) is a homeomorphism.

Proof. To verify that the map π is bijective, we suppose that g1v0 = λg2v0

for some g1, g2 ∈ G and λ (= ±1. Then it follows that for some g ∈ G and
λ ∈ ( − 1, 1), gv0 = λv0. Therefore gnv0 → 0 as n → ∞, which contradicts the
conclusion of Proposition 4.3 that Gv0 is closed.
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It is clear that the map is continuous and G-equivariant. Since the orbits of G
in the projective space of W are locally closed, it follows that π(G · v0) is locally
compact. Hence, the map π is a homeomorphism.

4.2. Satake Boundary. We define the Satake boundary V∞ of V to be
the set of the limit points of the sequences π(vn), vn ∈ V , vn → ∞. Note that
identifying G/H with π(V), the space π(V) ∪ V∞ gives a compactification of
G/H similar to the Satake compactification of the Riemannian symmetric space
of G constructed in [Sa].

We use notations from Section 3. For J ⊂ ∆σ, let aJ = ker (J), aJ its orthog-
onal complement, and

aJ,+ = {a ∈ aJ: α(a) ≥ 0 for all α ∈ J}.(4.9)

The set J is the system of simple roots on aJ , and its Weyl group WJ can be
identified with the subgroup of Wσ that acts trivially on aJ . We choose a set WJ

of representatives of the double cosets WJ\Wσ/Wσ,θ. In particular, W = W∅.
For J ⊂ ∆σ and w ∈ W , we set

V∞
J,w =











limπ(k exp (a)wv0):

k ∈ K, a ∈ a+,

α(a) → ∞ for α ∈ ∆σ \ J,

α(a) is bounded for α ∈ J.











.

The main result of this section is the following theorem, which gives an
explicit combinatorial description of the decomposition of V∞ into G-orbits.

Define

OJ,w =
⋃

w1∈WJ

V∞
J,w1w.

THEOREM 4.10. The decomposition of V∞ into G-orbits is given by

V∞ =
⋃

I,w

OI,w

where the union is taken over all λι-connected subsets I ! ∆σ and w ∈ W I .
Moreover,

OI,w = π(G(wv0)I)(4.11)

and

OI1,w1 ∩ OI2,w2 = ∅ for I1 (= I2.(4.12)
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We shall prove this theorem through a series of auxiliary results.

PROPOSITION 4.13. Let J ⊂ ∆σ, w ∈ W , and I ⊂ J be the largest λι-connected
subset. Then

V∞
J,w = π(K exp (aI,+)(wv0)I) = π(K exp (aJ,+)(wv0)J) = V∞

I,w.

Proof. Recall that V∞
J,w is the set of limit points of the sequences

π(k exp (an)wv0) where k ∈ K and {an} ⊂ a+ such that α(an) → ∞ for α ∈ ∆σ\J
and α(an) is bounded for α ∈ J. Passing to a subsequence, we may assume
that there exists a ∈ aI,+ such that α(an) → α(a) for every α ∈ I. Then for
λ = λι −

∑

α∈∆σ
nα(λ)α ∈ Φι,

∑

α∈∆σ

nα(λ)α(an) →
{∑

α∈∆σ
nα(λ)α(a) if supp (λ) ⊆ I,

+∞ if supp (λ) " J.

Note that by Proposition 3.13, supp (λ) ⊆ J iff supp (λ) ⊆ I. By Lemma 4.2,
(wv0)I (= 0. Therefore

π( exp (an)wv0) = π





∑

λ∈Φι

exp (λ(an))(w · v0)λ




= π





∑

λ∈Φι

exp



−
∑

α∈∆σ

nα(λ)α(an)



 (wv0)λ




n→∞−→ π





∑

λ: supp (λ)⊂I

exp



−
∑

α∈∆σ

nα(λ)α(a)



 (wv0)λ




= π( exp (a)(wv0)I).

This shows that V∞
J,w ⊂ π(K exp (aI,+)(wv0)I). On the other hand, given a ∈ aI,+,

one can find a sequence {an} ⊂ a+ such that α(an) = α(a) for α ∈ I, α(an) is
bounded for α ∈ J \ I, and α(an) → +∞ for α ∈ ∆σ \J. This completes the proof
of the first equality.

By Proposition 3.13, (wv0)J = (wv0)I , and using that aJ,+ ⊂ aI + aI,+, we
deduce that

exp (aJ,+)(wv0)I ⊂ R+ · exp (aI,+)(wv0)I .

This implies the second equality.
The third equality is a consequence of the first two equalities.
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Using the same argument as in the proof Proposition 4.13, we also deduce:

PROPOSITION 4.14. For every w ∈ W and J ⊂ ∆σ,

V∞
J,w =

⋃

λι-connected I ⊂ J
V∞

I,w.

Note that Proposition 4.14 implies that the orbit OI,w is open iff I ! ∆σ is a
maximal λι-connected set. In this case, |I| = |∆σ| − 1.

4.3. Notation and basic facts. For g ∈ G let cg denote the inner conjugation
by g. For w ∈ W , we define the involutive automorphism σw := cw ◦ σ ◦ c−1

w .
Since θ(w) = w, and σ and θ commute, we have that θ and σw also commute. Let

b0 := {X ∈ b: σ(X) = X} = b ∩ h = b ∩ a⊥.(4.15)

Since Ad w(a) = a and Ad w(b) = b, and Ad w preserves the Killing form, we
have Ad w(b0) = b0. Therefore

σw(b) = b, b0 = {X ∈ b: σw(X) = X}, a = {X ∈ b: σw(X) = −X}.(4.16)

Parabolic subalgebra pJ and and a decomposition of its Levi subalgebra.
Let J ⊂ ∆σ. Since σw(α) = −α for all α ∈ Σσ, we have that σw(aJ) = aJ . Since
σw preserves the Killing form on g, we have that σw(aJ) = aJ . Let zg(aJ) denote
the centralizer of aJ in g. Let

ΣJ = {β ∈ Σσ: β =
∑

α∈J

nαα, nα ∈ Z} and Σ+
J = ΣJ ∩ Σ+

σ.(4.17)

Define

nJ :=
∑

β∈Σ+
σ\ΣJ

gβ , and(4.18)

pJ := zg(aJ) ⊕ nJ ,

which is a parabolic subalgebra of g. We define

m0 = [g0, g0], where g0 = zg(a) as before,(4.19)

mJ =
∑

β∈Σ+
J

g−β + [g−β , gβ] + gβ .(4.20)

Then

[zg(aJ), zg(aJ)] = m0 + mJ .
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Note that [m0, mJ] = mJ and [mJ , mJ] ⊂ mJ . Since [zg(aJ), zg(aJ)] is semisimple,
its ideal mJ is semisimple.

Since m0 is semisimple for the ideal

mλι := {x ∈ m0: xWλι = 0},(4.21)

there exists an ideal mc such that

m0 = mc ⊕ mλι .(4.22)

Also, there exist ideals mJ
c and mJ

λι
of mc and mλι respectively, such that

mc + mJ = mJ
c ⊕ mJ and mλι + mJ = mJ

λι
⊕ mJ .

By Remark 3.5, b0 = span{bδ̃: δ̃ ∈ ∆0} ⊂ m0. Since m0 ⊂ g0 is semisimple,
we have a ∩ m0 = {0}. Therefore

b0 = m0 ∩ b.(4.23)

Since σw(gβ) = g−β , we conclude that mJ is σw-invariant. Similarly, mJ is
θ-invariant. Therefore

mJ = (k ∩ mJ) ⊕ (p ∩ ( Ad w)q ∩ mJ) ⊕ (( Ad w)h ∩ mJ).

Note that a is a maximal abelian subalgebra of p ∩ ( Ad w)q. Next we show that

a ∩ mJ = aJ .(4.24)

For each β ∈ J, let aβ ∈ a be such that 〈aβ , a〉 = β(a) for all a ∈ a. Then
{aβ : β ∈ J} is a basis of aJ . Hence by Remark 3.9 and (4.20), we have aJ ⊂ mJ .
For any β ∈ Σ+

J , if Y± ∈ g±β , and X ∈ aJ , then

〈X, [Y−, Y+]〉 = 〈[X, Y−], Y+〉 = −β(X) 〈Y−, Y+〉 = 0.

