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Abstract. For a circle packing P on the sphere invariant under a non-
elementary Kleinian group satisfying certain finiteness conditions, we
compute the asymptotic of the number of circles in P of spherical cur-
vature at most T which are contained in any given region.

1. Introduction

In the unit sphere S2 = {x2 + y2 + z2 = 1} with the Riemannian metric
induced from R3, the distance between two points is simply the angle be-
tween the rays connecting them to the origin o. Let P be a circle packing on
the sphere S2, i.e., a union of circles which may intersect with each other.

In the beautiful book Indra’s pearls, Mumford, Series and Wright ask the
question (see [13, 5.4 in P. 155])

How many visible circles are there?

The visual size of a circle C in S2 can be measured by its spherical radius
0 < θ(C) ≤ π/2, that is, the half of the visual angle of C from the origin
o = (0, 0, 0). We label the circles by their spherical curvatures given by

CurvS(C) := cot θ(C).

We suppose that P is locally finite in the sense that for any T > 1, there
are only finitely many circles in P of spherical curvature at most T . We
then set for any subset E ⊂ S2,

NT (P, E) = {C ∈ P : C ∩ E 6= ∅, CurvS(C) < T} <∞.
In order to present our main result on the asymptotic for NT (P, E), we

consider the Poincare ball model B = {x2
1 + x2

2 + x2
3 < 1} of the hyperbolic

3-space with the metric given by 2
√
dx2

1+dx2
2+dx2

3

1−(x2
1+x2

2+x2
3)
. The geometric boundary

of B naturally identifies with S2.
Let G denote the group of orientation preserving isometries of B. Let

Γ < G be a non-elementary (=non virtually-abelian) Kleinian group.
We denote by Λ(Γ) ⊂ S2 the limit set of Γ, that is, the set of accumulation

points of an orbit of Γ in B∪S2. Denote by δΓ the cirtical exponent of Γ and
by {νx : x ∈ B} a Γ-invariant conformal density of dimension δΓ on Λ(Γ),
which exists by the work of Patterson [17] and Sullivan [20]. We denote
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Figure 1. Sierpinski curve and Apollonian gasket (by C. McMullen)

by mBMS
Γ the Bowen-Margulis-Sullivan measure on the unit tangent bundle

T1(Γ\B) associated to the density {νx} (Def. 2.2).
For a vector u ∈ T1(B), denote by u+ ∈ S2 the forward end point of the

geodesic determined by u, and by π(u) ∈ B the basepoint of u. For x1, x2 ∈ B
and ξ ∈ S2, βξ(x1, x2) denotes the signed distance between horospheres
based at ξ and passing through x1 and x2.

Definition 1.1 (The Γ-skinning size of P). For a circle packing P on S2

invariant under Γ, we define 0 ≤ skΓ(P) ≤ ∞ as follows:

skΓ(P) :=
∑
i∈I

∫
s∈StabΓ(C†i )\C†i

eδΓβs+ (x,π(s))dνx(s+)

where x ∈ B, {Ci : i ∈ I} is a set of representatives of Γ-orbits in P and
C†i ⊂ T1(B) is the set of unit normal vectors to the convex hull of Ci.

By the conformal property of {νx}, the definition of skΓ(P) is independent
of the choice of x and the choice of representatives {Ci}.
Theorem 1.2. Let Γ be a non-elementary Kleinian group with |mBMS

Γ | <∞.
Let P be a locally finite Γ-invariant circle packing on the sphere S2 with
finitely many Γ-orbits. Suppose that skΓ(P) < ∞. Then for any Borel
subset E ⊂ S2 with νo(∂(E)) = 0,

NT (P, E) ∼ skΓ(P)
δΓ · |mBMS

Γ |
· νo(E) · (2T )δΓ as T →∞

where o = (0, 0, 0). If P is infinite, skΓ(P) > 0.

Remark 1.3. Under the assumption of |mBMS
Γ | <∞, νo is atom-free by [18,

Sec.1.5], and hence the above theorem works for any Borel subset E whose
boundary intersecting Λ(Γ) in finitely many points. If Γ is Zariski dense in
G, then any proper real subvariety of S2 has zero νo-measure [6, Cor. 1.4]
and hence Theorem 1.2 holds for any Borel subset of S2 whose boundary is
contained in a countable union of real algebraic curves.
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A Kleinian group Γ is called geometrically finite if Γ admits a finite sided
fundamental domain in B. For such, it is known that |mBMS

Γ | <∞ [21] and
δΓ is equal to the Hausdorff dimension of Λ(Γ)[20].

Definition 1.4. A union of infinitely many pairwise tangent circles, with
radii both going to 0 and∞, glued at a tangent point will be called a bouquet.

