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ABSTRACT

We compute the asymptotics of the number of integral quadratic forms

with prescribed orthogonal decompositions and more generally, the asym-

ptotics of the number of lattice points lying in sectors of affine symmetric

spaces. A new key ingredient in this article is the strong wavefront lemma,

which shows that the generalized Cartan decomposition associated to a

symmetric space is uniformly Lipschitz.
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1. Introduction

One of the motivations of this paper is a certain counting problem in the space

of quadratic forms. Let SW be the vector space of all quadratic forms on a

Euclidean space W of dimension d. We fix an integral structure on W , and

hence on SW . Let QW denote the subset of SW consisting of quadratic forms of

determinant ±1, and set QW (Z) = QW ∩ SW (Z). Let ‖·‖ be any norm on SW .

It follows from the main result of Duke, Rudnick and Sarnak [DRS], as well as

of Eskin and McMullen [EM], that for d ≥ 3 there exists a constant c > 0 such

that

(1.1) #{q ∈ QW (Z) : ‖q‖ < T } ∼T→∞ c · T d(d−1)/2.

Here we will consider a refinement of this problem that concerns counting

quadratic forms with prescribed structure. Fix an orthogonal decomposition

(1.2) W =

n
⊕

i=1

Wi,

and for Ω ⊂ SO(W ) and Ω′ ⊂ QW1
× · · · × QWn

, set

(1.3) NT (Ω,Ω′) = #



















q ∈ QW (Z) :

‖q‖ < T,

q(k · x) = a1q1(x) + · · · + anqn(x)

for some k ∈ Ω, (q1, . . . , qn) ∈ Ω′,

and a1 > · · · > an > 0



















.

For example, if we choose Wi’s to be one dimensional, then we are counting

the number of quadratic forms in a ball of radius T which can be diagonalized via

conjugation by an element from a prescribed set Ω of orthogonal transformations

to obtain a form with distinct eigenvalues in decreasing order of absolute values,

and with prescribed sign (±) in each diagonal entry.

Assuming that Ω and Ω′ are bounded measurable sets such that the sub-

set ΩΩ′ has positive measure and boundary of measure zero,1 we prove the

following:

Theorem 1.4: For d ≥ 3,

NT (Ω,Ω′) ∼T→∞ c · T d(d−dimWn)/2

for some c = c(ΩΩ′) > 0.

1 The measure of ΩΩ′ is understood in terms of the identification (3.2) and (3.3).
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Theorem 1.4 is an example of our general result (Theorem 1.13) on counting

lattice points in sectors of affine symmetric spaces. In ([DRS], [EM]) it is shown

that the number of integral points in an affine symmetric Q-variety in a sequence

of growing subsets ST is asymptotic to the volume of ST , provided the sets ST

are well-rounded. A family of subsets ST being well-rounded means roughly that

the volumes of neighborhoods of the boundaries of ST are uniformly negligible

compared to the total volumes of ST (see (1.11) for the precise condition). In

([DRS], [EMS]), it is shown that the norm balls are well-rounded. However,

in most situations, given a sequence of subsets ST which arises naturally in

the geometric or number-theoretic contexts in the category of affine symmetric

spaces, it is highly non-trivial to determine whether the family ST is well-

rounded.

The main result of this paper is to show that sectors in affine symmetric

spaces define a well-rounded family of growing subsets, and consequently, we

obtain the asymptotic counting of lattice points in sectors. The main technical

lemma needed is what we call the ‘strong wave front lemma’, a terminology

reflecting it being a stronger version of the wavefront lemma introduced by

Eskin and McMullen [EM].

Now we introduce notation that we use throughout the paper. Let G be

a connected noncompact semisimple Lie group with finite center. A closed

subgroup H of G is called symmetric if its identity component coincides with

the identity component of the set of fixed points of an involution, say σ, of

G. In this case, the homogeneous space G/H is called an affine symmetric

space. Recall that a maximal compact subgroup of G is a symmetric subgroup

associated to a Cartan involution on G. Affine symmetric spaces have many

features similar to Riemannian symmetric spaces. In particular, a generalized

Cartan decomposition holds:

G = KAH

where K is a maximal compact subgroup of G compatible with H , and A is a

Cartan subgroup corresponding to the pair (K,H).

More precisely, there exists a Cartan involution θ of G which commutes with

σ, and let K = {g ∈ G : θ(g) = g}, which is a maximal compact subgroup of G.

Let g, h, and k denote the Lie algebras associated to G, H and K, respectively.

Let θ and σ also denote their differentials on g. Since H and K are θ stable, we

have the following orthogonal decomposition with respect to the killing form on
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g: g = k⊕ p, and g = h⊕ q, where p and q are the (−1)-eigenspaces of θ and σ,

respectively. Let a denote the maximal abelian subalgebra of p ∩ q which can

be extended to a maximal abelian subalgebra, say b, of p. Let A denote the

analytic subgroup of G associated to a. This A is called the Cartan subgroup

corresponding to the symmetric pair (K,H).

Wavefront Lemma (Eskin and McMullen [EM]). Given any neighbor-

hood O of e in G, there exists a neighborhood Õ of e in G such that

Õg ⊂ gOH, ∀g ∈ KA.

Next we will strengthen this result for uniformly regular elements of g ∈ G.

For this we will need additional notation (cf. [Sc, Ch. 7], [HS, Part II] or

[GOS]). Let gα denote a simultaneous eigenspace for ad a action on g asso-

ciated to the linear character α ∈ a∗. Let Σσ = {α ∈ a∗ : g∗ 6= 0}. Then

g =
∑

α∈Σσ∪{0} gα, and Σσ forms a root system. Choose a closed positive Weyl

chamber A+ ⊂ A. Let Σ+
σ denote the set of positive roots and ∆σ the corre-

sponding system of positive simple roots. The associated Weyl group is given

by Wσ = NK(a)/ZK(a). One can choose a set W ⊂ NK(a) ∩ NK(b) of coset

representatives of NK(a)/NK∩H(a)ZK(a). Then

(1.5) G =
⋃

w∈W

KA+wH.

For any c > 0, an element g = kawh ∈ KA+WH will be called c-regular if

α(log a) ≥ c for all α ∈ ∆σ (here and later, our notation indicates that k ∈ K,

a ∈ A+, w ∈ W , and h ∈ H). Otherwise, we call such an element c-singular.

We fix a Riemannian metric on G and denote by Oε the ε-ball at identity.

Theorem 1.6 (Strong wavefront lemma-I): Given c > 0, there exist ` > 1 and

ε0 > 0 such that for every c-regular g = kawh ∈ KA+wH and 0 < ε < ε0,

Oε · g ⊂ (K ∩ O`ε)k · (A ∩O`ε)a · w(H ∩ O`ε)h.