Therefore, by (4.20), (a ∩ mJ) ⊥ aJ; that is, a ∩ mJ ⊂ aJ . This justifies (4.24).
Note that center of zg(aJ) is contained in the center of zg(b), which in turn

is contained in c = (k ∩ c) + b. As b = a + b0, for cJ := Center(zg(aJ)) ∩ k,

zg(aJ) = cJ + b + m0 + mJ = cJ ⊕ aJ ⊕ mJ
c ⊕ mJ

λι
⊕ mJ .(4.25)

Let PJ denote the parabolic subgroup of G associated to pJ . Let MJ and
NJ denote the analytic subgroups of PJ associated to the subalgebras mJ and
nJ , respectively. In the course of the above discussion, we have also proved the
following:
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PROPOSITION 4.26. Let J ⊂ ∆σ and w ∈ W . Then the semisimple group MJ is
invariant under θ and σw, and aJ is a Cartan subalgebra of MJ for the pair (θ,σw).

Note that aJ has the system of simple roots J with the Weyl group WJ , and
we have the decomposition

MJ = (MJ ∩ K) exp (aJ,+)WJ(wHw−1 ∩ MJ).(4.27)

LEMMA 4.28. Let J ⊂ ∆σ. Then the following assertions hold:
(i) WJ = {v ∈ W: av = λι(a)v, ∀a ∈ aJ}.
(ii) ZG(AJ) · WJ ⊂ WJ.
(iii) (ZG(AJ) ∩ wHw−1)(wv0)J = (wv0)J for any w ∈ W .
(iv) NJ acts trivially on WJ.

Proof. If λ ∈ Φι such that suppλ ⊂ J and a ∈ aJ , then by definition of
suppλ, we have that λ(a) = λι(a). Therefore av = λι(a)v for all v ∈ Wλ.

Since an open subset of aJ is contained in the boundary of a+, there exits
X ∈ aJ such that α(X) > 0 for all α ∈ ∆σ \ J. Therefore if λ ∈ Φι such
that suppλ (⊂ J, then λ(X) < λι(X). Therefore (i) follows from the above two
observations and the definition of WJ .

Since the centralizer preserves the isotypical components, we obtain (ii).
Let X ∈ aJ be as above. Then

lim
t→∞

e−tλι(X) exp (tX)(wv0) = (wv0)J .(4.29)

Since ZG(AJ) ∩ wHw−1 fixes wv0, it acts trivially on the R-span of AJ(wv0),
which contains (wv0)J by (4.29). Therefore (iii) holds.

Let λ ∈ Φι be such that suppλ ⊂ J; that is, λ = λι −
∑

α∈J nαα, where all
nα ≥ 0. Suppose that γ =

∑

α∈∆σ
mαα, where all mα ≥ 0, is such that λ+γ ∈ Φι.

Since λι is the highest weight in Φι, we have

λι − (λ + γ) ∈ Σ+
σ.

Then mα = 0 for all α ∈ ∆σ \ J; that is, γ ∈ Σ+
J . This shows that if γ ∈ Σ+

σ \ ΣJ ,
then

gγWλ ⊂ Wλ+γ = 0.

Therefore nJWJ = 0. Thus (iv) holds.

PROPOSITION 4.30. zJ := zg(aJ) acts irreducibly on WJ.

Proof. With notation as in the proof of Lemma 4.1, we have U0(n)Wλι = 0
and U0(n−)Wλι ⊂ W ′. This easily implies that g0 acts irreducibly on Wλι .
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Since n = (mJ ∩ n) + nJ , and nJ · WJ = 0, it follows from Lemma 4.1

Wλι = {v ∈ WJ: (mJ ∩ n)v = 0}.(4.31)

Since zJ is reductive, WJ is a direct sum of irreducible zJ-modules, and each of
them admits a nonzero subspace which is annihilated by mJ∩n (Engel’s theorem).
Hence by (4.31) each of the zJ-submodules contains a nonzero subspace of Wλι

which in turn is invariant under g0 ⊂ zJ . Since g0 acts irreducibly on Wλι , we
conclude that zJ acts irreducibly on WJ .

LEMMA 4.32. mc ⊂ k ∩ zg(b).

Proof. Let m̃0 be maximal noncompact ideal of m0. It follows from [Sc,
Lemma 7.1.4] that m̃0 ⊂ ( Ad w)(h). Hence, by Lemma 4.28(iii), m̃0 ⊂ mλι .
Since by Remark 3.5, b0 = span{bδ̃: δ̃ ∈ ∆0} ⊂ m̃0, we deduce that mc ⊂ zg(b).
This implies the lemma.

Definition 4.33. For a λι-connected I of ∆σ, let I′ = (I ∪ {λι})⊥ ∩ ∆σ; that
is, the set of roots in ∆σ which are orthogonal to λι and all roots in I. We define

J(I) := I ∪ I′.

We note the following:
(1) J(I) uniquely determines I, as I is the maximal λι-connected subset of

J(I).
(2) If β, γ ∈ Σ+

σ and β ⊥ γ, then β + γ (∈ Σ+
σ. Therefore [mI , mI′] = 0, and

hence MJ(I) = MIMI′ is an almost direct product. Also ΣJ(I) = ΣI ∪ ΣI′ .
(3) WJ(I) = WI .

PROPOSITION 4.34. Let I and J = J(I) be as above. Then

(mJ
λι

+ mI′)WI = 0 and cw = Λι(c)w, ∀c ∈ cJ , w ∈ WI .

The Lie algebra mI
c ⊕ mI acts irreducibly and faithfully on WI over K.

Proof. By the definition of I′ and Proposition 3.13, for any γ ∈ ΣI′ and
λ ∈ Φι with suppλ ⊂ I, we have λ + γ (∈ Φι. Therefore, mI′WJ = 0. Since mJ

λι

is a semisimple ideal in zg(aJ), by Proposition 4.30 and (4.21), we conclude that
mJ

λι
WI = 0. By Proposition 4.30 and (4.25), cJ ⊕ mJ

c ⊕ mI acts irreducibly on
WJ over K. If K = R then WΛι

C ∩ W is a one-dimensional cJ-invariant subspace.
Since exp (cJ) ⊂ K, we conclude that cJ(WΛι

C ∩ W) = 0. Hence, by irreducibility,
cJWJ = 0. Suppose if K = C, then cJ being central in cJ ⊕ mJ

c ⊕ mI , by the
irreducibility we conclude that cJ acts via K-scalars on WJ . This proves the first
claim.
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It follows from above that mJ
c ⊕ mI act irreducibly on WJ over K. Since

m0 ∩ mI′ ⊂ mλι , we have that mJ
c = mI

c. This proves irreducibility.
By (4.21) and (4.22), mI

c acts faithfully on Wλι , and hence on WI . We observe
that any nonzero ideal of mI contains aI1 for some ∅ (= I1 ⊂ I such that I1 ⊥ (I\I1).
Since I is λι-connected, I1 is λι-connected, and hence aI1 (⊂ ker (λι). But then
aI1vλι

0 = λι(aI1 )vλι
0 (= 0. Thus, mI acts faithfully on WI .

PROPOSITION 4.35. For a λι-connected subset I of ∆σ and w ∈ W , we have

π(G(wv0)I) = π(K exp (aI,+)WI(wv0)I) = π(K exp (aI,+)(WIwv0)I).

Proof. By the Iwasawa decomposition we have

G = KPI = K exp (zg(aI))NI .

Now NI acts trivially on WI . Therefore, in view of Proposition 4.34,

π(G(wv0)I) = π(KMI(wv0)I).

Now the first equality follows from Lemma 4.28(iii), and (4.27).
Since the weight spaces Wλ, λ ∈ Φι, are orthogonal with respect to a K-

invariant scalar product, and by Lemma 4.28, WI ⊂ MI ∩ K preserves WI , it
follows that WI preserves the orthogonal complement of WI , and hence

w · v I = (wv)I for all w ∈ WI and v ∈ W.

This justifies the second equality in the proposition.

4.4. Disjointness of the G-orbits in the boundary and stabilizers of (w0v0)I .

LEMMA 4.36. Let I be a λι-connected subset of ∆σ and let J = J(I). Then

StabG (WI) := {g ∈ G: gWI = WI} = PJ .

Proof. Let Q = StabG (WI). It follows from Lemma 4.28 that Q ⊃ PJ . Hence,
Q = PS with J ⊂ S ⊂ ∆σ. Since zS := zg(aS) ⊂ PS, we have zSWI = WI . By
Proposition 4.30 zS acts irreducibly on WS. Therefore WI = WS. Since I is λι-
connected, by Proposition 3.13 I is the maximal λι-connected component of S.
Hence by Definition 4.33 S ⊂ J(I). Hence J = S.

