ISRAEL JOURNAL OF MATHEMATICS 176 (2010), 419-444
DOI: 10.1007/s11856-010-0035-8

STRONG WAVEFRONT LEMMA AND
COUNTING LATTICE POINTS IN SECTORS

BY
ALEXANDER GORODNIK*

School of Mathematics, University of Bristol
Bristol BS8 1TW, UK
e-mail: a.gorodnik@bristol.ac.uk

AND

HEE On*

Math Department, 151 Thayer St., Brown University
Providence, RI 02912, USA
e-mail: heeoh@math.brown. edu

AND
NIMISH SHAH

School of Mathematics, TIFR
1 Homi Bhabha Road
Mumbai, 400005, India
e-mail: nimish@math.tifr.res.in

ABSTRACT
We compute the asymptotics of the number of integral quadratic forms
with prescribed orthogonal decompositions and more generally, the asym-
ptotics of the number of lattice points lying in sectors of affine symmetric
spaces. A new key ingredient in this article is the strong wavefront lemma,
which shows that the generalized Cartan decomposition associated to a
symmetric space is uniformly Lipschitz.

* The first and the second authors partially supported by NSF 0400631 and NSF
0333397, respectively.
Received February 29, 2008

419



420 A. GORODNIK, H. OH AND N. SHAH Isr. J. Math.

1. Introduction

One of the motivations of this paper is a certain counting problem in the space
of quadratic forms. Let Sy be the vector space of all quadratic forms on a
FEuclidean space W of dimension d. We fix an integral structure on W, and
hence on Sy. Let Qw denote the subset of Sy consisting of quadratic forms of
determinant +1, and set Qw (Z) = Qw NSw(Z). Let ||-|| be any norm on Sy .
It follows from the main result of Duke, Rudnick and Sarnak [DRS], as well as
of Eskin and McMullen [EM], that for d > 3 there exists a constant ¢ > 0 such
that

(1.1) #{q e Qw(Z) : ||qll < T} ~posne - T/,

Here we will consider a refinement of this problem that concerns counting
quadratic forms with prescribed structure. Fix an orthogonal decomposition

(1.2) W= é Wi,
i=1

and for @ C SO(W) and Q' C Qw, x --- x Qw,, set

lqll <T,

q(k-z) =a1q,(x) + - + ang,(z)
for some k € Q, (q4,-.-,q,) €,
and ay > - >a, >0

(1.3) Nr(Q,Q)=#<q€Qw(Z):

For example, if we choose W;’s to be one dimensional, then we are counting
the number of quadratic forms in a ball of radius T which can be diagonalized via
conjugation by an element from a prescribed set Q2 of orthogonal transformations
to obtain a form with distinct eigenvalues in decreasing order of absolute values,
and with prescribed sign (4) in each diagonal entry.

Assuming that Q and @' are bounded measurable sets such that the sub-

1

set Q€ has positive measure and boundary of measure zero,® we prove the

following;:
THEOREM 1.4: Ford > 3,

Nr (Q, Q/) ~NT oo C - Td(d*dim Wh)/2
for some ¢ = ¢(QQ') > 0.

1 The measure of Q€ is understood in terms of the identification (3.2) and (3.3).
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Theorem 1.4 is an example of our general result (Theorem 1.13) on counting
lattice points in sectors of affine symmetric spaces. In ([DRS], [EM]) it is shown
that the number of integral points in an affine symmetric Q-variety in a sequence
of growing subsets St is asymptotic to the volume of ST, provided the sets St
are well-rounded. A family of subsets S being well-rounded means roughly that
the volumes of neighborhoods of the boundaries of Sp are uniformly negligible
compared to the total volumes of St (see (1.11) for the precise condition). In
([DRS], [EMS]), it is shown that the norm balls are well-rounded. However,
in most situations, given a sequence of subsets S which arises naturally in
the geometric or number-theoretic contexts in the category of affine symmetric
spaces, it is highly non-trivial to determine whether the family Sr is well-
rounded.

The main result of this paper is to show that sectors in affine symmetric
spaces define a well-rounded family of growing subsets, and consequently, we
obtain the asymptotic counting of lattice points in sectors. The main technical
lemma needed is what we call the ‘strong wave front lemma’, a terminology
reflecting it being a stronger version of the wavefront lemma introduced by
Eskin and McMullen [EM].

Now we introduce notation that we use throughout the paper. Let G be
a connected noncompact semisimple Lie group with finite center. A closed
subgroup H of G is called symmetric if its identity component coincides with
the identity component of the set of fixed points of an involution, say o, of
G. In this case, the homogeneous space G/H is called an affine symmetric
space. Recall that a maximal compact subgroup of G is a symmetric subgroup
associated to a Cartan involution on G. Affine symmetric spaces have many
features similar to Riemannian symmetric spaces. In particular, a generalized

Cartan decomposition holds:
G=KAH

where K is a maximal compact subgroup of G compatible with H, and A is a
Cartan subgroup corresponding to the pair (K, H).

More precisely, there exists a Cartan involution 6 of G which commutes with
o,and let K = {g € G : 6(g) = g}, which is a maximal compact subgroup of G.
Let g, b, and € denote the Lie algebras associated to G, H and K, respectively.
Let 6 and o also denote their differentials on g. Since H and K are 6 stable, we
have the following orthogonal decomposition with respect to the killing form on
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g: g=t@p, and g = h @ q, where p and q are the (—1)-eigenspaces of § and o,
respectively. Let a denote the maximal abelian subalgebra of p N g which can
be extended to a maximal abelian subalgebra, say b, of p. Let A denote the
analytic subgroup of G associated to a. This A is called the Cartan subgroup
corresponding to the symmetric pair (K, H).