The continuity of the Cartan decomposition for Riemannian symmetric spaces

(that is, when H = K) was independently shown in Nevo [N, Proposition 7.3]

and by Gorodnik and Oh [GO, Theorem 2.1]. While the proof of [N] uses

embeddings of G in linear groups, the proof of [GO] is based on geometric

properties of the Riemannian symmetric spaces. The strong wavefront lemma

was used in [N] to prove maximal inequalities for cube averages on semisimple
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groups and in [GO] to compute the asymptotics of the number of lattice points

lying in sectors.

Theorem 1.6 fails on the set of singular elements; for example, in SL2(R), if Ω

is a small neighborhood of the e, then (Ω∩K)(Ω∩A)(Ω∩K) does not contain

a neighborhood of the e in SL2(R). To state a version of the strong wavefront

lemma that holds for singular elements, we introduce additional notation. Given

J ⊂ ∆σ, an element kawh ∈ KA+WH is called (J, c)-regular if α(log a) ≥ c for

all α ∈ J . Let I = ∆σ \J . We set AI = exp(ker I) ⊂ A. Let MI be the analytic

semisimple subgroup whose Lie algebra is generated by g±β, β ∈ Σ+
σ ∩〈I〉. Then

MI centralizes AI . Now

G =
⋃

w∈W

KMIA
+
I wH and MI ∩AI = {e},

where A+
I = AI ∩A+.

Theorem 1.7 (Strong wavefront lemma-II): Given c > 0, there exist ` > 1

and ε0 > 0 such that for any I ⊂ ∆σ and J = ∆σ \ I, and every g = kawh ∈

KA+WH and 0 < ε < ε0, if g is (J, c)-regular, then

Oε · g ⊂ (K ∩ O`ε)k · (MI ∩ O`ε) · (AI ∩ O`ε)a · w(H ∩ O`ε)h.

Remark 1.8: Observe that by [GOS, Corollary 4.7], since wv0 is fixed by

the symmetric subgroup MI ∩ wHw−1 of MI , the orbit MI(wv0) is closed.

Since MI ⊂ ZG(AI), we have MIawv0 = aMIwv0 is closed. Thus, the

set KMIawv0 is closed for any a ∈ AI . Moreover, the natural map

KMI/(MI ∩wHw
−1) → KMIawv0 given by km(MI ∩ wHw−1) 7→ kmawv0

is a homeomorphism.

A natural generalization of the Cartan decomposition for Riemannian sym-

metric spaces is the decomposition

(1.9) G = KÃ+H

where Ã+ is a Weyl chamber in A with respect to the Weyl group

(NG(A) ∩K ∩H)/(ZG(A) ∩K ∩H).

In Section 4, we will obtain the strong wavefront lemmas with respect to the

decomposition (1.9), which generalize Theorem 1.6 and Theorem 1.7.
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Well-roundedness of sectors. Let ι : G → GL(W ) be an irreducible

representation of G and v0 ∈ W such that if H denotes the stabilizer of v0

then H is a symmetric subgroup of G. Therefore by [GOS, Corollary 4.7] the

orbit V = Gv0 is closed. Hence it can be realized as an affine symmetric space

G/H . Let Γ be a lattice in G. We suppose that H ∩ Γ is also a lattice in H .

In particular, HΓ is closed in G, and hence Γv0 is a discrete subset of W . For

a norm ‖ · ‖ on W , we set

BT = {w ∈W : ‖w‖ < T }.

It was shown in [DRS, EM] that the orbit Γv0 is “equidistributed” with respect

to the sets V ∩BT in the following sense:

(1.10) #(Γv0 ∩BT ) ∼T→∞ Vol(V ∩BT )

where Vol is the G-invariant measure on V ∼= G/H determined by the Haar

measures on G and H chosen such that Vol(G/G∩ Γ) = Vol(H/H ∩ Γ) = 1. In

fact, it was shown in [EM] that (1.10) holds for any well-rounded family of sets

ST ⊂ V in place of V ∩BT . Recall that a family {ST} is called well-rounded if

for any ε > 0 there exists a neighborhood O of e in G such that

(1.11)
Vol(O · ∂ST )

Vol(ST )
< ε

for all sufficiently large T > 0.

For any I ⊂ ∆σ, w ∈ W and Ω ⊂ KMI/(MI ∩ wHw
−1), we consider a family

of sets

(1.12) ST (Ω, w) = Ω̃A+
I wv0 ∩BT ,

where Ω̃ ⊂ KMI is such that Ω = Ω̃(MI ∩ wHw−1); the set ST (Ω, w) is well

defined because mawv0 = awv0 for all a ∈ AI and m ∈ (MI ∩ wHw−1).

Using the strong wavefront lemma and the volume computation in [GOS]

(cf. Proposition 3.8) we obtain the following:

Theorem 1.13: For every I ⊂ ∆σ, w ∈ W , and a bounded measurable set

Ω ⊂ KMI/(MI ∩ wHw−1) with positive measure and boundary of measure

zero,2 the family {ST (Ω, w)}T→∞ is well-rounded. In particular,

#(Γv0 ∩ ST (Ω, w)) ∼T→∞ Vol(ST (Ω, w)) ∼T→∞ CI(Ω, w) · T aI (logT )bI−1,

2 The measure on KMI/(MI ∩ wHw−1) is understood in terms of the identification (3.2)

and (3.3).
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where aI ∈ Q+, bI ∈ N, and CI(Ω, w) > 0.

We will give explicit formulas for aI , bI , and CI(Ω, w) in section 3.2. In

particular, CI(Ω, w) can be computed using a G-invariant measure supported

on one of the components of the Satake boundary of V .

Remark 1.14: (1) Although a similar counting question was considered in

[GOS], the sets ST (Ω, w) do not fit into the framework of [GOS]. For the

space of quadratic forms QW , the counting results in [GOS] are always

of order T (dimW )(dim W−1)/2 (see [GOS, Section 2.3]). On the other

hand, Theorem 1.4 exhibits different asymptotic behaviors depending

on the choice of the decomposition (1.2).

(2) In order to deduce Theorem 1.13 from Theorem 1.7, which applies only

to (J, c)-regular elements, we show that the set of non-(J, c)-regular

elements in ST (Ω, w) has negligible volume compared to the volume of

ST (Ω, w) for sufficiently small values of c.

Acknowledgment. We would like to thank Yves Benoist for useful comments.