Theorem 1.5. [15] Let Γ be a non-elementary geometrically finite Kleinian
group and P be a locally finite Γ-invariant circle packing on the sphere S2

with finitely many Γ-orbits. In the case of δΓ ≤ 1, we further assume that
P does not contain the bouquet of circles glued at a parabolic fixed point of
Γ. Then

skΓ(P) <∞.

Example 1.6. (1) If X is a finite volume hyperbolic 3 manifold with
totally geodesic boundary, its fundamental group Γ := π1(X) is ge-
ometrically finite and X is homeomorphic to Γ\B ∪ Ω(Γ) [8]. The
universal cover X̃ developed in B has geodesic boundary components
which are Euclidean hemispheres normal to S2. Then Ω(Γ) is the
union of a countably many disjoint open disks corresponding to the
geodesic boundary components of X̃. The Ahlfors finiteness theorem
[1] implies that the circle packing P on S2 consisting of the geodesic
boundary components of X̃ is locally finite and has finitely many
Γ-orbits. Hence by (4) of Theorem 1.5, it satisfies skΓ(P) <∞.

(2) Starting with four mutually tangent circles on the sphere S2, one
can inscribe into each of the curvilinear triangle a unique circle by
an old theorem of Apollonius of Perga (c. BC 200). Continuing to
inscribe the circles this way, one obtains an Apollonian circle packing
on S2 (see Fig. 1). Apollonian circle packings are examples of circle
packing obtained in the way described in (1) (cf. [5] and [10].). In
the case when π1(X) is convex co-compact, then no disks in Ω(Γ)
are tangent to each other and Λ(Γ) is known to be homeomorphic
to a Sierpinski curve [4] (see Fig. 1).

(3) Take k ≥ 1 pairs of mutually disjoint closed disks {(Di, D
′
i) : 1 ≤

i ≤ k} in S2 and choose γi ∈ G which maps the interior of Di to
the exterior of D′i and vice versa. The group, say, Γ, generated
by {γi} is called a Schottky group of genus k (cf. [11, Sec. 2.7]).
The Γ-orbit of the disks nest down onto the limit set Λ(Γ) which
is totally disconnected. If we set P := ∪1≤i≤kΓ(Ci) ∪ Γ(C ′i) where
Ci and C ′i are the boundaries of Di and D′i respectively, then P is
locally finite, as the nesting disks will become smaller and smaller
(cf. [13, 4.5]), and called Schottky dance (see [13, Fig. 4.11]). The
common exterior of hemispheres above the initial disks Di and D′i is
a fundamental domain for Γ in B and hence Γ is geometrically finite.
Since P consists of disjoint circles, Theorem 1.5 applies.
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Since for o = (0, 0, 0), sin θ(C) = 1
cosh d(Ĉ,o)

for the convex hull Ĉ of C (cf.

[22, P.24]), we deduce

CurvS(C) = sinh d(Ĉ, o).

Hence Theorem 1.2 follows from the following:

Theorem 1.7. Keeping the same assumption as in Theorem 1.2, we have,
for any o ∈ B,

#{C ∈ P : C ∩E 6= ∅, d(Ĉ, o) < t} ∼ skΓ(P)
δΓ · |mBMS

Γ |
· νo(E) · eδΓ·t as t→∞.

The main result in this paper was announced in [14] and an analogous
problem of counting circles in a circle packing of the plane was studied in
[9] and [15].

Acknowledgment: We are very grateful to Curt McMullen for generously
sharing his intuition and ideas. The applicability of our other paper [16] in
the question addressed in this paper came up in the conversation of the first
named author with him. We also thank Yves Benoist, Jeff Brock and Rich
Schwartz for useful conversations.

2. Preliminaries and expansion of a hyperbolic surface

In this section, we set up notations as well as recall a result from [16] on
the weighted equidistribution of expansions of a hyperbolic surface by the
geodesic flow.

Denote by G the group of orientation preserving isometries of B and fix
a circle C0 ⊂ S2. Denote by Ĉ0 ⊂ B the convex hull of C0. Fix p0 ∈ Ĉ0 and
o ∈ B. As G acts transitively on B, there exists g0 ∈ G such that

o = g0(p0).

Denote by K the stabilizer subgroup of p0 in G and by H the stabilizer
subgroup of Ĉ0 in G. We note that H is locally isomorphic to SO(2, 1)
and has two connected components, one of which is the group of orientation
preserving isometries of Ĉ0. There exist commuting involutions σ and θ
of G such that the Lie subalgebras h = Lie(H) and k = Lie(K) are the
+1 eigenspaces of dσ and dθ respectively. With respect to the symmetric
bilinear form on g = Lie(G) given by

Bθ(X,Y ) = Tr(ad(X) ◦ ad(θ(Y )),

we have the orthogonal decomposition

g = k⊕ p = h⊕ q

where p and q are the −1 eigenspaces of dσ and dθ respectively. Let a be a
one dimensional subalgebra of p∩q, A := exp(a), and M the centralizer of A
in K. The map K × p→ G given by (k,X) 7→ k expX is a diffeomorphism
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and for the canonical projection π : G → G/K = B, the differential dπ :
p→ Tp0(G/K) = Tp0(B) is an isomorphism.