WAVEFRONT LEMMA (ESkIN AND MCMULLEN [EM]). Given any neighbor-
hood O of e in G, there exists a neighborhood @ of e in G such that

Og C gOH, VYge KA.

Next we will strengthen this result for uniformly regular elements of g € G.
For this we will need additional notation (cf. [Sc, Ch. 7], [HS, Part II] or
[GOS]). Let g* denote a simultaneous eigenspace for ad a action on g asso-
ciated to the linear character o € a*. Let ¥, = {& € a* : g* # 0}. Then
g= ZaEEUU{O} g%, and X, forms a root system. Choose a closed positive Weyl
chamber A* C A. Let X1 denote the set of positive roots and A, the corre-
sponding system of positive simple roots. The associated Weyl group is given
by W, = Nk(a)/Zk(a). One can choose a set W C Nk (a) N Nx(b) of coset
representatives of Ny (a)/Nkgnp(a)Zk(a). Then

(1.5) G= |J KATwH.
wEW
For any ¢ > 0, an element g = kawh € KAYWH will be called c-regular if
a(loga) > ¢ for all @ € A, (here and later, our notation indicates that k € K,
a€ AT, weW, and h € H). Otherwise, we call such an element c-singular.
We fix a Riemannian metric on G and denote by O, the e-ball at identity.

THEOREM 1.6 (Strong wavefront lemma-I): Given ¢ > 0, there exist £ > 1 and
€9 > 0 such that for every c-regular g = kawh € KATwH and 0 < ¢ < &y,

O.-gC (K n Ogg)k' . (A n Ogg)a . w(H n Ogg)h.

The continuity of the Cartan decomposition for Riemannian symmetric spaces
(that is, when H = K) was independently shown in Nevo [N, Proposition 7.3]
and by Gorodnik and Oh [GO, Theorem 2.1]. While the proof of [N] uses
embeddings of G in linear groups, the proof of [GO] is based on geometric
properties of the Riemannian symmetric spaces. The strong wavefront lemma
was used in [N] to prove maximal inequalities for cube averages on semisimple
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groups and in [GO] to compute the asymptotics of the number of lattice points
lying in sectors.

Theorem 1.6 fails on the set of singular elements; for example, in SLy(R), if Q
is a small neighborhood of the e, then (2N K)(QNA)(2N K) does not contain
a neighborhood of the e in SL2(R). To state a version of the strong wavefront
lemma that holds for singular elements, we introduce additional notation. Given
J C A,, an element kawh € KATWH is called (J, ¢)-regular if a(log a) > ¢ for
allw € J. Let I = A, \J. Weset A; =exp(kerT) C A. Let M be the analytic
semisimple subgroup whose Lie algebra is generated by g™#, 3 € ¥+ N(I). Then
M7 centralizes A;. Now

G=|J KMyAfwH and M;nAp={e},
weW

where AT = Arn A*.

THEOREM 1.7 (Strong wavefront lemma-1I): Given ¢ > 0, there exist £ > 1
and g9 > 0 such that for any I C A, and J = A, \ I, and every g = kawh €
KAT™WH and 0 < € < &y, if g is (J, c)-regular, then

O.-gC (K n Oes)k . (M[ n Oes) . (A[ n Ogg)a . ’LU(H n Oes)h.

Remark 1.8: Observe that by [GOS, Corollary 4.7], since wwvg is fixed by
the symmetric subgroup M; N wHw™! of My, the orbit M(wvg) is closed.
Since M; C Zg(Ar), we have Mjawvg = aMjwuvg is closed. Thus, the
set KMjpawvy is closed for any a € A;. Moreover, the natural map
KM/ (M;NnwHw™Y) — KMjawvg given by km(M; N wHw™!) — kmawvg
is a homeomorphism.

A natural generalization of the Cartan decomposition for Riemannian sym-
metric spaces is the decomposition

(1.9) G=KATH
where A+ is a Weyl chamber in A with respect to the Weyl group
(Ne(A)NKNH)/(Zc(A)NK N H).

In Section 4, we will obtain the strong wavefront lemmas with respect to the
decomposition (1.9), which generalize Theorem 1.6 and Theorem 1.7.
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WELL-ROUNDEDNESS OF SECTORS. Let ¢ : G — GL(W) be an irreducible
representation of G and vy € W such that if H denotes the stabilizer of vg
then H is a symmetric subgroup of G. Therefore by [GOS, Corollary 4.7] the
orbit V' = Gvg is closed. Hence it can be realized as an affine symmetric space
G/H. Let T be a lattice in G. We suppose that H NT" is also a lattice in H.
In particular, HT is closed in G, and hence T'vg is a discrete subset of W. For
a norm || - || on W, we set

Br={weW: |w|<T}.

It was shown in [DRS, EM] that the orbit T'vg is “equidistributed” with respect
to the sets V' N Br in the following sense:

(1.10) #(FUO n BT) ~NT 00 VOI(V n BT)

where Vol is the G-invariant measure on V = G/H determined by the Haar
measures on G and H chosen such that Vol(G/GNT) = Vol(H/HNT) =1. In
fact, it was shown in [EM] that (1.10) holds for any well-rounded family of sets
St C V in place of V' N Br. Recall that a family {St} is called well-rounded if
for any € > 0 there exists a neighborhood O of e in G such that

Vol(O - 957)

1.11
( ) VOI(ST)
for all sufficiently large T" > 0.
Forany I C Ay, w € Wand Q C KM;/(M;NwHw™!), we consider a family

of sets
(1.12) Sr(Q,w) = QAT wvy N Br,

where Q € KM is such that Q = Q(M; N wHw™'); the set Sr(Q,w) is well
defined because mawvy = awvy for all a € Ay and m € (M; NwHw™1).