Let I be a λι-connected subset of ∆σ, J = J(I), and w0 ∈ W . We consider
the group L = {g ∈ G: g(w0v0)I = (w0v0)I} with the Lie algebra l = {X ∈
g: X(w0v0)I = 0}. Note that aJ normalizes l, because aJ ⊂ aI , and by Lemma 4.28
(w0v0)I is an eigenvector for each element of aI . Moreover by Lemma 4.28, we
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have nJ ⊂ l. Therefore

l = nJ + l ∩ zg(aJ) + l ∩
∑

β∈Σ+
σ\ΣJ

g−β .(4.37)

By (4.25) and Proposition 4.34

l ∩ zg(aJ) = (cJ ∩ ker Λι) ⊕ (aJ ∩ kerλι) ⊕ mJ
λι
⊕ mI′ ⊕ ((mI

c ⊕ mI) ∩ l).(4.38)

PROPOSITION 4.39. We have

(mI
c ⊕ mI) ∩ l = (mI

c ⊕ mI) ∩ ( Ad w0)h = (mI
c ∩ ( Ad w0)h) ⊕ (mI ∩ ( Ad w0)h).

In particular, the orthogonal projection of l on aI is trivial.

Proof. By Proposition 4.26, applied to I in place of J and w0 in place of
w, hI,w0 := (mI

c + mI) ∩ Ad w0(h) is a symmetric subalgebra of mI
c + mI . By

Lemma 4.28(iii), hI,w0 (w0v0)I = 0. Let MI
c denote the analytic subgroup of G

associated to mI
c. Due to Proposition 4.34, we can apply Corollary 4.7 to MI

cMI

in place of G, and WI in place of E, to obtain the first equality. The second
equality holds because mI

c and mI are invariant under σ. The last conclusion
follows from Proposition 4.26 because aI is orthogonal to Ad w0(h).

PROPOSITION 4.40. l ⊂ pJ .

Proof. Suppose that l (⊂ pJ . Then by (4.37) there exists β ∈ Σ+
σ \ ΣJ , β̃ ∈ Σ+

with β̃|a = β, and 0 (= X ∈ l such that

X = X−β̃ + Y where 0 (= X−β̃ ∈ g−β̃(b) and Y ∈
∑

γ̃∈Σ\{0}: γ̃|aJ =0 g−β̃+γ̃ .

Replacing X by a scalar multiple from the beginning, without loss of generality
we may assume that B(X−β̃ , X−β̃) = 1 (see (3.3)). Since −θ(Xβ̃) ∈ gβ̃(b) ⊂ gβ
⊂ l, we have [ − θ(X−β̃), X] = bβ̃ + Z ∈ l, where

bβ̃ = [ − θ(X−β̃), X−β̃] ∈ b and Z = [ − θ(X−β̃), Y] ∈
∑

γ̃∈Σ\{0}
gγ̃(b) ∩ zg(aJ).

Therefore bβ̃ + Z ∈ l∩ pJ and its projection on b equals bβ̃ . By (4.37), (4.38) and
Proposition 4.39,

bβ̃ ∈ b0 + (aI ∩ kerλι).
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If aβ̃ is the projection of bβ̃ on a, then

aβ̃ ∈ aI ∩ kerλι.

Since b0 ⊥ a, by Remark 3.5, for all a ∈ a,

〈

a, aβ̃
〉

=
〈

a, bβ̃
〉

= β̃(a) = β(a).

Therefore, β ⊥ (I∪{λι}). Using that scalar products of simple roots are nonpos-
itive, we deduce that β ∈ 〈I′〉 ⊂

∑

J , which is a contradiction.

From (4.37), (4.38), Proposition 4.39 and Proposition 4.40 we deduce the
following:

COROLLARY 4.41. We have

l = (cJ ∩ ker Λι) ⊕ (aJ ∩ kerλι) ⊕ mJ
λι
⊕ mI′ ⊕ (mJ

c ∩ Ad w0(h))

⊕ (mI ∩ Ad w0(h)) ⊕ nJ .

In particular,

Unipotent Radical (L) = NJ and L ⊂ PJ .

Proof of Theorem 4.10. Consider a divergent sequence

vn = kn exp (an)wnv0 ∈ V .

where kn ∈ K, an ∈ a+, wn ∈ W . After passing to a subsequence if necessary,
we can assume that kn → k ∈ K, wn = w ∈ W , and that there exists J ! ∆σ such
that α(an) is bounded for α ∈ J and α(an) → ∞ for α ∈ ∆σ \ J. Then the limit
points of the sequence vn are in V∞

J,w. This proves that

V∞ =
⋃

J!∆σ ,w∈W
V∞

J,w.

Moreover, by Proposition 4.13, it suffices to take the union over λι-connected
subsets only. Then (4.11) follows from Proposition 4.35.

By Corollary 4.41 the unipotent radical of the stabilizer of gi(wiv0)Ii is
giNJig

−1
i . Therefore if the G-orbits of (wiv0)Ii are same, then g1NJ1g−1

1 =
g2NJ2g−1

2 . Since PJi = NG(NJi), we have g1PJ1g−1
1 = g2PJ2g−1

2 . Hence J1 = J2

and I1 = I2. Thus (4.12) follows.

Note that Theorem 1.22 follows from Theorem 4.10, Proposition 4.13 and
Proposition 4.14.
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Recall that for Ω ⊂ S(W), we have defined

ΘΩ = {I ⊂ ∆σ: I is λι-connected and Ω̄ ∩ V∞
I (= ∅}.

We denote by Θmin
Ω the set of minimal elements in ΘΩ with respect to inclusion.

COROLLARY 4.42. (Tube lemma) For any compact set Ω ⊂ S(W), there exists
a collection {UJ ⊂ aJ,+: J ∈ Θmin

Ω } of compact sets such that

Ω ∩ V∞
I ⊂

⋃

J∈Θmin
Ω

π(K exp (UJ + a+
J )(Wv0)I) for every I ⊆ ∆σ.

Proof. Suppose that the corollary fails. Then for any choice of compact sets
UJ , there exists v = π(k exp (a)(wv0)I) ∈ Ω with k ∈ K, w ∈ W, and a ∈ a+, a /∈
UJ +a+

J for every J ∈ Θmin
Ω . Therefore, there exists vn = π(kn exp (an)(wnv0)I) ∈ Ω

with kn ∈ K, an ∈ a+, wn ∈ W such that for every J ∈ Θmin
Ω , α(an) → ∞ for

at least one α in J. Passing to a subsequence, we may assume that for some
I ⊂ ∆σ, α(an) → ∞ if α ∈ ∆σ \ I and α(an) is bounded if α ∈ I. Then by
Proposition 4.13, the limit points of the sequence {vn} are in V∞

I0,w0
, w0 ∈ W ,

where I0 is the largest λι-connected subset of I. Then Ω ∩ V∞
I0

(= ∅ and I0 ∈ ΘΩ.
On the other hand, I0 # J for every J ∈ Θmin

Ω . This gives a contradiction and
proves the corollary.

5. Invariant measures at infinity. In the previous section, we have shown
that

V∞ =
⊔

λι-connected I ! ∆σ

V∞
I

where

R+ · V∞
I =

⋃

w∈W
G(wv0)I .

In this section we describe an algebraic condition on I so that V∞
I admits a G-

invariant measure, and give a formula for the measure. We also provide a natural
class of I for which the condition holds. The results of this section are obtained
mainly for the the sake of more complete description of the boundary. They are
not essential for the proofs of the main results stated in the introduction.

THEOREM 5.1. Let I be a λι-connected subset of ∆σ. Then for any w0 ∈ W ,
there exists a G-invariant measure on G(w0v0)I if and only if

aJ ∩ ker ρ = aJ ∩ kerλι,(5.2)

where J = J(I) is as in Definition 4.33.
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If (5.2) hold, then the G-invariant measure on G(w0v0)I , say νI,w0 , is given by
(up to a constant multiple)

∫

W

f dνI,w0(5.3)

=
∫

K

dk
∫

a∈aI,+

da
∫

b̄∈aJ/aJ∩kerλι

∑

w∈WI

f
(

k exp (a + b)w(w0v0)I
)

δI(a)e2ρ(b) db̄

for all f ∈ Cc(G(w0v0)I), where dk, da and db̄ denote the Haar integrals on K, aI ,
and aJ/aJ ∩ ker ρ, respectively, and

δI(a) :=
∏

α∈Σ+
I

( sinhα(a))l+α( coshα(a))l−α ,∀a ∈ aI .(5.4)

Proof. Let w0 ∈ W . Since G admits no nontrivial positive real characters,
there exists a G-invariant measure on G·(w0v0)I if and only if L := StabG ((w0v0)I)
is unimodular. By Corollary 4.41, NJ is the unipotent radical of L. Therefore L
is unimodular if and only if

∣
∣det ( Ad g|nJ )

∣
∣ = 1 for all g ∈ L, if and only if

tr ( ad (x)|nJ ) = 0 for all x ∈ l.
Note that cJ ⊂ k, and mJ

c ⊕ mJ
λι

⊕ mJ is semisimple. Also each of them
normalizes nJ . Therefore

tr (( ad x)|nJ ) = 0 for all x ∈ cJ + mJ
c + mJ

λι
+ mJ .