2. Strong wavefront lemma

This section is devoted to the proofs of Theorems 1.6 and 1.7. We use the

same notation as in the introduction. Since any two Riemannian metrics are

bi-Lipschitz in a neighborhood of identity, it suffices to prove the theorems

for one such metric. It will be convenient to work with the right-invariant

Riemannian metric d induced by the positive definite form

B(X,Y ) = −Tr(adX ◦ ad(θ(Y )), X, Y ∈ g.

We will use the following properties of B:

B(gα, gβ) = 0 for all α 6= β ∈ Σσ ∪ {0},

Bθ = Bσ = B.

Remark 2.1: In many of the results stated in the introduction, we fix w ∈ W

representing a Weyl group element. The explanation given below shows that

for proofs, we can assume that w = e and have simpler notation.

Let iw denote the inner conjugation on G by w; that is, iw(g) = wgw−1 for

all g ∈ G. Then σw := iw ◦ σ ◦ i−1
w is also an involution of G and wHw−1 is the
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associated symmetric subgroup. Note that σw(a) = a−1 for any a ∈ A. Also

θ ◦ σw = σw ◦ θ. Therefore, in order to prove some of the results stated in the

introduction for a fixed w ∈ W , we can replace σ by σw, H by wHw−1, and v0

by wv0, and assume that w = e.

For ε > 0 and S ⊂ G, we set

Sε = {s ∈ S : d(s, e) < ε}.

For I ⊂ ∆σ and c > 0, we define

A+
I (c) = {a ∈ A+ : β(log a) ≥ c if β ∈ ∆σ − I and β(log a) < c if β ∈ I}.

We also set aI = ker(I) ⊂ a and denote by ZI the centralizer of aI in G.

Theorem 2.2: For I ⊂ ∆σ and c > 0, there exist ε0 > 0 and `1 > 1 such that

for every 0 < ε < ε0 and a ∈ A+
I (c),

Gε · a ⊂ K`1ε · ZI,`1ε · a ·H`1ε.

We consider the Lie subalgebra

n+
I =

⊕

β∈Σ+
σ : β|aI

6=0

gβ and n−
I =

⊕

β∈Σ+
σ : β|aI

6=0

g−β ,

and the corresponding analytic subgroups N+
I and N−

I . Note that the Lie

algebra of ZI is given by

zI =
⊕

β∈Σσ∪{0}:, β|aI
=0

gβ ,

and we have the decomposition

(2.3) g = n−
I ⊕ zI ⊕ n+

I .

Lemma 2.4: There exist `2 > 1 and ε0 > 0 such that for every 0 < ε < ε0,

Gε ⊂ N−
I,`2εZI,`2εH`2ε and Gε ⊂ K`2εZI,`2εN

+
I,`2ε.

Proof. Since σ|a = −id, we have σ(n−
I ) ⊂ n+

I , and for every x ∈ n+
I ,

x = (x+ σ(x)) − σ(x) ∈ h + n−
I .

Hence, it follows from (2.3) that

g = n−
I + zI + h.
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Since n−
I ∩ h = 0, there exists a subspace z0 of zI such that

g = n−
I ⊕ z0 ⊕ h.

Then the product map N−
I × exp(z0)×H → G is a diffeomorphism at a neigh-

borhood of the identity. In particular, it is bi-Lipschitz, and the first claim

follows. The proof of the second claim is similar.

Lemma 2.5: For I ⊂ ∆σ and c > 0, there exist ε0 > 0 and `3 ∈ (0, 1) such that

for every 0 < ε < ε0 and a ∈ A+
I (c),

a−1N+
I,εa ⊂ N+

I,`3ε and aN−
I,εa

−1 ⊂ N−
I,`3ε.

Proof. For

X =
∑

β∈Σ+
σ ,β|aI

6=0

Xβ ∈ n+
I , Xβ ∈ gβ,

we have

Ad(a−1)X =
∑

β

Ad(a−1)Xβ =
∑

β

e−β(log a)Xβ .

Note that if β =
∑

α∈∆σ
nαα ∈ Σ+

σ with nα ≥ 0 satisfies β|aI
6= 0, then nα ≥ 1

for some α ∈ ∆σ − I. Hence, for a ∈ A+
I (c), we have β(log a) ≥ c and

‖Ad(a−1)Xβ‖ ≤ e−c‖Xβ‖.

Since the root spaces gβ are orthogonal to each other,

(2.6) ‖Ad(a−1)X‖ ≤ e−c‖X‖.

Since the differential of the exponential map exp : n+
I → N+

I is identity at 0,

we can find a small ball U at 0 in n+
I such that for every Y ∈ U ,

(2.7) e−c/3‖Y ‖ ≤ d(exp(Y ), e) ≤ ec/3‖Y ‖.

Note that for a ∈ A+, we have Ad(a−1)U ⊂ U . Combining (2.6) and (2.7), we

deduce that for a ∈ A+
I (c) and n = exp(X) ∈ exp(U),

d(a−1na, e) = d(exp(Ad(a−1)X), e) ≤ ec/3‖Ad(a−1)X‖

≤ e−2c/3‖X‖ ≤ e−c/3d(n, e).

This proves the claim for N+
I . The claim for N−

I is proved similarly.
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Lemma 2.8: For I ⊂ ∆σ and `4 > 1, there exists ε0 > 0 such that for every

z ∈ ZI,ε0
and 0 < ε < ε0,

zN+
I,εz

−1 ⊂ N+
I,`4ε and zN−

I,εz
−1 ⊂ N−

I,`4ε.

Proof. It is easy to check that ZI normalizes N±
I .

We can choose ε0 > 0 so that

‖Ad(z)X‖ ≤ `
1/3
4 ‖X‖, z ∈ ZI,ε0

, X ∈ n+
I ,

`
−1/3
4 ‖X‖ ≤d(exp(X), e) ≤ `

1/3
4 ‖X‖, X ∈ Ad(ZI,ε0

) exp−1(N+
I,ε0

).

Then for every n = exp(X) ∈ N+
I,ε0

,

d(znz−1, e) = d(exp(Ad(z)X), e) ≤ `
1/3
4 ‖Ad(z)X‖

≤ `
2/3
4 ‖X‖ ≤ `4d(n, e).

This proves the first part of the lemma.The proof of the second part is similar.

Lemma 2.9: For I ⊂ ∆σ and `5 > 1, there exists ε0 > 0 such that for every

0 < ε < ε0,

N+
I,ε ⊂ N−

I,`5εZI,εH2`5ε and N−
I,ε ⊂ K2`5εZI,εN

+
I,`5ε.

Proof. As in the proof of Lemma 2.4, we choose a subspace z0 of zI such that

the product map N−
I ×exp(z0)×H → G is a diffeomorphism in a neighborhood

of the identity. Denote by f the local inverse of the product map:

f = (f1, f2, f3) : U → N−
I × exp(z0) ×H

where U is a neighborhood of identity in G. For X ∈ n+
I , the derivative (df)e

is given by

(df)e(X) = (−σ(X), 0, X + σ(X)) ∈ n−
I ⊕ z0 ⊕ h.