Using the strong wavefront lemma and the volume computation in [GOS]
(cf. Proposition 3.8) we obtain the following:

THEOREM 1.13: For every I C A,, w € W, and a bounded measurable set
Q c KM;/(M; N wHw™') with positive measure and boundary of measure
zero,? the family {St(Q, w)}1— o is well-rounded. In particular,

#(FUO N ST(Q, ’LU)) ~NT 0o VOl(ST(Q, ’LU)) ~NT 00 C](Q, ’LU) T (log T)bl_l,

2 The measure on KM /(Mr NnwHw™1) is understood in terms of the identification (3.2)
and (3.3).
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where a; € Qt, by € N, and Cr(Q,w) > 0.

We will give explicit formulas for ay, by, and C;(Q2,w) in section 3.2. In
particular, C;(,w) can be computed using a G-invariant measure supported
on one of the components of the Satake boundary of V.

Remark 1.14: (1) Although a similar counting question was considered in
[GOS], the sets St (€2, w) do not fit into the framework of [GOS]. For the
space of quadratic forms Qyy, the counting results in [GOS] are always
of order T(dimW)(dimW=1)/2" (see [GOS, Section 2.3]). On the other
hand, Theorem 1.4 exhibits different asymptotic behaviors depending
on the choice of the decomposition (1.2).

(2) In order to deduce Theorem 1.13 from Theorem 1.7, which applies only
to (J,c¢)-regular elements, we show that the set of non-(J, ¢)-regular
elements in S (92, w) has negligible volume compared to the volume of
St(Q, w) for sufficiently small values of c.

ACKNOWLEDGMENT. We would like to thank Yves Benoist for useful comments.

2. Strong wavefront lemma

This section is devoted to the proofs of Theorems 1.6 and 1.7. We use the
same notation as in the introduction. Since any two Riemannian metrics are
bi-Lipschitz in a neighborhood of identity, it suffices to prove the theorems
for one such metric. It will be convenient to work with the right-invariant
Riemannian metric d induced by the positive definite form

B(X,Y)=—-Tr(ad X cad((Y)), X,Y €g.
We will use the following properties of B:

B(ga,95) =0 forall a# 3 € X, U{0},
B? = B = B.

Remark 2.1: In many of the results stated in the introduction, we fix w € W
representing a Weyl group element. The explanation given below shows that
for proofs, we can assume that w = e and have simpler notation.

Let i, denote the inner conjugation on G by w; that is, i, (g) = wgw ! for
allg € G. Then o, :=iy000 z':ul is also an involution of G and wHw™! is the
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associated symmetric subgroup. Note that o,(a) = a=! for any a € A. Also
0 o o = oy 0 6. Therefore, in order to prove some of the results stated in the
introduction for a fixed w € W, we can replace o by 0., H by wHw™!, and vy
by wuvg, and assume that w = e.

For e > 0 and S C G, we set
S. ={seS:d(s,e) <e}.
For I C A, and ¢ > 0, we define
Af(c)={a€ A" : B(loga) > cif 3 € A, — I and B(loga) < cif 3 € I}.
We also set a; = ker(I) C a and denote by Z; the centralizer of a; in G.

THEOREM 2.2: For I C A, and ¢ > 0, there exist eg > 0 and £1 > 1 such that
for every 0 < ¢ < g and a € A} (c),

Ge-a C Kpe Zypjpe-a- Hye.

We consider the Lie subalgebra

= D e oad = P s

BeXT: Bla, #0 BENT: Bla,; #0

and the corresponding analytic subgroups N}" and N; . Note that the Lie
algebra of Z; is given by

31 = @ 98

BES,U{0}:, Bla, =0

and we have the decomposition
(2.3) g=n; @3 On}.
LEMMA 2.4: There exist £ > 1 and €y > 0 such that for every 0 < € < g,
Ge C Ny, Z1,eHe,e and  Ge C ngEZMﬁN;feze.
Proof. Since o], = —id, we have o(n;) C nf, and for every x € n},
z= (v +0(x)) - o(z) € b+ ny.
Hence, it follows from (2.3) that

g=n; +3r+b.
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Since n; Nh = 0, there exists a subspace 3¢ of 37 such that
g=n; D30 Dbh.

Then the product map N; X exp(30) x H — G is a diffeomorphism at a neigh-
borhood of the identity. In particular, it is bi-Lipschitz, and the first claim
follows. The proof of the second claim is similar.

LEMMA 2.5: ForI C A, and ¢ > 0, there exist g > 0 and {5 € (0,1) such that
for every 0 < ¢ < gg and a € A} (c),

—1 A7+ + E— —
a NI,Ea - Nl,égs and aNLEa C Nl,lgs'
Proof. For

X= > Xpenf, Xscgp
BeST,Bla; #0

we have

Ad(@™ )X =Y Ad(a )Xz =) e Pl x,
8 g

Note that if § = ZaeAg nea € X1 with n, > 0 satisfies 3|4, # 0, then ny, > 1
for some o € A, — I. Hence, for a € Af (c), we have 8(loga) > ¢ and

I Ad(a™") X5 < e™¢)| Xg].
Since the root spaces gg are orthogonal to each other,
(2.6) | Ad(a™") X < eme[|lX].

Since the differential of the exponential map exp : n}r — NIJr is identity at 0,
we can find a small ball U at 0 in n}r such that for every Y € U,

(2.7) e PY | < dlexp(Y),e) < PV ).

Note that for a € A", we have Ad(a~1)U C U. Combining (2.6) and (2.7), we
deduce that for a € A (¢) and n = exp(X) € exp(U),

d(a "na,e) = d(exp(Ad(a~")X), ) < e/3[Ad(a )X
< 72 X|| < e d(n, ).