Therefore by Corollary 4.41, L is unimodular if and only if

2ρ(b) =
∑

α∈Σ+
σ\〈J〉

tr ( ad (b)|gα) = 0, ∀b ∈ aJ ∩ kerλι.(5.5)

This equation is equivalent to kerλι∩aJ ⊂ ker ρ∩aJ . If aJ (= {0}, then aJ (⊂ ker ρ,
and hence ker ρ∩aJ is of codimension 1 in aJ . Also kerλι∩aJ is of codimension
at most one in aJ . Therefore (5.5) is equivalent to (5.2). This proves the first part
of the theorem.

Now to obtain the formula for the Haar integral on G, we suppose that
(5.2) holds. In view of (4.18) and (4.25), let M̃J be the closed subgroup of PJ

associated to the Lie subalgebra cJ +mJ
c +mJ

λι
+mJ such that PJ = M̃JAJNJ , where

ZG(AJ) = M̃JAJ is a direct product. A right Haar integral on PJ can be given by

f 3→
∫

M̃J

dm
∫

aJ

db
∫

NJ

f (m exp (b)n)e2ρ(b) dn, ∀ f ∈ Cc(PJ),(5.6)

where dm and dn denote Haar integrals on M̃J and NJ , respectively, and db
denotes the Lebesgue integral on aJ .
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Note that

M̃J = (K ∩ PJ)M̃0
J = (K ∩ PJ)MJ

λι
MJ ,(5.7)

where MJ
λι

is the analytic subgroup of G associated to the subalgebra mJ
λι

. By
Corollary 4.41,

(MJ
λι

MJ)/(MJ
λι

MJ) ∩ L ∼= MI/MI ∩ w0Hw−1
0 .(5.8)

By (4.27) and (3.7) a left invariant integral on MI/MI ∩ w0Hw−1
0 is given by

f 3→
∫

K∩MI

dk
∫

a∈aI,+

∑

w∈WI

f (kaw(MI ∩ w0Hw−1
0 ))δI(a) da,(5.9)

where f ∈ Cc(MI/MI ∩ w0Hw−1
0 ), and dk denotes a Haar integral on K ∩ MI .

Combining (5.6), (5.7), (5.8), and (5.9) we obtain that for all f ∈ Cc(PJ),

f 3→
∫

K∩P

dk
∫

a∈aI,+

da
∫

b̄∈aJ/aJ∩kerλι

db̄
∑

w∈WI

(5.10)

×
∫

L

f (k exp (b) exp (a)wl)δI(a) exp (2ρ(b)) dl,

defines a right Haar integral, say dp, on PJ , were dk and dl denote Haar integrals
on K ∩ PJ and L, respectively.

Note that a Haar integral on G is given by

f 3→
∫

K
dk

∫

PJ

f (kp) dp, f ∈ Cc(G),(5.11)

where dk denotes a Haar integral on K. Combining (5.10) and (5.11), and the fact
that L is the stabilizer of (v0w0)I in G, we obtain that the formula (5.3) indeed
gives a G-invariant measure on G(w0v0)I .

It turns out that the sets Iι(I) satisfy the condition of the above theorem; see
(1.16) for the definition. To show this we need the following:

PROPOSITION 5.12. If I ⊂ ∆σ is λι-connected, then Iι(I) is λι-connected. In
fact, any J ⊂ ∆σ containing Iι(I) is λι-connected.

Proof. Let I0 ⊃ I be the largest λι-connected subset of J, and let S = J \ I0.
Then S ⊂ (I0 ∪ {λι})⊥. Therefore aS ⊂ aI0 ∩ kerλι. Note that aI0 = aJ ⊕ a∆σ\S.
Now given a ∈ aS,+, we write a = x + y with x ∈ a∆σ\S and y ∈ aJ . Then for any
α ∈ S ⊂ J we have α(a) ≥ 0 by (4.9), and α(y) = 0, and hence α(x) ≥ 0. And
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for any β ∈ ∆σ \ S, we have β(x) = 0. Therefore x ∈ a+; in other words,

aS,+ ⊂ (a∆σ\S ∩ a+) + aJ .

Therefore, since I ⊂ I0 ⊂ ∆σ \ S and Iι(I) ⊂ J, we get

aS,+ ⊂ (aI ∩ a+) + aIι(I).(5.13)

By the definition of Iι(I) as in (1.16), exists C = aι(I) > 0 such that

ρ(x) ≤ Cλι(x), ∀x ∈ aI ∩ a+, and(5.14)

ρ(y) = Cλι(y), ∀y ∈ aIι(I).(5.15)

Combining (5.13), (5.14), (5.15), and since aS ⊂ kerλι, we conclude that

ρ(a) ≤ Cλι(a) = 0 ∀ a ∈ aS,+.(5.16)

Since S ⊥ I0, we have Σ+
J = Σ+

I0
∪ Σ+

S (cf. Definition 4.33). Therefore given
a ∈ aS,+ ⊂ aI0 , we have

2ρ(a) = tr ( ad (a)|nJ ) +
∑

α∈Σ+
S

tr ( ad (a)|gα).(5.17)

Recall that aS ⊂ mS ⊂ mJ , mJ is semisimple, and [mJ , nJ] ⊂ nJ . Therefore

tr ( ad (a)|nJ ) = 0.

Note that

tr ( ad (a)|gα) = ( dim gα)α(a) ≥ 0, ∀α ∈ Σ+
S .(5.18)

Now by (5.17), we get ρ(a) ≥ 0. Therefore (5.16), we get ρ(a) = 0. Hence by
(5.18),

( dim gα)α(a) = 0, ∀α ∈ S, ∀a ∈ aS,+.(5.19)

Now if S (= ∅, then for any α ∈ S: we have dim gα ≥ 1; and since aS ⊥ aS, we
have α(a) (= 0 for any 0 (= a ∈ aS. This contradicts (5.19). Hence S = ∅; that is,
J is λι-connected.

COROLLARY 5.20. Let I ⊂ ∆σ be λι-connected. Then for any w0 ∈ W , the
orbit G(w0v0)Iι(I) admits a G-invariant measure, say νIι(I),w0 , such that for any
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f ∈ Cc(G(w0v0)Iι(I)),

∫

W
f dνIι(I),w0 =

∫

K

dk
∫

ā∈c+

∑

w∈WIι(I)

f (k exp (a)w(w0v0)Iι(I))ξIι(I)(a) dā,(5.21)

where

ξIι(I)(a) := δIι(I)(a) exp ( tr ( ad a|nIι(I) )),(5.22)

e+ = {ā ∈ a/aIι(I) ∩ kerλι: α(a) ≥ 0, ∀α ∈ Iι(I)},(5.23)

and dā denotes the Lebesgue integral on e+.

Proof. By Proposition 5.12 J(Iι(I)) = Iι(I). By (5.15) for any y ∈ aIι(I),
ρ(y) = 0 if and only if λι(y) = 0. Therefore by Theorem 5.1, G(w0v0)Iι(I) admits
a G-invariant measure.

Put E = aIι(I) ∩ kerλι. Then the map aIι(I) ⊕ aIι(I)/E → a/E, given by

(a, b + E) 3→ (a + b) + E, ∀a ∈ aIι(I), ∀b ∈ aIι(I),

is an isomorphism. Note that δIι(I)(b) = 1 and tr ( ad a|nIι(I) ) = 0. Therefore ξIι(I)

is well defined on a/E. Moreover (a + b) + E ∈ e+ if and only if a ∈ aIι(I),+.
Therefore (5.21) follows from (5.3).

6. Volume asymptotics. In this section we derive some formulas for the
volume asymptotics (see also [GW] and [M] for a similar computation).

6.1. Basic asymptotic formula. Consider a space a 6 Rr and a map

φ: a → W: a 3→
k
∑

i=1

eλi(a)wi.

where W is a finite-dimensional vector space, w1, . . . , wk ∈ W are linearly inde-
pendent vectors, and λ1, . . . ,λk are (additive) characters.

Fix a basis ∆ of the dual space a∗ and set

a+ = {a ∈ a: α(a) ≥ 0 for α ∈ ∆}.

We assume that
(1) λ1 =

∑

α∈∆ mαα with mα > 0.
(2) λi ≤ λ1 for all i, that is, λ1 − λi ∈

∑

α∈∆ mi,αα. with mi,α ≥ 0.
Let

supp (λi) = {α ∈ ∆: mi,α > 0}.
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For

χ =
∑

α∈∆
vα(χ)α ∈ a∗,

we set

aχ := max
{

vα(χ)
mα

: α ∈ ∆
}

, Iχ :=
{

α ∈ ∆:
vα(χ)

mα
< aχ

}

, bχ := #(∆ − Iχ).