Choosing an element X0 ∈ a of norm one, we can identify the unit tangent
bundle T1(B) with G.X0 = G/M : here g.X0 is given by dλ(g)(X0) where
λ(g) : G → G is the left translation λ(g)(g′) = gg′ and dλ is its derivative
at p0.

Setting A+ = {exp(tX0) : t ≥ 0} and A− = {exp(tX0) : t ≤ 0}, we have
the following generalized Cartan decompositions (cf. [19]):

G = KA−K = HA+K.

in the sense that every element of g ∈ G can be written as g = k1ask2 = hatk,
s ≤ 0, t ≥ 0, h ∈ H, , k1, k2, k ∈ K. Moreover, k1ask2 = k′1as′k

′
2 implies

s = s′, k1 = k′1m1, and k2 = m−1
1 k′2 for some m1 ∈ M , and hatk = h′at′k

′

implies that t = t′, h = h′m2, and k = m−1
2 k′ for some m2 ∈ H ∩K.

The set K.X0 = K/M represents the set of unit tangent vectors at p0, and
as X0 is orthogonal to h ∩ p = Tp0(Ĉ0), H.X0 = H/M corresponds to the
set of unit normal vectors to the convex hull Ĉ0 = H/H ∩K, which will be
denoted by C†0. Moreover if at = exp(tX0), the set (H/M)at = (HatM)/M
represents the orthogonal translate of Ĉ0 by distance |t|. We refer to [16]
for the above discussion.

Let Γ < G be a non-elementary discrete subgroup of G in the rest of this
section.

Proposition 2.1 ([15]). (1) If Γ(C0) is infinite, then [Γ : H ∩ Γ] =∞.
(2) Γ(C0) is locally finite if and only if the natural projection map Γ ∩

H\Ĉ0 → Γ\B is proper.

We denote by {νx : x ∈ B} a Γ-invariant conformal density for Γ of
dimension δΓ: for any x, y ∈ B, ξ ∈ S2 and γ ∈ Γ,

γ∗νx = νγx; and
dνy
dνx

(ξ) = e−δΓβξ(y,x).

Here γ∗νx(R) = νx(γ−1(R)) and the Busemann function βξ(y1, y2) is given
by limt→∞ d(y1, ξt)− d(y2, ξt) for a geodesic ray ξt toward ξ.

For u ∈ T1(B), we define u+ ∈ S2 (resp. u− ∈ S2) the forward (resp.
backward) endpoint of the geodesic determined by u and π(u) ∈ B the
basepoint. The map

u 7→ (u+, u−, βu−(π(u), o))

yields a homeomorphism between T1(B) with (S2×S2−{(ξ, ξ) : ξ ∈ S2})×R.

Definition 2.2 (The Bowen-Margulis-Sullivan measure). The Bowen-Margulis-
Sullivan measure mBMS

Γ ([2], [12], [21]) associated to {νx} is the measure on
T1(Γ\B) induced by the following Γ-invariant measure on T1(B): for x ∈ B,

dm̃BMS(u) = eδΓβu+ (x,π(u)) eδΓβu− (x,π(u)) dνx(u+)dνx(u−)dt.
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It follows from the conformality of {νx} that this definition is independent
of the choice of x. The finiteness of |mBMS

Γ | implies that {νx} is uniquely
determined up to a constant multiple [18, Cor. 1.8].

We denote by {mx : x ∈ B} a G-invariant conformal density of S2 of
dimension 2, which is unique up to homothety. Each mx defines a measure
on S2 which is invariant under the maximal compact subgroup StabG(x).

Definition 2.3 (The Burger-Roblin measure). The Burger-Roblin measure
mBR

Γ ([3], [18]) associated to {νx} and {mx} is the measure on T1(Γ\B)
induced by the following Γ-invariant measure on T1(B):

dm̃BR(u) = e2βu+ (x,π(u)) eδΓβu− (x,π(u)) dmx(u+)dνx(u−)dt

for x ∈ B. By the conformal properties of {νx} and {mx}, this definition is
independent of the choice of x ∈ B.