This proves the claim for NIJF. The claim for N is proved similarly.
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LEMMA 2.8: For I C A, and {4 > 1, there exists ¢y > 0 such that for every
2 € Zre, and 0 < € < g,

+ -1 + - -1 —
zNLEz CNM‘“E and zNLEz CNL&E.

Proof. It is easy to check that Z; normalizes Nli.
We can choose ¢¢ > 0 so that

IAd(2)X || < &"°)1X]), 2 € Z1ey, X €0,
GPX) <d(exp(X),e) < 67X, X € Ad(Z1.,) exp H(NTL,).

Then for every n = exp(X) € N;°

T.eq?
d(znz"",e) = d(exp(Ad(2)X),e) < £3/°| Ad(2) X]||
< 61X < tad(n ).
This proves the first part of the lemma. The proof of the second part is similar.

LEMMA 2.9: For I C A, and {5 > 1, there exists ¢y > 0 such that for every
0<e<eo,

foa C Nj,..Z1eHae and Ny C K%EZ],gN;jZSE.

Proof. As in the proof of Lemma 2.4, we choose a subspace 3¢ of 37 such that
the product map N;” x exp(30) x H — G is a diffeomorphism in a neighborhood
of the identity. Denote by f the local inverse of the product map:

f = (f17f25f3) U — N; X exp(jo) x H
where U is a neighborhood of identity in G. For X € n}r, the derivative (df).
is given by
(df)e(X) = (=0(X),0, X +0(X)) €n; @30 Db,

Since the Riemannian metric at identity is invariant under o, we have for X €

+
n;,

[(df)e(X)I = [ X]l, (df2)e =0, [I(dfs)e(X)]l < 2] X].
This implies that for sufficiently small € > 0,

f(N;fs) C Npyoe X Z1e X Hapge.

This proves the first claim. The proof of the second claim is similar.
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LEMMA 2.10: For I C A, and ¢ > 0, there exist 0 < {5 < 1 and g9 > 0 such
that for every 0 < ¢, < g9 and a € A} (c),

KEZI,Ea’ZI,EN]-i:(SHE C K5+46ZI,5+460JZI,s+46N]—i:gG5He+46~

Proof. For simplicity, we write NIi =N+ and Z; = Z.

Choose f3 = l3(c) € (0,1) as in Lemma 2.5, £5 € (1,2) so that £3/2 < 1, and
¢4 > 1 so that £5¢3¢2 < 1. Let €9 > 0 be such that Lemma 2.5, Lemma 2.8, and
Lemma 2.9 hold. Fixing 0 < & < o, let ko € K., 0,0 € Z=, n§ € N;, and
ho € H.. Then

kol‘oayongho
= koxoayo(nl_ylhl)ho by Lemma 2.9
with ny € N_5,y1 € Z5,h1 € Haggs
= kon, xoayoy1hiho by Lemma 2.8 and Lemma 2.5
with n, € Néééaésé

= k’o(k’gl'Qng_)l'anoylhlho by Lemma 29,
with kQ € ngieg)egtg,lé € Zeiese“;,n; S NZJ?Z&Z?&
= koks(zom0ayoy1)ng hiho by Lemma 2.8 and Lemma 2.5
TR +
with ng € Neg@eg&
Since (3032 < 1, we have
koks € Ketas, 2%0,Y0Y1 € Zetas, Na € N;Z,;, hiho € Heyas,
where (g = (50302 < 1.

Proof of Theorem 2.2. Set Nfi = N* and Z; = Z for simplicity. In view of
Remark 2.1, without loss of generality we may assume that w = e.

We choose gy > 0 so that Lemma 2.4 (for some ¢35 > 1), Lemma 2.5, and
Lemma 2.10 hold. Because of Lemma 2.4, it suffices to show that

I(EZEJVEJr ca C Klls(lesa)Héls
for some ¢; > 1. Also by Lemma 2.5,

K.Z.NY-a C K.(Z.aZ. )N H..
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Now we can apply Lemma 2.10 inductively. We consider £ > 0 such that

4e
2.11 .
(2.11) €+ 10 < ep

Setting €1 = d; = €, we apply Lemma 2.10 to find
Eir1 < € +40;, dir1 < lgd;

such that for every a € A} (c),

KEiZEiaZEiNg:HEi C KsiﬂZEHlaZEiHN;;HHEiH.
Note that
X 1— ¢
0; <elyg and ¢ <e+4e 6.
1— /g

Hence by (2.11), €;,6; < €0, and we can continue this process indefinitely.

It follows that for every g € K.(Z.aZ.)NI H., there exist sequences k; €
K. ,z,yi € Z.;,n; € N;;,hi € H., such that g = k;z;ay;n;h; for all ¢ > 1.
Since §; — 0, n; — e. Also, passing to a subsequence, we may assume that
ki — k,x; — x,y; — y,h; € h. Then

g = kzxayh C K¢, Zp.caZp.cHp.c

with €7 = 1+ 4(1 — 66)_1. We have decomposition a = ajas where a; € A}r
and as is in the fixed compact set determined by c. This implies that for some
0> 1,

aZp,ca”' C Zppe,

and the theorem follows.

Proof of Theorem 1.7. There exists ¢/ > 1 such that k~1O0.k C Oy, for every
k € K. Then for g = kawh € KAYWH, we have

O:-gC k‘(@g/ga)’wh.