Define ker Iχ := ∩α∈Iχ kerα. Then

χ(a) = aχ · λ1(a), ∀a ∈ ker Iχ,

λi(a) = λ1(a), ∀ i: suppλi ⊂ Iχ, ∀a ∈ ker Iχ,

d0 := kerχ ∩ ker Iχ = kerλi ∩ ker Iχ, ∀ i: suppλi ⊂ Iχ.

Therefore we can define

d+ := {ā ∈ a/d0: α(a) ≥ 0, ∀α ∈ Iχ},

ψ(ā) :=
∑

i: suppλi⊆Iχ

eλi(a)wi, ∀ ā ∈ a/d0, and

Lχ( f ) :=
∫

d+
f (ψ(ā))eχ(a) dā, ∀f ∈ Cc(W),

where dā denotes the Lebesgue measure on a/d0.
The main result of this subsection is the following theorem:

THEOREM 6.1. For χ ∈ a∗ and f ∈ Cc(W),

lim
T→∞

1
Taχ( log T)bχ−1

∫

a+
f (φ(a)/T)eχ(a) da = κχ · Lχ( f ) < ∞,

where

κχ = Vol (a+ ∩ ker (Iχ) ∩ {λ1 = 1}).

We start the proof with a lemma:

LEMMA 6.2. (a) For T > 0, let a+
T := {a ∈ a+: eλ1(a) ≤ T}. Then

∫

a+
T

eχ(a) da @ Taχ( log T)bχ−1.
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(b) For λi such that suppλi " Iχ and T , δ > 0, set

a+
T (i, δ) = {a ∈ a+

T : eλi(a) ≥ δT}.

Then for some constant Cδ > 1 depending on δ,

∫

a+
T (i,δ)

eχ(a) da ≤ CδTaχ( log T)bχ−2.

Proof. To prove (a), we use induction on |Iχ|. If Iχ = ∅, then χ = aχ · λ1 and

∫

a∈a+: λ1(a)≤τ
eχ(a) da =

∫ τ

0
Vol (a+ ∩ {λ1 = s})eaχs ds

=
∫ τ

0
(csr−1)eaχs ds = O(τ r−1eaχτ ).

Let α ∈ Iχ and b+ = a+ ∩ ker (α). Then by the inductive assumption,

∫

a∈a+: λ1(a)≤τ
eχ(a) da =

∫ τ/mα

0
evα(χ)s

(∫

b∈b+: λ1(b)≤τ−mαs
eχ(b) db

)

ds

@
∫ τ/mα

0
evα(χ)s(τ−mαs)bχ−1eaχ(τ−mαs) ds@eaχττ bχ−1,

where C > 1 is a constant. This proves (a).
To prove (b), we write λi = λ1 −

∑

α∈supp (λi) mi,αα with mi,α > 0. For
a ∈ a+

T (i, δ), we have

∑

α∈suppλi

mi,αα(a) ≤ − log δ.

Setting c = ker ( suppλi) and c+
T = a+

T ∩ c, we get

∫

a+
T (i,δ)

eχ(a) da ≤ Cδ

∫

c+T

eχ(c) dc,

for some constant Cδ > 1 depending on δ. Since suppλi " Iχ, bχ|c ≤ bχ − 1,
and (b) follows from (a).

Proof of Theorem 6.1. There exists c = c( f ) > 0 such that if f (φ(a)/T) (= 0
or f (ψ(a)/T) (= 0, then a ∈ a+

cT .
For δ > 0, set

a+
T (δ) =

⋃

i: supp (λi)"Iχ

a+
T (i, δ).
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where a+
T (i, δ) is defined as in Lemma 6.2. By uniform continuity, for every ε > 0,

there exists δ > 0 such that for a ∈ a+
cT − a+

cT (δ),

| f (φ(a)/T) − f (ψ(a)/T)| < ε.

Hence, by Lemma 6.2,

∣
∣
∣
∣

∫

a+
f (φ(a)/T)eχ(a) da −

∫

a+
f (ψ(a)/T)eχ(a) da

∣
∣
∣
∣

≤
∫

a+
cT−a

+
cT (δ)

ε · eχ(a) da +
∫

a+
cT (δ)

(2 ‖f‖∞) · eχ(a) da

= Of (ε · Taχ( log T)bχ−1) + Of ,δ(Taχ( log T)bχ−2).

This shows that

∫

a+
f (φ(a)/T)eχ(a) da =

∫

a+
f (ψ(a)/T)eχ(a) da + o(Taχ( log T)bχ−1).

Let

s+ = a+ ∩ ker (Iχ) and t+ = a+ ∩ ker (∆ − Iχ).

There exists c = c( f ) > 0 such that if f (ψ(t)eu) (= 0 for some t ∈ t+ and u ∈ R,
then eλ1(t) ≤ ce−u and eu ≤ c. Using that for some ε > 0,

χ|t+ ≤ (aχ − ε) · λ1|t+ ,

we deduce that

∫

t+

∫ ∞

−∞
f (ψ(t)eu)eχ(t)+aχu|u|l du dt(6.3)

@
log c∫

u=−∞

du
∫

{t∈t+: λ1(t)≤log c−u}

e(aχ−ε)λ1(t)+aχu|u|l dt

@
∫ log c

−∞
eεu( log c − u)r−bχ |u|l du < ∞

for every l ∈ N ∪ {0}. In particular, putting l = 0 we get

Lχ( f ) =
∫

d+
f (ψ(ā))eχ(a)dā =

∫

t∈t+

∫ ∞

u=−∞
f (ψ(t)eu)eχ(t)+aχudtdu < ∞.
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Therefore applying (6.3), we conclude that as T → ∞,
∫

a+
f (ψ(a)/T)eχ(a) da =

∫

t+

∫

s+
f (ψ(t)eλ1(s)/T)eχ(t)+aχλ1(s) dsdt

=
∫

t+

∫ ∞

0
f (ψ(t)eu/T)eχ(t)+aχu · Vol (s+ ∩ {λ1 = u}) du dt

=
∫

t+

∫ ∞

− log T
f (ψ(t)eu)eχ(t)+aχuTaχ · κχ(u + log T)bχ−1 du dt

= κχ · Lχ( f ) · Taχ( log T)bχ−1 + o(Taχ · ( log T)bχ−1).

This completes the proof.

6.2. Volume of symmetric space. Let G be a connected noncompact semi-
simple Lie group with finite center, H its symmetric subgroup, and ι: G →
GL (W) be an almost faithful irreducible over R representation. We assume that
H = StabG (v0) for some v0 ∈ W. We use notation from Section 3. In particular,
µ denotes an invariant measure on G/H and

λι =
∑

α∈∆σ

mαα ∈ a∗, mα ∈ Q+,

is the highest weight of ι. Let aι, bι, Iι be defined as in (1.10).

THEOREM 6.4. For every f ∈ Cc(W),

lim
T→∞

1
Taι( log T)bι−1

∫

G/H
f (gv0/T) dµ(g) =

∫

W
f dνι,(6.5)

where νι is a locally finite G-invariant measure on W concentrated on R+ · V∞
Iι .

Moreover when considered as a measure on R+ ·V∞
Iι , νι is a linear combination

of measures νIι,w, w ∈ W Iι , given in (5.21).

Proof. For v ∈ W, set

Φι(v) = {λ ∈ Φι: vλ (= 0}.

By (3.7),
∫

G/H
f (gv0/T) dµ(g)(6.6)

=
∫

K

∑

w∈W

∫

a+
f (k exp (a)wv0/T)ξ(a) da dk

=
∫

K

∑

w∈W

∫

a+
f



k ·
∑

λ∈Φι(wv0)

eλ(a)(wv0)λ/T



 ξ(a) da dk,
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where

ξ(a) =
∏

α∈Σ+

( sinhα(a))l+α( coshα(a))l−α =
∑

χ∈Ξ
tχeχ(a)(6.7)

for some tχ (= 0 and Ξ ⊂ a∗. Let aι, bι, and Iι be as defined in (1.10). Let

Ξ′ = {χ ∈ Ξ: aχ = aι, bχ = bι} and Ξ′′ = Ξ − Ξ′.

Note that for χ ∈ Ξ′′, we have aχ ≤ aι = a2ρ and if aχ = aι, then bχ < bι = b2ρ

and Iχ ⊃ Iι = I2ρ.
Since by Lemma 4.2, λι ∈ Φι(wv0), the assumptions of Section 6.1 are

satisfied and applying Theorem 6.1 together with the dominated convergence
theorem, we deduce that (6.5) holds with the measure νι given by the formula

∫

W
f dνι = κ2ρ

∫

K

∑

w∈W

∫

d+
f
(

k exp (a)(wv0)Iι
)

ξIι(a) da dk(6.8)

where

d+ = {a ∈ a/( ker (Iι) ∩ ker (ρ)): α(a) ≥ 0, α ∈ Iι},(6.9)

ξIι(a) =
∑

χ∈Ξ′
tχeχ(a).