On H/M = C†0, we consider the following two measures:
(2.4)
dµLeb

C†0
(s) = e2βs+ (x,π(s))dmx(s) and dµPS

C†0
(s) := eδΓβs+ (x,π(s))dνx(s+)

for x ∈ B. These definitions are independent of the choice of x and µLeb
C†0

(resp. µPS
C†0

) is left-invariant by H (resp. H ∩Γ). Hence we may consider the

measures µLeb
C†0

and µPS
C†0

on the quotient (H ∩ Γ)\C†0.

Theorem 2.5. [16] We assume that the natural projection map Γ∩H\Ĉ0 →
Γ\B is proper. Suppose that |mBMS

Γ | < ∞ and that skΓ(C0) < ∞. For
ψ ∈ Cc(Γ\G/M), we have

e(2−δΓ)t

∫
s∈(Γ∩H)\C†0

ψ(sat)dµLeb
C†0

(s) ∼
|µPS
C†0
|

|mBMS
Γ |

mBR
Γ (ψ) as t→∞.

Moreover |µPS
C†0
| > 0 if [Γ : H ∩ Γ] =∞.

Letting dm the probability invariant measure on M and writing h = sm ∈
C†0×M , dh = dµLeb

C†0
(s)dm is a Haar measure on H, and the following defines

a Haar measure on G: for g = hatk ∈ HA+K,

dg = 4 sinh t · cosh t dhdtdmp0(k)

where dmp0(k) := dmp0((k.X0)+).
We denote by dλ the unique measure on H\G which is compatible with

the choice of dg and dh: for ψ ∈ Cc(G),∫
G
ψ dg =

∫
[g]∈H\G

∫
h∈H

ψ(h[g]) dhdλ[g].

Hence for [e] = H, dλ([e]atk) = 4 sinh t · cosh tdtdmp0(k).
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3. Density of the Burger-Roblin measure on T1
p0

(B)

Fixing po and o in B, let g0 ∈ G be such that g0(p0) = o. Let Γ < G
be a non-elementary discrete subgroup of G. We use the same notation for
K = StabG(p0), A,A+, X0,M , etc as in section 2.

Let N denote the expanding horospherical subgroup of G for A+:

N = {g ∈ G : atga−1
t → e as t→∞}.

The product map A×N ×K → G is a diffeomorphism.
We fix a Borel subset E ⊂ S2 for the rest of this section.

Definition 3.1. Define a function RE on G as follows: for g = atnk ∈
ANK,

RE(g) := e−δΓt · χ(g−1
0 E)p0

(k−1)

where (g−1
0 E)p0 := {u ∈ K : uX−0 ∈ g

−1
0 (E)} and χ(g−1

0 E)p0
is its character-

istic function.

Lemma 3.2. For any Borel subset E ⊂ S2,∫
k∈K/M

RE(k−1g0)dνp0(kX−0 ) = νo(E).

Proof. Write k−1g0 = atnk0 ∈ ANK. Since X−0 = lims→∞ a−s(p0) and
lims→∞ as+tna−s−t = e , we obtain

βkX−0
(o, p0) = βX−0

(k−1o, p0)

= lim
s→∞

d(k−1g0p0, a−sp0)− d(p0, a−sp0)

= lim
s→∞

d(atnp0, a−sp0)− d(p0, a−sp0)

= lim
s→∞

d((as+tna−s−t)as+tp0, p0)− d(p0, a−sp0)

= lim
s→∞

((s+ t)− s) = t.

On the other hand, since NA fixes X−0 , k−1
0 (X−0 ) = g−1

0 k(X−0 ), and hence

χ(g−1
0 E)p0

(k−1
0 ) = χg−1

0 E(k−1
0 X−0 ) = χE(k(X−0 )).

So

RE(k−1g0) = e
−δΓβkX−0

(o,p0)
χE(k(X−0 )).

Therefore by the conformal property of {νx},∫
k∈K/M

RE(k−1g0)dνp0(kX−0 ) =
∫
ξ∈E

e−δΓβξ(o,p0)dνp0(ξ) = νo(E).

�

Fixing a left-invariant metric on G, we denote by Uε an ε-ball around e,
and for S ⊂ G, we set Sε = S ∩ Uε.



COUNTING VISIBLE CIRCLES ON THE SPHERE 8

Lemma 3.3. ( cf. [16, Lem. 6.1]) There exists ` ≥ 1 such that for any
atnk ∈ ANK and small ε > 0,

atnk(g−1
0 Uεg0) ⊂ A`εatNK`εk.

For each small ε > 0, we choose a non-negative function ψε ∈ Cc(G)
supported inside Uε and of integral

∫
G ψ

εdg one, and define Ψε ∈ Cc(Γ\G)
by

(3.4) Ψε(g) =
∑
γ∈Γ

ψε(γg).