Due to Remark 2.1, without loss of generality, we may assume that w = e.
Since My, C My, for I} C I, we may assume that J is maximal such that a
is (J, c)-regular. Then a € A (¢). We have the decomposition

(2.12) 3r=0GrNEY®MmrNpNg) @ar®(GrNh)
(see [GOS, equation (4.24)]). Hence, the product map

(ZjﬁK)xexp(mjﬂpﬂq)xij(Z[ﬁH)HZ[
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is a diffeomorphism in a neighborhood of identity, and there exists ¢’/ > 1 such
that for sufficiently small € > 0,

Z],g C (Z] n K)gug exp(m; npN q)g//EALg//E(Z] n H)g//s.
Therefore, it follows from Theorem 2.2 that
O:-a C KyeZpcaHye C Ky o,0neMieee(Areerea)Hee vo0m)e-
This proves the theorem.
Proof of Theorem 1.6. Suppose that in Theorem 1.7 we have J = A,. Then
Z = Cg(A) is 0- and f-invariant, and
3=GNHOGENPNa) ®(3ND).
Since a is a maximal abelian subspace of pNq, 3NpNg = a. Hence, decomposition
(2.12) becomes
3=GBNe@ad(3Nh),

and we complete the proof as in Theorem 1.7.

3. Well-roundedness of sectors St ({2, w)

First we need a precise description of the measure on the set

KMj(wvy) = KM;/(M;nwHw ™).

3.1. DESCRIPTION OF A MEASURE ON KM;/(M;NwHw™?'). Fix w € W. Let
Ow = iy oo oi,! be the involution as in Remark 2.1. Then g, 0§ = 6 0 7y,.
Also, the semisimple group Mj is stable under o,, and €, and hence M; admits
the generalized Cartan decomposition (see [GOS, Proposition 4.22]):

(3.1) My = (M;nK)A'(M; nwHw™ ") = (M0 K)AY "W (M nwHw ™),

where Al is the orthogonal complement of Ay in A and it is the Cartan sub-
algebra of M associated to the symmetric pair (M; N K, M; NwHw™1), and
At ={a € Al : a(loga) > 0, Va € I} is a positive Weyl chamber; and W; C
M7 is a set of representatives of the associated Weyl group, which is generated
by the reflections {sqs }aer. An invariant measure, say A on My/(M;NwHw™1),
is given as follows: for any f € C.(M;/M;NwHw™!),

/ fax= Y /K dk f(kawy (M; nwHw™))é;(a) da

I,
w1 EW; NMr AL+
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where

or(a) = H (sinh a(log a))la+ (cosh a(loga))'=
aesIn(I)

and IZ denote the dimensions of the (41)-eigenspaces of o6 on g°.
Therefore we can identify

(3.2) KM;/(M;nwHw™ ') =2 K x AL x Wy,

and treat KM;/(M; NwHw™') as a product measure space.
On the other hand, once we fix a measurable section s1 : K/(K N M) — K
for the natural quotient map, we can identify K x AT x W; with

K/(KﬁM]) X M]/(M[ﬁ’LUH’wil).

We consider the measure on K x ALt x Wy such that it corresponds to the
product of the invariant measures on the product space

K/(KN M) x Mp/(M;nwHw™?),

where the Haar measures on K and K N M; are normalized. This measure, in
view of (3.2), will give rise to the integral dm on

KM;/(M;nwHw™")
given as follows: for any f € Co(KM;/M;NwHw™1),

/ flmydm := / dk f(kawy (M; N wHw™1))d7(a) da

w1 EWr AL+
3.2. VOLUME ESTIMATE FOR THE SECTORS S7(€2, w). Let A, denote the highest
weight for the irreducible representation ¢. We express

(3.4) A = Z M

and the sum of positive roots (with multiplicities)

(3.5) 2p = Z U QL.

aEA,
Let I C A,. Set
U . .
(3.6) ar = max{ma Ca€ A, 1},
Ue -
(3.7) br=#{oed, —1: " faj}.
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ProrosiTION 3.8: For any w € W and a bounded measurable set
QC KM;/(MrnwHw™)

with positive measure and zero boundary measure, there exists Cr(Q,w) > 0
such that

Vol(S7(2, w)) ~7—oe Cr(Q,w) - T (log T)" 1.

Proof. From [HS, Theorem 2.5] (see also [GOS]) one deduces that a G-invariant
measure on G/H is given by

(3.9) /G Lz

/ / f(mawH)¢r(a) dadm, f € Co(G/H),
wew Y MEKM/(MinwHw=1) JaeAf

where da denotes a Haar measure on Ay, and dm is described in the paragraph
following (3.2), and

(3.10) ()= J] sinh(a(loga))'* cosh(a(loga))’ .

aesd—(I)
Here IX denote the dimensions of the (41)-eigenspaces of o6 in g,. We decom-
pose &1 as a linear combination of functions exp(x(a)) where x’s are characters

of A;. Note that 2p is the maximal character in this decomposition. In view of
equations (3.4), (3.5), and (3.6), we define

In=TU{aecA,—1: o <ar}.
m

By the computation using [GOS, Theorem 6.1], as done in the proof of [GOS,
Theorem 6.4], applied to a; in place of a, there exists a locally finite measure
Nr.w on W such that for every f € C.(W),

1

BI) i oy [ S/ De@da= [ s,

where the measure 71y, can be described as follows:

(3.12) [ fanmn = [ st &) d,
w beD+

where DT =expd™,

ot ={bear/(ar, Nkerp): a(b) >0, Yo € Iy},
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db denotes the Haar measure on Ar/(A; Nexp(ker p)), vl is the projection of
vo to the sum of the weight spaces with weights of the form A\, — Zaelo MaQ,
meq > 0, and

(3.13)  £1(b)
= H sinh(a(log b))lZ cosh(a(log b))« )

a€(ZFN(1o))—(I)
X exp ( Z uq(log b)) .

aext —(Io)

Moreover, it follows from (3.11) that 7y, is a homogeneous measure of degree
arg.