Since the Riemannian metric at identity is invariant under σ, we have for X ∈

n+
I ,

‖(df1)e(X)‖ = ‖X‖, (df2)e = 0, ‖(df3)e(X)‖ ≤ 2‖X‖.

This implies that for sufficiently small ε > 0,

f(N+
I,ε) ⊂ N−

I,`5ε × ZI,ε ×H2`5ε.

This proves the first claim. The proof of the second claim is similar.
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Lemma 2.10: For I ⊂ ∆σ and c > 0, there exist 0 < `6 < 1 and ε0 > 0 such

that for every 0 < ε, δ < ε0 and a ∈ A+
I (c),

KεZI,εaZI,εN
+
I,δHε ⊂ Kε+4δZI,ε+4δaZI,ε+4δN

+
I,`6δHε+4δ.

Proof. For simplicity, we write N±
I = N± and ZI = Z.

Choose `3 = `3(c) ∈ (0, 1) as in Lemma 2.5, `5 ∈ (1, 2) so that `3`
2
5 < 1, and

`4 > 1 so that `54`3`
2
5 < 1. Let ε0 > 0 be such that Lemma 2.5, Lemma 2.8, and

Lemma 2.9 hold. Fixing 0 < ε < ε0, let k0 ∈ Kε, x0, y0 ∈ Zε, n
+
0 ∈ N+

δ , and

h0 ∈ Hε. Then

k0x0ay0n
+
0 h0

= k0x0ay0(n
−
1 y1h1)h0 by Lemma 2.9

with n−
1 ∈ N−

`5δ, y1 ∈ Zδ, h1 ∈ H2`5δ

= k0n
−
2 x0ay0y1h1h0 by Lemma 2.8 and Lemma 2.5

with n−
2 ∈ N−

`2
4
`3`5δ

= k0(k2x2n
+
2 )x0ay0y1h1h0 by Lemma 2.9,

with k2 ∈ K2`2
4
`3`2

5
δ, x2 ∈ Z`2

4
`3`5δ, n

+
2 ∈ N+

`2
4
`3`2

5
δ

= k0k2(x2x0ay0y1)n
+
3 h1h0 by Lemma 2.8 and Lemma 2.5

with n+
3 ∈ N+

`5
4
`2
3
`2
5
δ
.

Since `54`3`
2
5 < 1, we have

k0k2 ∈ Kε+4δ, x2x0, y0y1 ∈ Zε+4δ, n+
3 ∈ N+

`6δ, h1h0 ∈ Hε+4δ,

where `6 = `54`
2
3`

2
5 < 1.

Proof of Theorem 2.2. Set N±
I = N± and ZI = Z for simplicity. In view of

Remark 2.1, without loss of generality we may assume that w = e.

We choose ε0 > 0 so that Lemma 2.4 (for some `2 > 1), Lemma 2.5, and

Lemma 2.10 hold. Because of Lemma 2.4, it suffices to show that

KεZεN
+
ε · a ⊂ K`1ε(Z`1εa)H`1ε

for some `1 > 1. Also by Lemma 2.5,

KεZεN
+
ε · a ⊂ Kε(ZεaZε)N

+
ε Hε.
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Now we can apply Lemma 2.10 inductively. We consider ε > 0 such that

(2.11) ε+
4ε

1 − `6
< ε0.

Setting ε1 = δ1 = ε, we apply Lemma 2.10 to find

εi+1 < εi + 4δi, δi+1 < `6δi

such that for every a ∈ A+
I (c),

Kεi
Zεi

aZεi
N+

δi
Hεi

⊂ Kεi+1
Zεi+1

aZεi+1
N+

δi+1
Hεi+1

.

Note that

δi < ε`i6 and εi < ε+ 4ε
1 − `i6
1 − `6

.

Hence by (2.11), εi, δi < ε0, and we can continue this process indefinitely.

It follows that for every g ∈ Kε(ZεaZε)N
+
ε Hε, there exist sequences ki ∈

Kεi
, xi, yi ∈ Zεi

, ni ∈ N+
δi
, hi ∈ Hεi

such that g = kixiayinihi for all i ≥ 1.

Since δi → 0, ni → e. Also, passing to a subsequence, we may assume that

ki → k, xi → x, yi → y, hi ∈ h. Then

g = kxayh ⊂ K`7εZ`7εaZ`7εH`7ε

with `7 = 1 + 4(1 − `6)
−1. We have decomposition a = a1a2 where a1 ∈ A+

I

and a2 is in the fixed compact set determined by c. This implies that for some

`′ > 1,

aZ`7εa
−1 ⊂ Z`′`7ε,

and the theorem follows.

Proof of Theorem 1.7. There exists `′ > 1 such that k−1Oεk ⊂ O`′ε for every

k ∈ K. Then for g = kawh ∈ KA+WH , we have

Oε · g ⊂ k(O`′εa)wh.

Due to Remark 2.1, without loss of generality, we may assume that w = e.

Since MI1 ⊂MI2 for I1 ⊂ I2, we may assume that J is maximal such that a

is (J, c)-regular. Then a ∈ A+
I (c). We have the decomposition

(2.12) zI = (zI ∩ k) ⊕ (mI ∩ p ∩ q) ⊕ aI ⊕ (zI ∩ h)

(see [GOS, equation (4.24)]). Hence, the product map

(ZI ∩K) × exp(mI ∩ p ∩ q) ×AI × (ZI ∩H) → ZI
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is a diffeomorphism in a neighborhood of identity, and there exists `′′ > 1 such

that for sufficiently small ε > 0,

ZI,ε ⊂ (ZI ∩K)`′′ε exp(mI ∩ p ∩ q)`′′εAI,`′′ε(ZI ∩H)`′′ε.

Therefore, it follows from Theorem 2.2 that

Oε · a ⊂ K`1εZ`1εaH`1ε ⊂ K(`1+`1`′′)εMI,`1`′′ε(AI,`1`′′εa)H(`1+`1`′′)ε.

This proves the theorem.

Proof of Theorem 1.6. Suppose that in Theorem 1.7 we have J = ∆σ. Then

Z = CG(A) is σ- and θ-invariant, and

z = (z ∩ k) ⊕ (z ∩ p ∩ q) ⊕ (z ∩ h).

Since a is a maximal abelian subspace of p∩q, z∩p∩q = a. Hence, decomposition

(2.12) becomes

z = (z ∩ k) ⊕ a ⊕ (z ∩ h),

and we complete the proof as in Theorem 1.7.