Note that by Theorem 6.1 the limit in (6.5) is finite (i.e., νι is locally finite).
Also, it is clear from (6.5) that νι is G-invariant and homogeneous of degree aι.
It follows from Proposition 4.35 that

G(wv0)Iι = K exp (d+)WIι(wv0)Iι = R+ · K exp (aIι,+)WIι(wv0)Iι .

Note that

V∞
Iι = ∪w∈W π(G(wv0)Iι) = ∪w∈WIι π(G(wv0)Iι).

Since for χ ∈ Ξ, we have

χ ∈ Ξ′ if and only if χ ∈ 2ρ + 〈Iι〉,

it follows that the formula for (6.9) for ξIι is same as the formula (5.22) of
Corollary 5.20 for Iι = Iι(∅). Note that each G-orbit G(wv0)Iι is a closed subset of
R+ ·V∞

Iι and hence f ∈ Cc(R+ ·V∞
Iι ) implies the restriction of f to G(wv0)Iι belongs

to Cc(G(wv0)Iι). Hence (6.8) is in agreement with (5.21) for f ∈ Cc(R+ · V∞
Iι ).

This shows that νι, considered as a measure on R+ · V∞
Iι , is a linear com-

bination of the measures νIι,w, w ∈ W Iι , given in (5.21). It follows that νι is
concentrated on R+ · V∞

Iι .
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We can easily deduce the following volume asymptotic of balls from the
above theorem:

COROLLARY 6.10. For any norm ‖ · ‖ on W,

Vol ({v ∈ V: ‖v‖ < T}) ∼ c · Taι( log T)bι as T → ∞,

where Vol denotes a G-invariant measure on V and c > 0.

Remark 6.11. Theorem 6.4 holds for a representation ι which is not irre-
ducible. Let

P = {a ∈ a+: λ(a) ≤ 1,λ ∈ Φι},

aι = max{2ρ(a): a ∈ P},

bι = dimP ∩ {2ρ = aι}.

Then for every f ∈ Cc(W),

lim
T→∞

1
Taι( log T)bι−1

∫

G/H
f (gv0/T) dµ(g) =

∫

W
f dνι,

where νι is a G-invariant measure concentrated on a union of finitely many G-
orbits. To adapt the proof to this case, we decompose the polyhedron P into
a finite union of symplicial polyhedra Pi. the asymptotics for the integral over
K exp (Pi)WH can be computed from Theorem 6.1. Using the argument from
Section 7, we also get the asymptotics for integral points.

For f ∈ Cc(W \ {0}) with π( supp f )∩V∞ (= ∅, we define aι( f ), bι( f ), Θι( f )
as in (1.17) with Ω = π( supp f ). Similarly, we define Θf and Θmin

f .

THEOREM 6.12. For every f ∈ Cc(W \ {0}) with π( supp f ) ∩ V∞ (= ∅,

lim
T→∞

1
Taι( f )( log T)bι( f )−1

∫

G/H
f (gv0/T)dµ(g) =

∫

W
f dνΘι( f ),(6.13)

where νΘι( f ) is a G-invariant measure on W which is concentrated on and locally
finite on

∪I∈Θι( f )R+ · V∞
I .

In particular, νΘι( f )( supp f ) < ∞.

Proof. Define W̃ = R+ · π(V) and S(W̃) := S(W) ∩ W̃ = π(W̃), where S(W)
and π: W → S(W) are defined as in (1.5). Since f ∈ Cc(W \ {0}), f |W̃ ∈ Cc(W̃).
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Hence it suffices to prove the theorem for f ∈ Cc(W̃). For I ⊂ ∆σ, we set

OI =
⋃

λι-connected J⊃I

V∞
J .

It follows from Proposition 4.14 that OI is open in S(W̃). We take a partition of
unity φI ∈ C(S(W̃)), I ∈ Θmin

f , associated to the cover

π( supp f ) ⊂
⋃

I∈Θmin
f

OI .

It suffices to prove the theorem for the functions fI(v) = f (v)φI(π(v)), I ∈ Θmin
f .

Hence, we may assume that Θmin
f = {I} for some λι-connected I ⊂ ∆σ. Then

(aι( f ), bι( f )) = (aι(I), bι(I)) and Θι( f ) = {Iι(I)}.

By Corollary 4.42, there exists a compact set U ⊂ aI,+ such that

π( supp f ) ∩ V∞ ⊂
⋃

I∈Θf

π(K exp (U + a+
I )(Wv0)I),

π( supp f ) ∩ π(V) ⊂ π(K exp (U + a+
I )Wv0).

Hence, as in (6.6), we have

∫

G/H
f (gv0/T) dµ(g)

=
∫

K

∑

w∈W

∫

U

∫

a+
I

f



k ·
∑

λ∈Φι(wv0)

eλ(a)eλ(u)(wv0)λ/T



 ξ(a + u) da du dk.

We apply Theorem 6.1 to the integral over a+
I in place of a. For χ =

∑

α∈∆σ
vαα,

we set

aχ := max
{

vα
mα

: α ∈ ∆σ \ I
}

,

Iχ := {α ∈ ∆σ \ I:
vα
mα

< aχ},

bχ := #((∆σ \ I) \ Iχ).

We write

ξ(a) =
∑

χ∈Ξ
tχeχ(a)
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for some tχ (= 0 and Ξ ⊂ a∗. Let

Ξ′ = {χ ∈ Ξ: aχ = a2ρ, bχ = b2ρ} and Ξ′′ = Ξ − Ξ′.

Note that for χ ∈ Ξ′′, we have aχ ≤ a2ρ = aι(I) and if aχ = a2ρ, then bχ <
b2ρ = bι(I) and Iχ ⊃ I2ρ where I2ρ∪ I = Iι(I). By Theorem 6.1 and the dominated
convergence theorem,

lim
T→∞

1
Ta2ρ( log T)b2ρ−1

∫

G/H
f (gv0/T) dµ(g)(6.14)

= κ
∫

K

∑

w∈W

∫

U

∫

d+
f
(

k exp (u + a)(wv0)Iι(I)
)

ξIι(I)(u + a) dadu dk

= κ
∫

K

∑

w∈W

∫

e+
f
(

k exp (a)(wv0)Iι(I)
)

ξIι(I)(a) da dk

where

κ = Vol (a+
I ∩ ker (I2ρ) ∩ {λι = 1}),(6.15)

d+ = {a ∈ aI/( ker (I2ρ) ∩ ker (ρ)): α(a) ≥ 0, α ∈ I2ρ},

e+ = {a ∈ a/( ker (Iι(I)) ∩ ker (ρ)): α(a) ≥ 0, α ∈ Iι(I)},

ξIι(I)(a) =
∑

χ∈Ξ′
tχeχ(a).

Therefore (6.13) holds with the measure νΘι( f ) given by the formula

∫

W
f dνΘι( f )

= κ
∫

K

∑

w∈W

∫

e+
f
(

k exp (a)(wv0)Iι(I)
)

ξIι(I)(a) dadk

It is clear that νΘι( f ) is G-invariant and homogeneous of degree aι( f ). Also,
it follows from Proposition 4.35 that

K exp (e+)WIι(I)(wv0)Iι(I) = R+ · K exp (aIι(I),+)WIι(I)(wv0)Iι(I)

is a single G-orbit. It follows from Theorem 6.1 that νΘι( f ) is locally finite on
R+ · V∞

Iι(I).
Since χ ∈ Ξ′ if and only if χ ∈ 2ρ + ΣIι(I), the formula (6.15) for ξIι(J) is

same as (5.22) in Corollary 5.20. Hence (5.21) agrees with (6.14). Since ξIι(I) (= 0
on a set of full Lebesgue measure on d+, the limit measure is strictly positive on
nonempty open subsets of G(Wv0)Iι(I). This shows that νΘι( f ) is concentrated on
R+ · V∞

Iι(I), proving the theorem.
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Remark 6.16. For any f ∈ Cc(W \{0}) and a λι-connected I ⊂ ∆σ satisfying
the conditions of Theorem 5.1, if

(aι( f ), bι( f )) < (aι(I), bι(I)) ≤ (a, b),

with respect to the lexicographic order on the pairs, then by Theorem 6.12,

lim
T→∞

1
Ta( log T)b−1

∫

G/H
f (gv0/T) dg = 0 =

∫

W
f dνI ,

where νI is a G-invariant measure on W concentrated on R+ · V∞
I .