Fix any m € KM. Let ¢ > 1 and take a continuous function # : [0, oc] — [0, 1]
such that supp(¢) C [0,¢] and ¢y = 1 on [0,1]. Setting f(y) = ¥(||myl|), we
have

(3.14) /AI+ X By (mavy)ér(a)da < /AI+ fawwvy/T)Er(a)da.
Now by (3.11) and (3.14),

. 1
lim sup

da < Anr v
B oyt Ko maew)én@ia < [ sany

<c*'nw(m™ By).

The lower estimate for lim inf is proved similarly.
Hence, taking ¢ — 17, we obtain

1

. _ -1
(3.15) Tlgn00 Tor (log T)br—1 /AI+ X By (Mmawve)ér(a)da = nr . (m~" By).

In view of (3.2) let s : KM;/(M;NwHw™) — KM denote the measurable
section of the obvious quotient map. Since

Sr(Q,w) = QA wve N Br,

(3.16) Vol(S7 (2, w)) = /EQ /e/ﬁ X B (s(M)awvy)€(a) dadm.



Vol. 176, 2010 STRONG WAVEFRONT LEMMA 435

Therefore from (3.15), using the dominated convergence theorem, we deduce
that

. Vol(St(Q,w)) N _
(3.17) Cr(Q,w) = Tlgr;o Ter (log T)bi -1 /megm,w(s(m) By)dm.

Note that there exists § > 0 such that s(m)~!B; D Bs for all m € Q, and
because 1y, is homogeneous, 1 ,(Bs) > 0. Hence Cr(Q2,w) > 0.

Remark 3.18: The value of the parameter C;(£2, w) in the statement of Propo-
sition 3.8 is given by
(3.19) Cr(Q,w) = vy, (B N QDT (wuvg)™),
where vy, ,, is a G-invariant measure on the G-orbit G(wvg)%.

This formula can be justified as follows: combining (3.11), (3.12), (3.15),
(3.17) and (3.3) we get

Cr (O w) = / am /b (bl ) 8) db

(3.20) = / dk:/ / xa(ka)x s, (kab(wvy))d;(a)é1 (b) dadb,
keK ac AT+ JpeD+
where
(3.21) 0r(a) = H sinh(a(log a))lZ cosh(a(loga))'=;
ac(SEn())
IZ are the dimensions of the (41)-eigenspaces of ¢ acting on g<.

Since

ar, Nkerp =ag, Nker A,

it follows from [GOS, Theorem 5.1] that the orbit G(wwvg)™ supports a G-
invariant measure vy,. Now comparing the formula (3.20) with the formula
(5.3) in [GOS, Theorem 5.1], we obtain (3.19).

3.2.1. Upper estimate of volume for (J,c)-singular elements in St(Q,w). For
c>0,1CA,, and a bounded measurable Q C KM;, we set

Viw(c) = {mawvo :meN, a€ A}r with a(loga) < ¢ for some o € A, — I} .
Note that this set is the set of (J, ¢)-singular elements for J = A, \ I.
ProproSITION 3.22: For small ¢ > 0 and sufficiently large T > 0,

Vol(Vi w(c) N Br) < ¢- T (log T)" 1,
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Proof. For a € A,, set
Ucla) = {a € A} : a(loga) < c}.

There exists § > 1 such that m~*Br C Bsr for all T > 0. By (3.9), this gives
the estimate

(3.23) Vol(Vy w(c) N Br) < 1(a)da.

aEA,—1 /aEA?ﬂUC(a):||LwU|<6T

Now we use the volume computation from [GOS] (see the proof of Theorem 6.4
in [GOS]) to show for every nonnegative f € C.(W),

/ f(avo/T)ér(a)da < ( / f(av“)«fz(a)da> T (log T) Y,
ATNU(a) AfNU(a)

where I C Iy C A, vIo € W and &; € C(AT) are as defined in section 3.2. By

[GOS, Corollary 4.7] the projection of vé" on the \,-eigenspace is nonzero, and

the map A* — R : a +— \,(a) is proper. Therefore the map A}' —-W:a— avéo

is proper. This implies that there exists a compact L C A}' such that
L>{ac A} :avl® € suppfl.
Then
/ flave/T)ér(a)da < max(f) - Vol(L NU.(a)) - T (log T)% 1
A;rﬁUc(a)
<y c-T(logT) L.

Taking a function f satisfying xp, < f, we obtain

/ ¢r(a)da < / f(cw)é[(a)da - T (log T)l”_1
a€ATNU:(a):||lavo || <T ATNU:(a)
< T (logT)br 1.

Therefore, by (3.23),
Vol(V7,(c) N By) < ¢ (6T)* (log(6T))b 1.
This completes the proof.

The following corollary of Theorem 1.7 will be used in the proof of
Theorem 1.13:
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COROLLARY 3.24: Let A, = IUJ and B be a bounded subset of KMj;. Then
given ¢ > 0, there exist £ > 1 and €y > 0 such that for every (J,c)-regular
g=bah € BA;H and 0 < € < &g,

0.9 C (KN Op)b(Mr N O ) (A7 N O )aH.

Proof. Let b = km for k € K and m € M;. Note that m € KB N My, which
is bounded. By (3.1) there exist kg € M; N K, ag € A and hg € M N H such
that m = kgaphg. By Theorem 1.7,

Osg - (K N Ols)kkO(MI N Oés)(AI N Ols)aOaH~

There exists £1 > 1 such that for every k € K and small ¢ > 0, kO.k~! C O,..
Hence,

(’)Eg C (K n Oge)k’(M] n Oelgg)koaoho(A] n Oge)aH.