3. Well-roundedness of sectors ST (Ω, w)

First we need a precise description of the measure on the set

KMI(wv0) ∼= KMI/(MI ∩ wHw
−1).

3.1. Description of a measure on KMI/(MI ∩wHw
−1). Fix w ∈ W . Let

σw = iw ◦ σ ◦ i−1
w be the involution as in Remark 2.1. Then σw ◦ θ = θ ◦ σw.

Also, the semisimple group MI is stable under σw and θ, and hence MI admits

the generalized Cartan decomposition (see [GOS, Proposition 4.22]):

(3.1) MI = (MI ∩K)AI(MI ∩ wHw−1) = (MI ∩K)AI,+WI(MI ∩ wHw
−1),

where AI is the orthogonal complement of AI in A and it is the Cartan sub-

algebra of MI associated to the symmetric pair (MI ∩K,MI ∩ wHw−1), and

AI,+ = {a ∈ AI : α(log a) ≥ 0, ∀α ∈ I} is a positive Weyl chamber; and WI ⊂

MI is a set of representatives of the associated Weyl group, which is generated

by the reflections {sα}α∈I . An invariant measure, say λ on MI/(MI ∩wHw
−1),

is given as follows: for any f ∈ Cc(MI/MI ∩ wHw
−1),

∫

fdλ =
∑

w1∈WI

∫

K∩MI

dk

∫

AI,+

f(kaw1(MI ∩ wHw−1))δI(a) da
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where

δI(a) =
∏

α∈Σ+
σ ∩〈I〉

(sinhα(log a))l+α (coshα(log a))l−α ,

and l±α denote the dimensions of the (±1)-eigenspaces of σθ on gα.

Therefore we can identify

(3.2) KMI/(MI ∩ wHw
−1) ∼= K ×AI,+ ×WI ,

and treat KMI/(MI ∩ wHw
−1) as a product measure space.

On the other hand, once we fix a measurable section s1 : K/(K ∩MI) → K

for the natural quotient map, we can identify K ×AI,+ ×WI with

K/(K ∩MI) ×MI/(MI ∩ wHw
−1).

We consider the measure on K ×AI,+ ×WI such that it corresponds to the

product of the invariant measures on the product space

K/(K ∩MI) ×MI/(MI ∩ wHw
−1),

where the Haar measures on K and K ∩MI are normalized. This measure, in

view of (3.2), will give rise to the integral dm̄ on

KMI/(MI ∩ wHw
−1)

given as follows: for any f ∈ Cc(KMI/MI ∩ wHw
−1),

(3.3)

∫

f(m̄)dm̄ :=
∑

w1∈WI

∫

K

dk

∫

AI,+

f(kaw1(MI ∩ wHw
−1))δI(a) da.

3.2. Volume estimate for the sectors ST (Ω, w). Let λι denote the highest

weight for the irreducible representation ι. We express

(3.4) λι =
∑

α∈∆σ

mαα

and the sum of positive roots (with multiplicities)

(3.5) 2ρ =
∑

α∈∆σ

uαα.

Let I ⊂ ∆σ. Set

aI = max
{ uα

mα
: α ∈ ∆σ − I

}

,(3.6)

bI = #
{

α ∈ ∆σ − I :
uα

mα
= aI

}

.(3.7)
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Proposition 3.8: For any w ∈ W and a bounded measurable set

Ω ⊂ KMI/(MI ∩ wHw
−1)

with positive measure and zero boundary measure, there exists CI(Ω, w) > 0

such that

Vol(ST (Ω, w)) ∼T→∞ CI(Ω, w) · T aI (log T )bI−1.

Proof. From [HS, Theorem 2.5] (see also [GOS]) one deduces that a G-invariant

measure on G/H is given by

(3.9)

∫

G/H

f dµ

=
∑

w∈W

∫

m̄∈KMI/(MI∩wHw−1)

∫

a∈A+

I

f(m̄awH)ξI(a) dadm̄, f ∈ Cc(G/H),

where da denotes a Haar measure on AI , and dm̄ is described in the paragraph

following (3.2), and

(3.10) ξI(a) =
∏

α∈Σ+
σ −〈I〉

sinh(α(log a))l+α cosh(α(log a))l−α .

Here l±α denote the dimensions of the (±1)-eigenspaces of σθ in gα. We decom-

pose ξI as a linear combination of functions exp(χ(a)) where χ’s are characters

of AI . Note that 2ρ is the maximal character in this decomposition. In view of

equations (3.4), (3.5), and (3.6), we define

I0 = I ∪ {α ∈ ∆σ − I :
uα

mα
< aI}.

By the computation using [GOS, Theorem 6.1], as done in the proof of [GOS,

Theorem 6.4], applied to aI in place of a, there exists a locally finite measure

ηI,w on W such that for every f ∈ Cc(W ),

(3.11) lim
T→∞

1

T aI (log T )bI−1

∫

a∈A+

I

f(awv0/T )ξI(a) da =

∫

W

f dηI,w,

where the measure ηI,w can be described as follows:

(3.12)

∫

W

f dηI,w =

∫

b̄∈D+

f(b(wv0)
I0) ξ̃I(b) db̄,

where D+ = exp d+,

d+ = {b̄ ∈ aI/(aI0 ∩ ker ρ) : α(b) ≥ 0, ∀α ∈ I0},
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db̄ denotes the Haar measure on AI/(AI ∩ exp(ker ρ)), vI0
0 is the projection of

v0 to the sum of the weight spaces with weights of the form λι −
∑

α∈I0
mαα,

mα ≥ 0, and

(3.13) ξ̃I(b)

=

(

∏

α∈(Σ+
σ ∩〈I0〉)−〈I〉

sinh(α(log b))l+α cosh(α(log b))l−α

)

× exp

(

∑

α∈Σ+
σ −〈I0〉

uαα(log b)

)

.

Moreover, it follows from (3.11) that ηI,w is a homogeneous measure of degree

aI .

Fix anym ∈ KM . Let c > 1 and take a continuous function ψ : [0,∞] → [0, 1]

such that supp(ψ) ⊂ [0, c] and ψ = 1 on [0, 1]. Setting f(y) = ψ(‖my‖), we

have

(3.14)

∫

A+

I

χBT
(mav0)ξI(a)da ≤

∫

A+

I

f(awv0/T )ξI(a)da.

Now by (3.11) and (3.14),

lim sup
T→∞

1

T aI (logT )bI−1

∫

A+

I

χBT
(mawv0)ξI(a)da ≤

∫

W

f dηI,w

≤caIηI,w(m−1B1).

The lower estimate for lim inf is proved similarly.