Definition 3.5. Define a function Ψε
E on Γ\G by

Ψε
E(g) =

∫
k−1∈(g−1

0 E)p0

Ψε(gkg−1
0 )dmp0(k).

For each ε > 0, define

(3.6) E+
ε := g0Uεg

−1
0 (E) and E−ε := ∩u∈Uεg0ug

−1
0 (E).

By Lemma 3.3, it follows that there exists c > 0 such that for all g ∈ Uε
and g1 ∈ G,

(3.7) (1− cε)RE−ε
(g1g0) ≤ RE(g1gg0) ≤ (1 + cε)RE+

ε
(g1g0).

Proposition 3.8. There exists c > 0 such that for all small ε > 0,

(1− cε)νo(E−ε ) ≤ mBR
Γ (Ψε

E) ≤ (1 + cε)νo(E+
ε ).

Proof. Using the decomposition G = ANK, we have for g = atnk,

dg = dtdndmp0(k)

where dn is the Lebesgue measure on N .
We use the following formula for m̃BR (cf. [16]): for any ψ ∈ Cc(G)M ,

m̃BR(ψ) =
∫
K

∫
A

∫
N
ψ(katn)e−δΓt dndtdνp0(k(X−0 )).

For ψεE(g) :=
∫
k−1∈(g−1

0 E)p0
ψε(gkg−1

0 )dmp0(k), we have

mBR
Γ (Ψε

E) = m̃BR(ψεE)

=
∫
g∈G

∫
k−1∈(g−1

0 E)p0

ψε(gkg−1
0 )dmp0(k)dm̃BR(g)

=
∫
KAN

∫
k∈K

ψε(k0atnkg
−1
0 )χ(g−1

0 E)p0
(k−1)dmp0(k)e−δΓtdndtdνp0(k0X

−
0 )

=
∫
k0∈K

∫
ANK

ψε(k0(atnk)g−1
0 )RE(atnk)dmp0(k)dndtdνp0(k0X

−
0 )

=
∫
k0∈K

∫
G
ψε(kgg−1

0 )RE(g) dg dνp0(k0X
−
0 )

=
∫
k0∈K

∫
G
ψε(g)RE(k−1gg0)dg dνp0(k0X

−
0 ).
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Hence applying (3.7), the identity
∫
ψεdg = 1 and Lemma 3.2, we deduce

that

mBR
Γ (Ψε

E) ≤ (1 + cε)
∫
k∈K

(∫
G
ψε(g)dg

)
RE+

ε
(k−1g0)dνp0(kX−0 )

= (1 + cε)
∫
k∈K

RE+
ε

(k−1g0)dνp0(kX−0 )

= (1 + cε)νo(E+
ε ).

The other inequality follows similarly. �

4. Simpler proof of Theorem 1.7 for the special case of E = S2.

The result in this section is covered by the proof of Theorem 1.7 (for
general E) given in section 6. However we present a separate proof for this
special case as it is considerably simpler and uses a different interpretation
of the counting function.

We may assume without loss of generality that P = Γ(C0). We use the
notations from section 2.

Set
NT (P) = #{C ∈ P : d(Ĉ, o) < t}.

Lemma 4.1. For T > 1,

NT (P) = #[e]Γ ∩ [e]A+
TKg

−1
0

where [e] = H ∈ H\G and A+
T = {at : 0 ≤ t ≤ T}.

Proof. Note that NT (P) is equal to the number of hyperbolic planes γ(Ĉ0)
such that d(o, γ(Ĉ0)) < T , or equivalently, d(γ−1(o), Ĉ0) < T . Since {x ∈
B : d(x, Ĉ0) < T} = HA+

T (p0), NT (P) is equal to the number of [γ] ∈
Γ/StabΓ(Ĉ0) such that γ−1g0p0 ∈ HA+

T p0, or alternatively, the number
of [γ] ∈ H ∩ Γ\Γ such that γg0 ∈ HA+

TK, which is equal to #[e]Γg0 ∩
[e]A+

TK. �

Define the following counting function FT on Γ\G by

FT (g) :=
∑

γ∈Γ∩H\Γ

χBT ([e]γg)

where BT = [e]A+
TKg

−1
0 ⊂ H\G. Note that FT (e) = NT (P).

By the strong wave front lemma (see [7]), for all small ε > 0, there exists
` > 1 and t0 > 0 such that for all t > t0,

(4.2) Katkg
−1
0 Uε ⊂ KatA`εkK`εg

−1
0 .