There exists £ > 1 such that for every m € KB and small € > 0, m~'O.m C
Oy,e. Hence,

O.g C (K n Oes)k’m(M[ n Oezglgs)(A[ n Ogg)aH
as required.

Proof of Theorem 1.13. Due to Remark 2.1, without loss of generality, we may
assume that w = e. We will denote S7(€2, e) by Sr(£2).

Let ¢c,e € (0,1).

Let s : KM;/(M;rN H) — KM; be a measurable section such that s(Q) is
bounded and measurable. For neighborhoods U; of e in K and U; of e in M7y,

we set
QFf = U1s(Q)Us(M; N H),
QO = () ws@ua(M;NH).

u1 €U, u2 €U

One can check that as U; and Uz shrink to {e}, we have
Qt 1 Q and Q7 7 int(Q).

Since Vol(99Q) = 0, we have Vol(QT — Q~) — 0. Hence, it follows from (3.17)
that we can choose Uy and Us so that

(3.25) Cr(QY) = Cr Q) <e.
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Fix a set Q D Q such that Q C int(€), set
Vi =QAfvy and Vi = QAfvo,

and define V7 (c) = Vr.o(c) and Vi(c) = Vi..(c) as in Proposition 3.22. We can
choose Uy and Us so that QF c Q.
We claim that there exists a neighborhood O’ of e in G such that

(3.26) O+ S7(Q) € Sa4eyr(QT) U (Vi(e) N Bayoyr)-
By Corollary 3.24, there exists a neighborhood O such that
o1 (Vi = Vi(e)) € Vi — Vi(c/2).
This implies that
Oy - Vi(e/2) C Vi(c).

Also, by Corollary 3.24 and continuity of operator norm, there exists a neigh-
borhood Oz of e in G such that for every v = mavy € Vi — Vi(c/2),

O2v C (UymUs) A vg
and
Oz - Br C B(14e)7-
Hence,
02 - (S7(9) ~ Vi(e/2)) € St oyr (7).
Setting O = 01 N Og, we deduce the claim (3.26).

A similar argument shows there exists a neighborhood O of e in G such that

(3.27) Saor@) < ([ 9Sr(@) L),

geo”

Combining (3.26) and (3.27), we deduce that for O = O’ N O”,
(3.28)  Vol(O-0S57(2)) < Vol (OS7(2) — NgeogSr(2))
< Vol(S(146)7(21)) = Vol(S(1—o)r (7)) + Vol (Vi(c) N B(14)r)-
By Proposition 3.22,

i VOI(VI(C) N Bi4e)r)
imsup

T—oo  T9(logT)br—1 <
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By Proposition 3.8,
5 Vol(S(14+)r(27))
im

T—oo T (logT)br—1
‘m VOl(S(l_a)T(Qi))

T—co T (logT)br—1
Hence, it follows from (3.28) and (3.25) that
) Vol(O - 951(Q))
RSP s (1og Ty

= (1 + E)aIC](Q+),

= (1— &) Cy(Q).

<(1+e)"Cr(Q7) = (1 =) Cr(Q7) +ec

Le+tec

Since € and ¢ can be taken arbitrary small, this proves that the family of sets
St() is well-rounded. Hence, it follows from [DRS, EM] that

#(Tvo NST(Q)) ~1r—oo Vol(ST(Q)).
This proves the theorem.

Proof of Theorem 1.4. To deduce Theorem 1.4 from Theorem 1.13, we observe
that (see [GOS, §2.3])

O ~ U SL4(R)/SO(p,q), d = dimW,
p+g=d

and SLg(R)/SO(p, q) is an affine symmetric space. We set

G = SL4(R),

K = S0(d),

A = {diag(s1,...,8q) 1 8, € RT, 5154 = 1},
H =S0(p, q).

Then we have the generalized Cartan decomposition G = KAH. The set of
simple roots on Lie(4) = {s = (s1,...,84) : i ER, s1+ -+ 54 =0} is

A, ={ai(s)=8;—8i41:1=1,...,d—1}.

In view of (1.2) and (1.3), set

k
ip =Y dimW;, 1<k<n-L
=1

Let I = Ay \{aiy,...,;,_,}. Then
M] ~ SL“ (R) X SLi2,i1 (R) X+ X SLdfin,l(R)a
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and Ay is the centralizer of M7 in A.

Since the set of integral quadratic forms in the question is a finite union
of SL4(Z)-orbits, we conclude that the proof of the theorem reduces to the
computation of the asymptotics of #(SL4(Z)g,NST(2Q)) where g, € Qw (Z).
This shows that Theorem 1.4 is a particular case of Theorem 1.13; it may be
noted that since d > 3 the subgroups SO(p, q) are semisimple and SO(p, q) N
SL4(Z) is a lattice in SO(p, q).

It remains to compute the parameters a; and by, which are determined by
the volume asymptotics in Proposition 3.8.

If we restrict the character 2p, which is the sum of all roots in ¥}, then we
get

n—1
p|Lie(A1) = Z Uiy, Oy, where Uiy, = Zk(d — ik).
k=1
The highest weight, say \,, of the representation of SL4(R) on the space of
quadratic forms restricted to Lie(Ay) is

n—1

AlLie(Ar) = Z m, «;, ~where m; = 2(d — i) /d.
k=1

By (3.6) and (3.7),
a;max{ui’“ : 1§k§n1} =din_1/2,

mik
. Ugy,
bjz#{zkzlgkzgn—l, :aj}zl.
mg,

This proves the theorem.

4. Another version of the strong wavefront Lemma

In this section, we obtain a version of the strong wavefront lemma for a gener-
alized Cartan decomposition with a different Weyl chamber AT defined below.