Hence, taking c→ 1+, we obtain

(3.15) lim
T→∞

1

T aI (log T )bI−1

∫

A+

I

χBT
(mawv0)ξI(a)da = ηI,w(m−1B1).

In view of (3.2) let s : KMI/(MI ∩wHw
−1) → KMI denote the measurable

section of the obvious quotient map. Since

ST (Ω, w) = ΩA+
I wv0 ∩BT ,

(3.16) Vol(ST (Ω, w)) =

∫

m̄∈Ω

∫

a∈A+

I

χBT
(s(m̄)awv0)ξ(a) dadm̄.
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Therefore from (3.15), using the dominated convergence theorem, we deduce

that

CI(Ω, w) := lim
T→∞

Vol(ST (Ω, w))

T aI (logT )bI−1
=

∫

m̄∈Ω

ηI,w(s(m̄)−1B1)dm̄.(3.17)

Note that there exists δ > 0 such that s(m̄)−1B1 ⊃ Bδ for all m̄ ∈ Ω, and

because ηI,w0
is homogeneous, ηI,w(Bδ) > 0. Hence CI(Ω, w) > 0.

Remark 3.18: The value of the parameter CI(Ω, w) in the statement of Propo-

sition 3.8 is given by

(3.19) CI(Ω, w) = νI0,w(B1 ∩ ΩD+(wv0)
I0 ),

where νI0,w is a G-invariant measure on the G-orbit G(wv0)
I0 .

This formula can be justified as follows: combining (3.11), (3.12), (3.15),

(3.17) and (3.3) we get

CI(Ω, w) =

∫

m̄∈Ω

dm̄

∫

b̄∈D+

χB1
(m̄b̄(wv0)

I0)ξI(b) db̄

=

∫

k∈K

dk

∫

a∈AI,+

∫

b̄∈D+

χΩ(ka)χB1
(kab(wv0)

I0 )δI(a)ξ̃I(b) dadb̄,(3.20)

where

(3.21) δI(a) =
∏

α∈(Σ+
σ ∩〈I〉)

sinh(α(log a))l+α cosh(α(log a))l−α ;

l±α are the dimensions of the (±1)-eigenspaces of σθ acting on gα.

Since

aI0 ∩ kerρ = aI0 ∩ kerλι,

it follows from [GOS, Theorem 5.1] that the orbit G(wv0)
I0 supports a G-

invariant measure νI0 . Now comparing the formula (3.20) with the formula

(5.3) in [GOS, Theorem 5.1], we obtain (3.19).

3.2.1. Upper estimate of volume for (J, c)-singular elements in ST (Ω, w). For

c > 0, I ⊂ ∆σ, and a bounded measurable Ω ⊂ KMI , we set

VI,w(c) =
{

mawv0 : m ∈ Ω, a ∈ A+
I with α(log a) ≤ c for some α ∈ ∆σ − I

}

.

Note that this set is the set of (J, c)-singular elements for J = ∆σ \ I.

Proposition 3.22: For small c > 0 and sufficiently large T > 0,

Vol(VI,w(c) ∩BT ) � c · T aI (logT )bI−1.
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Proof. For α ∈ ∆σ, set

Uc(α) = {a ∈ A+
I : α(log a) ≤ c}.

There exists δ > 1 such that m−1BT ⊂ BδT for all T > 0. By (3.9), this gives

the estimate

Vol(VI,w(c) ∩BT ) �
∑

α∈∆σ−I

∫

a∈A+

I
∩Uc(α):‖av0‖<δT

ξI(a)da.(3.23)

Now we use the volume computation from [GOS] (see the proof of Theorem 6.4

in [GOS]) to show for every nonnegative f ∈ Cc(W ),

∫

A+

I
∩Uc(α)

f(av0/T )ξI(a)da �

(

∫

A+

I
∩Uc(α)

f(avI0)ξ̃I(a)da

)

· T aI (log T )bI−1,

where I ⊂ I0 ⊂ ∆σ, vI0 ∈W and ξ̃I ∈ C(A+) are as defined in section 3.2. By

[GOS, Corollary 4.7] the projection of vI0
0 on the λι-eigenspace is nonzero, and

the map A+ → R : a 7→ λι(a) is proper. Therefore the map A+
I →W : a 7→ avI0

0

is proper. This implies that there exists a compact L ⊂ A+
I such that

L ⊃ {a ∈ A+
I : avI0

0 ∈ suppf}.

Then
∫

A+

I
∩Uc(α)

f(av0/T )ξI(a)da� max(f) · Vol(L ∩ Uc(α)) · T aI (log T )bI−1

�f c · T
aI (logT )bI−1.

Taking a function f satisfying χB1
≤ f , we obtain

∫

a∈A+

I
∩Uc(α):‖av0‖<T

ξI(a)da �

(

∫

A+

I
∩Uc(α)

f(av)ξ̃I(a)da

)

· T aI (logT )bI−1

�f c · T
aI (log T )bI−1.

Therefore, by (3.23),

Vol(VI,w(c) ∩BT ) � c · (δT )aI (log(δT ))bI−1.

This completes the proof.

The following corollary of Theorem 1.7 will be used in the proof of

Theorem 1.13:
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Corollary 3.24: Let ∆σ = I t J and B be a bounded subset of KMI . Then

given c > 0, there exist ` > 1 and ε0 > 0 such that for every (J, c)-regular

g = bah ∈ BAIH and 0 < ε < ε0,

Oεg ⊂ (K ∩ O`ε)b(MI ∩O`ε)(AI ∩ O`ε)aH.

Proof. Let b = km for k ∈ K and m ∈ MI . Note that m ∈ KB ∩MI , which

is bounded. By (3.1) there exist k0 ∈MI ∩K, a0 ∈ AI and h0 ∈MI ∩H such

that m = k0a0h0. By Theorem 1.7,

Oεg ⊂ (K ∩ O`ε)kk0(MI ∩ O`ε)(AI ∩ O`ε)a0aH.

There exists `1 > 1 such that for every k ∈ K and small ε > 0, kOεk
−1 ⊂ O`1ε.

Hence,

Oεg ⊂ (K ∩ O`ε)k(MI ∩ O`1`ε)k0a0h0(AI ∩O`ε)aH.

There exists `2 > 1 such that for every m ∈ KB and small ε > 0, m−1Oεm ⊂

O`2ε. Hence,

Oεg ⊂ (K ∩O`ε)km(MI ∩ O`2`1`ε)(AI ∩ O`ε)aH

as required.

Proof of Theorem 1.13. Due to Remark 2.1, without loss of generality, we may

assume that w = e. We will denote ST (Ω, e) by ST (Ω).

Let c, ε ∈ (0, 1).