7. Distribution of integral points. Let G be a connected noncompact
semisimple Lie group with finite center, H a symmetric subgroup G, and ι: G →
GL (W) an almost faithful irreducible over R representation of G such that for
some v0 ∈ W, StabG (v0) = H.

Let Γ be an irreducible lattice in G such that H ∩ Γ is a lattice in H. We
choose Haar measures dg dh, dµ on G, H, G/H respectively such that

∫

G
fdg =

∫

G/H

∫

H
f (gh) dh dµ(g), f ∈ Cc(G).

It is convenient to normalize the measures so that

Vol (G/Γ) = Vol (H/(H ∩ Γ)) = 1.

The following result was proved in [EM] (see also [DRS]):

THEOREM 7.1. For every φ ∈ Cc(G/Γ),

∫

H/(H∩Γ)
φ(vh) dh →

∫

G/Γ
φ dg as v → ∞ in G/H.

Remark 7.2. The condition that the lattice Γ is irreducible in G can be re-
laxed. In fact, it suffices to assume that G = G1 · · ·Gr for noncompact normal
subgroups Gi’s such that Γ ∩ Gi is an irreducible lattice in Gi and G = GiH for
all i. If this is the case, then for v = g1 · · · grH → ∞, we have gi → ∞ for all i
and Theorem 7.1 holds (see [Sh, Corollary 1.2]).

For T > 0 and f ∈ Cc(W), define

FT (g) =
∑

γ∈Γ/(Γ∩H)

f (gγv0/T), g ∈ G/Γ.(7.3)
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PROPOSITION 7.4. Let φ ∈ Cc(G/Γ) such that
∫

G/Γ φ dg = 1 and f ∈
Cc(W \ {0}) with π( supp f ) ∩ V∞ (= ∅. Then

lim
T→∞

1
Taι( f )( log T)bι( f ) · 〈FT , φ〉 =

∫

W
f dνΘι( f ),

where νΘι( f ) is as given by Theorem 6.12. Furthermore,

lim
T→∞

∫

G/H
f (gv0/T) dµ(g)=∞⇒〈FT , φ〉∼

∫

G/H
f (gv0/T) dµ(g) as T→∞.

Proof. We have

〈FT , φ〉 =
∫

G/Γ

∑

γ∈Γ/H∩Γ
f (gγv0/T)φ(g) dg =

∫

G/H∩Γ
f (gv0/T)φ(g) dg

=
∫

G/H
f (gv0/T)

(
∫

H/H∩Γ
φ(gh) dh

)

dµ(g).

By Theorem 7.1, for every ε > 0, there exists a compact set D ⊂ G/H such
that

∣
∣
∣
∣
∣

∫

H/(H∩Γ)
φ(gh) dh − 1

∣
∣
∣
∣
∣
< ε

for g ∈ G/H \ D. Then

∣
∣
∣
∣
∣
〈FT , φ〉 −

∫

G/H
f (gv0/T) dµ(g)

∣
∣
∣
∣
∣

(7.5)

≤ ε

∣
∣
∣
∣
∣

∫

G/H\D
f (gv0/T) dµ(g)

∣
∣
∣
∣
∣

+ µ(D) ‖f‖∞ ( ‖φ‖∞ + 1).

The second part of the proposition now follows immediately. And the first part
of the proposition follows from Theorem 6.12.

THEOREM 7.6. For every f ∈ Cc(W \ {0}) with π( supp f ) ∩ V∞ (= ∅,

lim
T→∞

1
Taι( f )( log T)bι( f )−1

∑

γ∈Γ/(Γ∩H)

f (γv0/T) =
∫

W
f dνΘι( f ),

where νΘι( f ) is as in Theorem 6.12.
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Proof. Without loss of generality, we may assume that f ≥ 0. Given ε > 0
there exists a compact symmetric neighborhood Oε of e in G such that

| f (gv) − f (v)| < ε ∀g ∈ Oε, ∀v ∈ W,

We can assume that Oε ⊂ O1. Define f±ε ∈ Cc(W) by

f +
ε (v) := max

g∈Oε

f (g · v) and f−ε (v) = min
g∈Oε

f (g · v), ∀v ∈ W.(7.7)

For any T > 0, let FT and F±
T be defined as in (7.3) corresponding to f and

f±ε , respectively. Then

F−
T (g) ≤ FT (e) ≤ F+

T (g), ∀g ∈ Oε.

Hence, if φ ∈ Cc(G/Γ), with φ ≥ 0, suppφ ⊂ Oε and
∫

G/Γ φdg = 1, then

〈

F−
T , φ

〉

≤
∑

γ∈Γ/(Γ∩H)

f (γv0/T) = FT (e) ≤ 〈F+
T , φ〉 .(7.8)

Since each R+ · V∞
I is G-invariant, we have

Θι( f +
ε ) = Θι( f ) ⊃ Θι( f−ε )(7.9)

(aι( f +
ε ), bι( f +

ε )) = (aι( f ), bι( f )) ≥ (aι( f−ε ), bι( f−ε )).(7.10)

In view of Remark 6.16, by Proposition 7.4, we get

lim
T→∞

〈

F±
T , φ

〉

Taι( f )( log T)bι( f )−1 =
∫

W
f±ε dνΘι( f ).(7.11)

Combining (7.8) and (7.11) we conclude that

∫

W
f−ε dνΘι( f ) ≤ lim inf

T→∞

FT (e)
Taι( f )( log T)bι( f )−1(7.12)

≤ lim sup
T→∞

FT (e)
Taι( f )( log T)bι( f )−1 ≤

∫

W
f +
ε dνΘι( f ).(7.13)

By (7.7),

∫

W
f±ε dνΘι( f ) −

∫

W
f dνΘι( f ) ≤ ε · νΘι( f )( supp f +

ε ) ≤ ε · νΘι( f +
1 )( supp f +

1 ).(7.14)

By Theorem 6.12 and (7.9), νΘι( f +
1 )( supp f +

1 ) < ∞. Since ε > 0 can be chosen
arbitrarily small, (7.16) follows from (7.12) and (7.14).
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Note that for any f ∈ Cc(W\{0}), we have (aι, bι) ≥ (aι( f ), bι( f )). Therefore
using Remark 6.16, from Theorem 7.6 and Theorem 6.4 we can deduce the
following.

THEOREM 7.15. For every f ∈ Cc(W),

lim
T→∞

1
Taι( log T)bι−1

∑

γ∈Γ/(Γ∩H)

f (γv0/T) =
∫

W
f dνι,(7.16)

where νι is as in Theorem 6.4.

Proof of Theorem 1.12. Let Γ ⊂ G(Q) be an arithmetic subgroup that
preserves the integral structure on W(Z). Since G and H admit no nontrivial
Q-characters, by [BH], Γ is an irreducible lattice in G, Γ ∩ H is a lattice in H,
and V(Z) is a union of finitely many orbits of Γ:

V(Z) =
n
⋃

i=1

Γgiv0.

For any T > 0, consider a locally finite measure τT on W defined by

τT ( f ) =
1

Taι( log T)bι−1

∑

v∈V(Z)

f (v/T), f ∈ Cc(W).

Then

τT ( f ) =
1

Taι( log T)bι−1

n
∑

i=1

∑

γ∈Γ/(Γ∩giHg−1
i )

f (γgiv0/T)

=
1

Taι( log T)bι−1

n
∑

i=1

∑

γ∈g−1
i Γgi/(g−1

i Γgi∩H)

f (giγv0/T).

Note that giΓgi ⊂ G(Q) is an arithmetic subgroup of G, and (giΓg−1
i )∩H is

a lattice in H. It follows from Theorem 7.15 that the limit

τ = lim
T→∞

τT

exists in the weak∗ topology, and τ is the G-invariant measure concentrated on
G(W · v0)Iι which is given by

τ =

( n
∑

i=1

Vol (H/(g−1
i Γgi ∩ H))

Vol (G/Γ)

)

νι,

where νι is as in Theorem 6.4.
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Let φ ∈ C(S(W)), φ ≥ 0, and let ψ be the characteristic function of [1/2, 1).
Take c > 1, close to 1, and ψ−,ψ+ ∈ Cc((1/4, 2)) such that

0 ≤ ψ± ≤ 1, ψ− ≤ ψ ≤ ψ+, ψ−|[c/2,c−1] = 1, supp (ψ+) ⊂ [c−1/2, c].

Then for fψ(v) := φ(π(v))ψ( ‖v‖), ∀v ∈ W, we have

τT ( fψ−) ≤ τT ( fψ) ≤ τT ( fψ+),

τ ( fψ+) ≤ τ ( fψ(c−1v)) = caιτ ( fψ),

τ ( fψ−) ≤ τ ( fψ(c−1v)) = c−aιτ ( fψ).