It follows that for all T � 1,

(BT −Bt0)Uε ⊂ BT+`ε and (BT−`ε −Bt0) ⊂ ∩u∈UεBTu.
Hence there exists m0 ≥ 1 such that for all g ∈ Uε and T � 1,

FT−`ε(g)−m0 ≤ FT (e) ≤ FT+`ε(g) +m0.
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Integrating against Ψε (see (3.4)), we obtain

〈FT−`ε,Ψε〉 −m0 ≤ FT (e) ≤ 〈FT+`ε,Ψε〉+m0,

where the inner product is taken with respect dg.
Setting Ξt = 4 sinh t · cosh t, we have

〈FT+`ε,Ψε〉 =
∫
g∈Γ∩H\G

χBT ([e]g)Ψε(gg−1
0 ) dg

=
∫
k∈K

∫ T+`ε

0

∫
s∈Γ∩H\C†0

(∫
m∈M

Ψε(satmkg−1
0 ) dm

)
Ξt dµLeb

C†0
(s)dtdmp0(k)

=
∫
k∈K

∫ T+`ε

0

∫
s∈Γ∩H\C†0

Ψε
kg−1

0
(sat)Ξt dµLeb

C†0
(s)dtdmp0(k).

where Ψε
g1
∈ Cc(Γ\G)M is given by Ψε

g1
(g) =

∫
m∈M Ψε(gmg1) dm.

Hence by Theorem 2.5, and using Ξt ∼ e2t, we deduce that as T →∞,

〈FT+`ε,Ψε〉 ∼
|µPS
C†0
|

δΓ · |mBMS
Γ |

mBR
Γ (Ψε

S2)eδΓ(T+`ε)

where

Ψε
S2(g) =

∫
k∈K

Ψε(gkg−1
0 )dmp0(k).

By Prop. 3.8,
mBR

Γ (Ψε
S2) = (1 +O(ε))|νo|.

Therefore it follows, as ε > 0 is arbitrary,

lim sup
T

FT (e)
eδΓT

≤
|νo| · |µPS

C†0
|

δΓ · |mBMS
Γ |

.

Similarly

lim inf
T

FT (e)
eδΓT

≥
|νo| · |µPS

C†0
|

δΓ · |mBMS
Γ |

.

This finishes the proof, as |µPS
C†0
| = skΓ(P).

5. Uniform distribution along bT (W)

In this section, fix a Borel subset W ⊂ K with MW =W.

Definition 5.1. For T > 1, we set

bT (W) = H\HKA+
TW ⊂ H\G

where A+
T = {at ∈ A : 0 ≤ t ≤ T}.
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Theorem 5.2. We assume that the natural projection map Γ∩H\Ĉ0 → Γ\B
is proper. Suppose that |mBMS

Γ | < ∞ and that skΓ(C0) < ∞. For any
ψ ∈ Cc(Γ\G), we have∫
g∈bT (W)

∫
h∈Γ∩H\H

ψ(hg)dhdλ(g) ∼
|µPS
C†0
|

δΓ · |mBMS|
·
∫
k∈W

mBR
Γ (ψk) dmp0(k)·eδΓT

as T →∞, where ψk ∈ Cc(Γ\G)M is given by ψk(g) =
∫
m∈M ψ(gmk)dm.

Proof. (cf. [15, Thm 4.3])
Set K ′ε = ∪k∈KkKεk

−1 and define ψ±ε ∈ Cc(Γ\G) by

ψ+
ε (g) := sup

u∈K′ε
ψ(gu) and ψ−ε (g) := inf

u∈K′ε
ψ(gu).

Note that for a given η > 0, there exists ε = ε(η) > 0 such that for all
g ∈ Γ\G, |ψ+

ε (g)− ψ−ε (g)| ≤ η by the uniform continuity of ψ.
We can deduce from Theorem 2.5 that for all t > T1(η)� 1,∫

h∈Γ∩H\H
ψ+
ε (hatk)dh = (1 +O(η))

|µPS
C†0
|

|mBMS
Γ |

mBR
Γ (ψ+

ε,k)e
(δ−2)t

where ψ+
ε,k is defined similarly as ψk and the implied constant can be taken

uniformly over all k ∈ K. Defining

KT (t) := {k ∈ K : atk ∈ HKA+
T },

by Prop. 4.8 and Corollary 4.11 in [15], we have HKA+
T = ∪0≤t≤THatKT (t)

and there exists a sufficiently large T0(ε) > T1(η) such that e ∈ KT (t) ⊂
KεM for all T0(ε) < t < T .

For [e] = H ∈ H\G and s > 0, set

VT (s) := (∪s≤t≤T [e]atKT (t))W

so that
bT (W) = VT (s) ∪ (bT (W)− VT (s)).