Let s : KMI/(MI ∩ H) → KMI be a measurable section such that s(Ω) is

bounded and measurable. For neighborhoods U1 of e in K and U2 of e in MI ,

we set

Ω+ = U1s(Ω)U2(MI ∩H),

Ω− =
⋂

u1∈U1,u2∈U2

u1s(Ω)u2(MI ∩H).

One can check that as U1 and U2 shrink to {e}, we have

Ω+ ↓ Ω̄ and Ω− ↑ int(Ω).

Since Vol(∂Ω) = 0, we have Vol(Ω+ − Ω−) → 0. Hence, it follows from (3.17)

that we can choose U1 and U2 so that

(3.25) CI(Ω
+) − CI(Ω

−) < ε.
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Fix a set Ω̃ ⊃ Ω such that Ω̄ ⊂ int(Ω̃), set

VI = ΩA+
I v0 and ṼI = Ω̃A+

I v0,

and define VI(c) = VI,e(c) and ṼI(c) = ṼI,e(c) as in Proposition 3.22. We can

choose U1 and U2 so that Ω+ ⊂ Ω̃.

We claim that there exists a neighborhood O′ of e in G such that

(3.26) O′ · ST (Ω) ⊂ S(1+ε)T (Ω+) ∪ (ṼI(c) ∩B(1+ε)T ).

By Corollary 3.24, there exists a neighborhood O1 such that

O−1
1 · (VI − ṼI(c)) ⊂ ṼI − VI(c/2).

This implies that

O1 · VI(c/2) ⊂ ṼI(c).

Also, by Corollary 3.24 and continuity of operator norm, there exists a neigh-

borhood O2 of e in G such that for every v = mav0 ∈ VI − VI(c/2),

O2v ⊂ (U1mU2)A
+
I v0

and

O2 ·BT ⊂ B(1+ε)T .

Hence,

O2 · (ST (Ω) − VI(c/2)) ⊂ S(1+ε)T (Ω+).

Setting O′ = O1 ∩ O2, we deduce the claim (3.26).

A similar argument shows there exists a neighborhood O′′ of e in G such that

(3.27) S(1−ε)T (Ω−) ⊂
(

⋂

g∈O′′

gST (Ω)
)

∪ ṼI(c).

Combining (3.26) and (3.27), we deduce that for O = O′ ∩ O′′,

Vol(O · ∂ST (Ω)) ≤ Vol (OST (Ω) − ∩g∈OgST (Ω))(3.28)

≤ Vol(S(1+ε)T (Ω+)) − Vol(S(1−ε)T (Ω−)) + Vol(ṼI(c) ∩B(1+ε)T ).

By Proposition 3.22,

lim sup
T→∞

Vol(ṼI(c) ∩B(1+ε)T )

T aI (log T )bI−1
� c.
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By Proposition 3.8,

lim
T→∞

Vol(S(1+ε)T (Ω+))

T aI (logT )bI−1
= (1 + ε)aICI(Ω

+),

lim
T→∞

Vol(S(1−ε)T (Ω−))

T aI (logT )bI−1
= (1 − ε)aICI(Ω

−).

Hence, it follows from (3.28) and (3.25) that

lim sup
T→∞

Vol(O · ∂ST (Ω))

T aI (logT )bI−1
� (1 + ε)aICI(Ω

+) − (1 − ε)aICI(Ω
−) + c

� ε+ c.

Since ε and c can be taken arbitrary small, this proves that the family of sets

ST (Ω) is well-rounded. Hence, it follows from [DRS, EM] that

#(Γv0 ∩ ST (Ω)) ∼T→∞ Vol(ST (Ω)).

This proves the theorem.

Proof of Theorem 1.4. To deduce Theorem 1.4 from Theorem 1.13, we observe

that (see [GOS, §2.3])

QW '
⋃

p+q=d

SLd(R)/SO(p, q), d = dimW,

and SLd(R)/SO(p, q) is an affine symmetric space. We set

G = SLd(R),

K = SO(d),

A = {diag(s1, . . . , sd) : si ∈ R+, s1 · · · sd = 1},

H = SO(p, q).

Then we have the generalized Cartan decomposition G = KAH . The set of

simple roots on Lie(A) = {s = (s1, . . . , sd) : si ∈ R, s1 + · · · + sd = 0} is

∆σ = {αi(s) = si − si+1 : i = 1, . . . , d− 1}.

In view of (1.2) and (1.3), set

ik =

k
∑

i=1

dimWi, 1 ≤ k ≤ n− 1.

Let I = ∆σ \ {αi1 , . . . , αin−1
}. Then

MI ' SLi1(R) × SLi2−i1(R) × · · · × SLd−in−1
(R),



440 A. GORODNIK, H. OH AND N. SHAH Isr. J. Math.

and AI is the centralizer of MI in A.

Since the set of integral quadratic forms in the question is a finite union

of SLd(Z)-orbits, we conclude that the proof of the theorem reduces to the

computation of the asymptotics of #(SLd(Z)q0∩ST (ΩΩ′)) where q0 ∈ QW (Z).

This shows that Theorem 1.4 is a particular case of Theorem 1.13; it may be

noted that since d ≥ 3 the subgroups SO(p, q) are semisimple and SO(p, q) ∩

SLd(Z) is a lattice in SO(p, q).

It remains to compute the parameters aI and bI , which are determined by

the volume asymptotics in Proposition 3.8.

If we restrict the character 2ρ, which is the sum of all roots in Σ+
σ , then we

get

ρ|Lie(AI) =

n−1
∑

k=1

uik
αik

, where uik
= ik(d− ik).

The highest weight, say λι, of the representation of SLd(R) on the space of

quadratic forms restricted to Lie(AI) is

λι|Lie(AI) =

n−1
∑

k=1

mik
αik

where mi = 2(d− ik)/d.

By (3.6) and (3.7),

aI = max

{

uik

mik

: 1 ≤ k ≤ n− 1

}

= din−1/2,

bI = #

{

ik : 1 ≤ k ≤ n− 1,
uik

mik

= aI

}

= 1.

This proves the theorem.

4. Another version of the strong wavefront Lemma

In this section, we obtain a version of the strong wavefront lemma for a gener-

alized Cartan decomposition with a different Weyl chamber Ã+ defined below.

Let Gσθ = {g ∈ G : σθ(g) = g}, the symmetric subgroup associated to the

involution σθ of G, and gσθ, be the associated Lie subalgebra. Then A is the

maximal R-split Cartan subalgebra of Gσθ. Set

Σ̃σ,θ = {α ∈ Σσ : gα ∩ gσθ 6= {0}} and Σ̃+
σ,θ = Σ+

σ ∩ Σ̃σ,θ.