Taking c → 1, this implies that

lim
T→∞

1
Taι( log T)bι−1

∑

v∈V(Z): T/2≤‖v‖<T

φ(π(v)) = lim
T→∞

τT ( fψ) = τ ( fψ).

Using that

#(V(Z) ∩ BT ) @ Taι( log T)bι−1,

the proof can be completed by an easy geometric series argument.
We also compute an explicit formula for the limit measure µι. Let φ ∈

C(S(W)), χ be the characteristic function of (0, 1), and define

fχ(v) = φ(π(v))ψ( ‖v‖), for all v ∈ W.

It follows from (6.8) that for some c1, c2 > 0,

∫

S(W)
φ dµι = c1

∫

K

∑

w∈W

∫

aIι ,+

∫

R
fχ
(

k exp (a)et(wv0)Iι
)

ξIι(a)eaιt dt da dk(7.17)

= c2

∫

K

∑

w∈W

∫

aIι ,+
φ
(

π(k exp (a)(wv0)Iι)
)

× ξIι(a)
‖k exp (a)(wv0)Iι‖aι da dk.

Proof of Theorem 1.11. Theorem 1.11 follows from Theorem 1.12 approxi-
mating the characteristic function of the cone by continuous functions.

Proofs of Theorems 1.18 and 1.19. Proofs are based on Theorem 6.12 and
Theorem 7.6 and are similar to the proofs of Theorem 1.11 and Theorem 1.12.
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We skip details. It follows from Theorem 6.12 that the measure µΘι(φ) is given
by the formula

∫

S(W)
φ dµΘι(φ)(7.18)

= c
∑

I∈Θι(φ)

∫

K

∑

w∈W

∫

aI,+
φ
(

π(k exp (a)(wv0)I)
)

× ξI(a)

‖k exp (a)(wv0)I‖aι(φ) da dk

where φ ∈ C(S(W)) and c > 0.

7.1. Proof of Corollary 1.7. Take any ε > 0 and Consider the cone

C = {w ∈ W \ {0}: ‖π(w) − v0‖ < ε}.

Since V∞ has only finitely many orbits of G, the cone is generic for sufficiently
small ε > 0.

Suppose ∂C, the boundary of C, has strictly positive measure with respect
to the smooth measure class on a G-orbit, say O1, contained in V∞. Since O1

and ∂C are real analytic varieties, we conclude that O1 ⊂ ∂C. Since V∞ has
only finitely many distinct G-orbits, and ∂C are disjoint for distinct ε > 0, we
conclude that C is admissible for sufficiently small ε > 0. Now the corollary
follows from Theorem 1.6.

8. Comparison with Chambert-Loir–Tschinkel conjecture. Recently,
Chambert-Loir and Tschinkel proposed a general conjecture about asymptotics
of the number of integral points on algebraic varieties. A weaker version of this
conjecture appeared in [HT]. To facilitate a comparison, we state some of our
results using the language of arithmetic algebraic geometry.

Let G be a connected Q-simple adjoint algebraic group, which is isotropic
over R, and X the wonderful compactification of G. The wonderful compactifica-
tion was constructed over C in [CP] and over arbitrary field of odd characteristic
in [CS]. It is a smooth projective variety defined over Q such that G is contained
densely in X, and D := X \ G is a divisor with normal crossings and smooth
irreducible components. Given a field k ⊃ Q, we set Xk = X ×Q k. Let Pic (XC)
be the absolute Picard group, Λeff(XC) ⊂ Pic (XC) ⊗ R the effective cone, and
KX the canonical class. We denote by ∆C the system of simple roots of G. It
was shown in [CP] (cf. [BK, Sec. 6.1]) that there is an isomorphism λ 3→ [Lλ]
between the weight lattice of G and the Picard group Pic (XC) such that the irre-
ducible components of the boundary divisor D correspond to Lα, α ∈ ∆C. Note
that these irreducible components generate a finite index subgroup in Pic (XC)
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(the root lattice). Given v ∈ X(C) and [L] =
∑

α∈∆C qα[Lα] ∈ Pic(XC), we set

I(v) = {α ∈ ∆C: v ∈ supp Lα} and [L]v =
∑

α∈I(v)

qα[Lα].

We define a metric on the real projective space:

d([x], [y]) =
‖x ∧ y‖
‖x‖ · ‖y‖ ,

where ‖·‖ is the standard Euclidean norm.

THEOREM 8.1. LetG be a group scheme over Spec(Z) with generic fiber G. Then
there exists k ∈ N such that for every ample metrized line bundle L = (L, HL) on
X defined over Q, every v ∈ (X \G)(R), and every sufficiently small ε = ε(v) > 0,

#
{

z ∈ G
(

1
k
Z
)

: d(z, v) < ε, HL(z) < T
}

∼T→∞ c · Ta( log T)b−1,

where

c = c(v,L, ε) > 0,

a = a(v, L) = inf{r: r[L]v + [KX + D]v ∈ Λeff(XC)v},

b = b(v, L) =

{

the co-dimension of the face of Λeff(XC)v

containing a[L]v + [KX + D]v

}

.

Remark 8.2. Theorem 8.1 holds with k = 1 if we take v ∈ G(Z)G(R)◦. In
particular, we can take k = 1 when G(R) = G(Z)G(R)◦. This equality holds
assuming that G is Q-split and G is the canonical Z-model of G (see [GaO,
Remark in Sec. 2]).

Remark 8.3. Our results also apply to nonsmooth compactifications of G
(for example, one can take the closure of the image of G under the irreducible
representation with the highest weight

∑

α nαωα with some nα = 0). We expect
that an analogue of Theorem 8.1 holds with parameters (a, b) computed with
respect to the minimal resolution of singularities of the pair (X, D). A basic
example of this type was worked out in [HT].

Proof of Theorem 8.1. We refer to [BK, Sec. 6.1] for standard facts about the
wonderful compactification. Recall that the effective cone Λeff(XC) is generated
by [Lα] for α ∈ ∆C, the ample cone is generated by [Lωα] for α ∈ ∆C (ωα’s are
the fundamental weights), and

KX ∼ −L2ρC −
∑

α∈∆C

Lα,
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where 2ρC is the sum of positive roots of ∆C. The support of Lα is isomorphic to
the fibration over G/Pα × G/Pα, where Pα is the maximal parabolic subgroup
corresponding to α, with fibers equal to the wonderful compactification of the
adjoint form of the Levi subgroup of Pα. This implies that the Galois action on
Pic(XC) correspond to the twisted Galois action (2-action) on ∆C.

We denote by ∆ the system of restricted roots (with respect to a Cartan
involution) chosen so that r(∆C) = ∆ ∪ {0} where r is the restriction map. We
have the decomposition into disjoint G-orbits:

X =
⋃

I⊂∆C

OI ,

where O∆C = G and OI ⊂ supp Lα iff α /∈ I. The structure of the set X(R) was
described in [BJ, Ch. 7]. In particular, we have

X(R) =
⋃

I⊂∆
Or−1(I)(R).

The set X(R) is a union of of finitely many Satake compactifications V̄ of G(R)o

so that V∞
I ⊂ Or−1(I)(R) for every I ⊂ ∆. It follows from the weak approximation

for G that each connected component of G(R) contains a rational point. We take
k ∈ N so that each connected component of G(R) contains a point from G( 1

k Z).
By Borel–Harish-Chandra theorem, G( 1

k Z) is a union of finitely many G(Z)-orbits,
and it suffices to compute the asymptotic for each of these orbits. For simplicity,
we consider the orbit of the identity.

For α ∈ ∆, we set

Lα :=
∑

β∈∆C

Lr−1(α).

Let J = r(I(v)) ⊂ ∆. Then v ∈ V∞
∆\J . If L ∼ Lλ for a dominant weight λ, we get

[L]v =
∑

α∈J

mα

#r−1(α)
· [Lα], [KX + D]v =

∑

α∈J

uα
#r−1(α)

· [Lα],

where mα’s and uα’s are given as in (1.9).
Passing to a tensor power, we may assume that L ∼ Lλ is very ample and

linearized, and λ is in the root lattice. Let ι be the Q-representation of G on
H0(X, L). Then

HL(z) = H(ι(z)), z ∈ G(Z),

where H is the standard height function with respect to a lattice Λ ⊂ H0(X, L).
Passing to a finite index subgroup, if necessary, we may assume that ι(G(Z)) ⊂
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Stab(Λ). Then

HL(z) = ‖ι(z)‖ , z ∈ G(Z),

where ‖·‖ is a norm on H0(X, L) ⊗ R. Since the representation ι has the unique
highest weight λ, the results of Section 1 apply (see Corollary 1.7 and Exam-
ple 2.4).
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