Let [g] = [e]atkk1 ∈ VT (T0(ε)) where k1 ∈ K and k ∈ W. For t > T0(ε),
there exist h0 ∈ H and u ∈ K ′ε such that atk1k = h0atku and hence

ψH(g) :=
∫
h∈Γ∩H\H

ψ(hg)dh

=
∫
h∈Γ∩H\H

ψ(hh0atku)dh ≤
∫
h∈Γ∩H\H

ψ+
ε (hatk)dh.

Therefore∫
VT (T0(ε))

ψH(g)dλ(g) ≤
∫
k∈W

∫
T0(ε)<t≤T

∫
h∈Γ∩H\H

ψ+
ε (hatk)Ξt dhdtdmp0(k)

where Ξt = 4 sinh t cosh t.
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Using Ξt ∼ e2t, we then deduce∫
k∈W

∫
T0(ε)<t<T

∫
h∈Γ∩H\H

ψ+
ε (hatk)Ξt dhdtdmp0(k)

= (1 +O(η))
|µPS
C†0
|

δΓ · |mBMS|
·
∫
k∈W

mBR
Γ (ψk)dmp0(k) · (eδΓT − eδΓT0(ε))

since mBR
Γ (ψ+

ε,k) = (1 +O(η))mBR
Γ (ψk).

Hence

lim sup
T

∫
VT (T0(ε)) ψ

H(g)dλ(g)

eδΓT
= (1+O(η))

|µPS
C†0
|

δΓ · |mBMS
Γ |

·
∫
W
mBR

Γ (ψk)dmp0(k).

On the other hand, it follows from the assumption that Γ\ΓH is a proper
subset of Γ\G and that∫

[g]∈bT (W)−VT (T0(ε))

∫
h∈Γ∩H\H

ψ(hg)dhdλ(g) = O(1).

As η > 0 is arbitrary and ε(η)→ 0 as η → 0, it follows that

lim sup
T

∫
[g]∈bT (W) ψ

H(g)dλ(g)

eδΓT
≤

|µPS
C†0
|

δΓ · |mBMS
Γ |

·
∫
k∈W

mBR
Γ (ψk)dmp0(k).

By a similar argument, one can prove

lim inf
T

∫
[g]∈bT (W) ψ

H(g)dλ(g)

eδΓT
≥

|µPS
C†0
|

δΓ · |mBMS
Γ |

·
∫
k∈W

mBR
Γ (ψk)dmp0(k).

�

6. Proof of Theorem 1.7

Without loss of generality, we may assume that P = Γ(C0). We keep the
notations from section 2.

Definition 6.1. A subset E ⊂ S2 is said to be P-admissible if, for any
C ∈ P, C◦ ∩ E 6= ∅ implies C◦ ⊂ E, possibly except for finitely many
circles.

For a subset E ⊂ S2, we define Ep0 ⊂ K by

Ep0 := {k ∈ K : k(X−0 ) ∈ E}.
We also set

NT (P, E) := {C ∈ P : C ∩ E 6= ∅, d(Ĉ, o) < T}.

Lemma 6.2. Fix a P-admissible subset E ⊂ S2. There exists c0 > 0 such
that for all T > 1,

#[e]Γ∩[e]KA+
T (g−1

0 E)−1
p0
g−1

0 −c0 ≤ NT (P, E) ≤ #[e]Γ∩[e]KA+
T (g−1

0 E)−1
p0
g−1

0 +c0

where [e] = H ∈ H\G.
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Proof. Since g0K/M represents the set of all unit vectors based at o, and the
set {u ∈ T1

o(B) : u− ∈ E} is identified with g0(g−1
0 E)p0 = {g0k[M ] : kX−0 ∈

g−1
0 E}, the set g0(g−1

0 E)p0A
−(p0) represents the set of all points in B lying in

the cone consisting of geodesic rays connecting o with a point in E. Therefore
the condition C ⊂ E is equivalent to that Ĉ ⊂ g0(g−1

0 E)p0A
−(p0). Hence

by the P-admissibility condition, we may assume without loss of generality
that NT (P, E) is equal to the number of hyperbolic planes γ(Ĉ0) such that
d(o, γ(Ĉ0)) < T and γ(Ĉ0) ⊂ g0(g−1

0 E)p0A
−(p0). Since {x ∈ B : d(o, x) <

T} = g0KA
−
T (p0) where A−T = {a−t : 0 ≤ t ≤ T}, the former condition is

again same as γ(Ĉ0) ∩ g0KA
−
T (p0) 6= ∅. Hence

NT (P, E)

= #{γ(C0) : γ(Ĉ0) ∩ g0KA
−
T (p0) 6= ∅, γ(Ĉ0) ⊂ g0(g−1

0 E)p0A
−(p0)}

= #{[γ] ∈ Γ/Γ ∩H : γ ∈ g0KA
−
TKH ∩ g0(g−1

0 E)p0A
−KH}

= #{[γ] ∈ Γ/Γ ∩H : γ ∈ g0(g−1
0 E)p0A

−
TKH}.