Then Σ̃σ,θ is a root system on A, and we denote by ∆̃σ,θ ⊂ Σ̃+
σ,θ the set of

simple roots on A. Let Ã+ denote the associated closed Weyl chamber of A.
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Then A+ ⊂ Ã+. Also, the following generalized Cartan decomposition holds:

G = KÃ+H.

Note that Ã+ 6= A+ in general (see [HS, p. 109]).

Given c > 0, an element g = kah ∈ KÃ+H is called c-regular for ∆̃σ,θ if

α(log a) > c for all α ∈ ∆̃σ,θ.

Theorem 4.1 (Strong wavefront Lemma-III): Given c > 0, there exist ` > 1

and ε0 > 0 such that for every g = kah ∈ KÃ+H which is c-regular for ∆̃σ,θ

and every 0 < ε < ε0,

Oεg ⊂ (K ∩ O`ε)k · (A ∩ O`ε)a · (H ∩ O`ε)h.

This result is stronger than Theorem 1.6 because any c-regular element is

also c-regular for ∆̃σ,θ, but the converse implication does not hold in general.

Now we consider the situation involving singular elements. Let Ĩ ⊂ ∆̃σ,θ

and J̃ = ∆̃σ,θ \ Ĩ. For c > 0, we say that an element g = kah ∈ KA+H is

(J̃ , c)-regular if α(log a) > c for all α ∈ J̃ . Let AĨ = exp(ker Ĩ). Let Mσθ
Ĩ

denote the analytic semisimple subgroup of Gσθ whose Lie algebra is generated

by g±β ∩ gσθ for all β ∈ Σ+
σ,θ ∩ 〈Ĩ〉. Then Mσθ

Ĩ
is contained in the centralizer of

AĨ , and

G = KMσθ
Ĩ
A+

Ĩ
H,

where A+

Ĩ
= Ã+ ∩AĨ .

Theorem 4.2 (Strong wave front Lemma-IV): Given c > 0, there exist ` > 1

and ε0 > 0 such that for every Ĩ ⊂ ∆̃σθ , J̃ = ∆̃σ,θ \ Ĩ, g = kah ∈ KÃ+H which

is (J̃ , c)-regular, and 0 < ε < ε0,

Oε · g ⊂ (K ∩ O`ε)k · (M
σθ
Ĩ

∩ O`ε) · (AĨ ∩ O`ε)a · (H ∩ O`ε)h.

This result strengthens Theorem 1.7.

Lemma 4.3: For any a ∈ A,

g = q ⊕ (k ∩ h) ⊕ Ad a(p ∩ h).

Proof. Since g = q ⊕ (k ∩ h) ⊕ (p ∩ h), it is enough to show that

Ad a(p ∩ h) ∩ (q + (k ∩ h)) = {0}.
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To prove this, let X ∈ p ∩ h such that Ad a(X) ∈ q ⊕ (k ∩ h). Therefore,

σ(Ad a(X)) = Ad σ(a)(σ(X)) = (Ad a)−1(X),

θ(Ad a(X)) = Ad θ(a)(θ(X)) = (Ad a)−1(−X),

and

(4.4) σ(Ad a(X)) = −θ(Ad a(X)) = (Ad a)−1(X).

Now we write Ad a(X) = Y1 + Y2 + Y3, where Y1 ∈ q ∩ k, Y2 ∈ q ∩ p, and

Y3 ∈ k ∩ h. Then

σ(Ad a(X)) = −Y1 − Y2 + Y3,

θ(Ad a(X)) = Y1 − Y2 + Y3,

and it follows from (4.4) that Y2 = 0 and Y3 = 0. Hence, Ad a(X) ∈ k ∩ q and

σ(Ad a(X)) = −Ad a(X). Then by (4.4),

(Ad a)2(X) = −X.

If X 6= 0, this gives a contradiction because Ad a is self-adjoint.

As a consequence of the above lemma, we obtain the following:

Corollary 4.5: Given c > 0 there exist ` > 1 and ε0 > 0 such that for any

a ∈ A such that |α(log a)| ≤ c for all α ∈ ∆σ, and any 0 < ε < ε0, we have

Oεa ⊂ (O`ε ∩K)(O`ε ∩ exp(p ∩ q))a(O`ε ∩ exp(p ∩ h)).

Proof of Theorem 4.2. Let w ∈ W be such that waw−1 = b ∈ A+. We set

I = {α ∈ ∆σ : α(log b) < c/n0} and J = ∆σ \ I,

where n0 ∈ N is such that any positive root is a sum of at most n0 simple

roots counted with multiplicity. We apply Theorem 1.7 to the involution σw :=

iw◦σ◦i−1
w in place of σ. Since the element (kw−1)b(whw−1) is (J, c/n0)-regular,

Oε(kah) =Oε(kw
−1)b(whw−1)w

(4.6)

⊂(O`ε ∩K)(kw−1)(O`ε ∩MI)(O`ε ∩AI)b(O`ε ∩ wHw
−1)(whw−1)w

=(O`ε ∩K)k(w−1O`εw ∩ w−1MIw)(w−1O`εw ∩ w−1AIw)a

× (w−1O`εw ∩H)h.
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There exists `1 > 1 such that

w−1O`εw ⊂ O`1ε

for all 0 < ε < ε0. Since MI is σw- and θ-stable, Mw
I := w−1MIw is

σ- and θ-stable and A = (A ∩ Mw
I )(w−1AIw). Let a1 ∈ A ∩ Mw

I be such

that a ∈ a1(w
−1AIw

−1). We now apply Corollary 4.5 to Mw
I in place of G, and

conclude that for some `2 ≥ `1,

(O`1ε ∩M
w
I )a1 ⊂(O`2ε ∩K ∩Mw

I )(O`2ε ∩ exp(p ∩ q) ∩Mw
I )a1(4.7)

× (O`2ε ∩ exp(p ∩ h) ∩Mw
I ).

Since Mw
I commutes with w−1AIw, combining (4.6) and (4.7), we obtain that

for some `3 ≥ `2

Oε(kah) ⊂(O`3ε ∩K)k(O`3ε ∩ exp(p ∩ q) ∩Mw
I )(4.8)

× (O`3ε ∩w
−1AIw)a(O`3ε ∩H)h.

By the definition of I, each eigenvalue of ad(log b) on the Lie algebra of MI is

at most c. Hence every eigenvalue of ad(log a) on the Lie algebra of Mw
I is at

most c. Since a is given to be (J̃ , c)-regular, we conclude that

Mw
I ∩ exp(p ∩ q) ⊂Mw

I ∩Gσθ ⊂MĨ .

Therefore, the conclusion of the theorem follows from (4.8).

Note that Theorem 4.1 follows from Theorem 4.2.
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