In the last equality, we have used the fact that if a−t ∈ KA−TKH for some
t > 0, then t < T (see [15, Lem 4.10]).

By taking the inverse, we obtain that

NT (P, E) = [e]Γ ∩ [e]KA+
T (g−1

0 E)−1
p0
g−1

0 .

�

Fixing a Borel subset E ⊂ S2, recall the definition of E±ε from (3.6):

E+
ε := g0Uεg

−1
0 (E) and E−ε := ∩u∈Uεg0ug

−1
0 (E).

We can find a P-admissible Borel subset Ẽ+
ε such that E ⊂ Ẽ+

ε ⊂ E+
ε by

adding all the open disks inside E+
ε intersecting the boundary of E. Similarly

we can find a P-admissible Borel subset Ẽ−ε such that E−ε ⊂ Ẽ−ε ⊂ E by
adding all the open disks inside E intersecting the boundary of E−ε . By the
local finiteness of P, there are only finitely many circles intersecting ∂(E)
(resp. Ẽ−ε ) which are not contained in Ẽ+

ε (resp. E). Therefore there exists
qε ≥ 1 (independent of T ) such that

(6.3) NT (P, Ẽ−ε )− qε ≤ NT (P, E) ≤ NT (P, Ẽ+
ε ) + qε.

Setting
BT (E) := [e]KA+

T (g−1
0 E)−1

p0
g−1

0 ⊂ H\G,

we define functions F ε,±T on Γ\G:

F ε,±T (g) :=
∑

γ∈Γ∩H\Γ

χBT±`ε(E±(`+1)ε
)([e]γg).

Lemma 6.4. There exists mε ≥ 1 such that for all g ∈ Uε and T � 1,

F ε,+T (g)−mε ≤ NT (P, E) ≤ F ε,+T (g) +mε.
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Proof. It follows from (4.2) that

BT (E+
ε )Uε ⊂ BT+`ε(E+

(`+1)ε) and BT−`ε(E−(`+1)ε) ⊂ ∩u∈UεBT (E−ε )u.

Hence for any g ∈ Uε, as Uε is symmetric,

#[e]Γ ∩BT (Ẽ+
ε ) ≤ #[e]Γ ∩BT (Ẽ+

ε )Uεg−1 ≤ #[e]Γg ∩BT+`ε(E+
(`+1)ε).

By Lemma 6.2 and (6.3), it follows that for some fixed mε ≥ 1,

NT (P, E) ≤ F ε,+T (g) +mε.

The other inequality can be proved similarly. �

Hence by integrating against Ψε (see (3.4)), we obtain

(6.5) 〈F ε,−T ,Ψε〉 −mε ≤ NT (P, E) ≤ 〈F ε,+T ,Ψε〉+mε.

We note that
BT (E) = bT ((g−1

0 E)−1
p0

) g−1
0

where bT (W) is defined as in Def. 5.1.
Since

〈F ε,+T ,Ψε〉 =
∫

Γ∩H\G
χBT+`ε(E

+
(`+1)ε

)([e]g)Ψε(g) dg

=
∫

[g]∈BT+`ε(E
+
(`+1)ε

)

∫
h∈Γ∩H\H

Ψε(hg)dhdλ(g)

=
∫

[g]∈bT+`ε((g
−1
0 E+

(`+1)ε
)−1
p0

)

∫
h∈Γ∩H\H

Ψε(hgg−1
0 )dhdλ(g)

we deduce from Theorem 5.2 that

(6.6) 〈F ε,+T ,Ψε〉 ∼ skΓ(C0)
δΓ · |mBMS

Γ |
·mBR

Γ (Ψε
E+

(`+1)ε

) · eδΓ(T+`ε)

where Ψε
E(g) =

∫
k−1∈(g−1

0 E)p0
Ψε(gkg−1

0 )dmp0(k) (see Def. 3.5).
Therefore by (6.5) and Prop. 3.8 we have

lim sup
T

NT (P, E)
eδΓT

≤ (1 +O(ε))
skΓ(C0)

δΓ · |mBMS
Γ |

· νo(E+
(`+1)ε).

Since νo(∂(E)) = 0 by the assumption, νo(E+
(`+1)ε − E)→ 0 as ε→ 0. As ε

can be taken arbitrarily small, it follows that

lim sup
T

NT (P, E)
eδΓT

≤ skΓ(C0)
δΓ · |mBMS

Γ |
· νo(E).

Similarly, we can prove

lim inf
T

NT (P, E)
eδΓT

≥ skΓ(C0)
δΓ · |mBMS

Γ |
· νo(E).

This completes the proof.
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