Let G°% = {g € G : 00(g) = g}, the symmetric subgroup associated to the
involution o6 of G, and g??, be the associated Lie subalgebra. Then A is the
maximal R-split Cartan subalgebra of G°?. Set

Sop=f{ae%,:g"Ng”’ #{0}} and T, =%In%,,.

Then 530,9 is a root system on A, and we denote by Amg C i:e the set of
simple roots on A. Let A+ denote the associated closed Weyl chamber of A.



Vol. 176, 2010 STRONG WAVEFRONT LEMMA 441

Then AT C A*. Also, the following generalized Cartan decomposition holds:
G=KA"H.

Note that A+ # At in general (see [HS, p. 109]).
Given ¢ > 0, an element g = kah € KA+H is called c-regular for Ag,g if
a(loga) > cfor all a € Ay y.

THEOREM 4.1 (Strong wavefront Lemma-IIT): Given ¢ > 0, there exist £ > 1
and g9 > 0 such that for every g = kah € KATH which is c-regular for Ag,g
and every 0 < € < gq,

O.g C (K n Oes)k . (A n Oee)a~ (H n Oes)h.

This result is stronger than Theorem 1.6 because any c-regular element is
also c-regular for Ag,g, but the converse implication does not hold in general.

Now we consider the situation involving singular elements. Let IcC Ag,g
and J = Amg \ I. For ¢ > 0, we say that an element ¢ = kah € KATH is
(J,c)-regular if a(loga) > ¢ for all a € J. Let A; = exp(ker). Let M}’G
denote the analytic semisimple subgroup of G°? whose Lie algebra is generated
by g*? N g?? for all B € Ej,e N (I). Then M}’e is contained in the centralizer of
Af? and

_ g A+
G_KMI~ AfH7
where A;f :ANJFQAI:

THEOREM 4.2 (Strong wave front Lemma-IV): Given ¢ > 0, there exist £ > 1
and g9 > 0 such that for every IchAyy, J= Ag,g \f, g = kah € KA+ H which
is (j, c¢)-regular, and 0 < € < &y,

O: g C (KN Ok)k- (MZ°NO) - (A7 N Ope)a- (H N Oe)h.
This result strengthens Theorem 1.7.
LEMMA 4.3: For any a € A,
g=0q@ (ENh) & Ada(pb).

Proof. Since g=q® (¢Nh) ® (pNh), it is enough to show that

Ada(pnh)N(qg+(ENh)) = {0}.
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To prove this, let X € pN b such that Ada(X) € g @ (6N h). Therefore,
o(Ada(X)) = Ado(a)(o(X)) = (Ada) " (X),
6(Ad (X)) = Ad9(a)(8(X)) = (Ada) (- X),

and

(4.4) o(Ada(X)) = —0(Ada(X)) = (Ada) 1 (X).

Now we write Ada(X) = Y1 + Y2 + Y3, where Y1 € qN € Ys € qNp, and
Y; € ¢Nh. Then

O'(Ada(X)) = 7Y1 — Y2 +}/3,
O(Ada(X)) =Y, — Yy + Y3,

and it follows from (4.4) that Y2 = 0 and Y3 = 0. Hence, Ada(X) € €N q and
o(Ada(X)) = —Ada(X). Then by (4.4),

(Ada)*(X) = —-X.
If X # 0, this gives a contradiction because Ada is self-adjoint.
As a consequence of the above lemma, we obtain the following:

COROLLARY 4.5: Given ¢ > 0 there exist £ > 1 and ¢ > 0 such that for any
a € A such that |a(loga)| < ¢ for all « € A,, and any 0 < € < &g, we have

Oca C (Op NK)(Op: Nexp(pNq))a(Ope Nexp(p N h)).
Proof of Theorem 4.2. Let w € W be such that waw™! =b € AT. We set
I={aecA,:alogh) <c/ng} and J=A,\I,

where ng € N is such that any positive root is a sum of at most ng simple
roots counted with multiplicity. We apply Theorem 1.7 to the involution o, :=
iwoooiy! in place of o. Since the element (kw™1)b(whw™!) is (J, ¢/ng)-regular,

(4.6)
O.(kah) =0, (kw™")b(whw ™ )w

C(Ope N K)(kw™)(Ope N M1)(Ope N Ap)b(Ope NwHw ™) (whw™Hw
=(0p: N K)k(w™ ' Opew Nw™ ! Mrw)(w™ Opew Nw™t Ajw)a
x (W™t Opew N H)h.
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There exists ¢1 > 1 such that
w_loesw C Oels

for all 0 < ¢ < ¢g. Since My is o,- and f-stable, M} = w Mw is
o- and @-stable and A = (AN MP)(w 'Arw). Let a1 € AN MY be such
that a € a1 (w1 Arw™'). We now apply Corollary 4.5 to M in place of G, and
conclude that for some 5 > #1,

(4.7) (Ope " MP)ar C(Ope N K N MP)(Opye Nexp(pNg) N MP)ay
X (Ope Nexp(p N ) N M),

Since MY commutes with w™!A;w, combining (4.6) and (4.7), we obtain that
for some ¢35 > ¥o

(4.8) O (kah) C(Opye N K)k(Opye Nexp(p Nq) N M)
X (Oége n w_lAIw)a((’)g38 N H)h.

By the definition of I, each eigenvalue of ad(logb) on the Lie algebra of My is
at most ¢. Hence every eigenvalue of ad(loga) on the Lie algebra of M} is at
most ¢. Since a is given to be (J, ¢)-regular, we conclude that

MP Nexp(pnq) C M¥ NG°% ¢ M;.
Therefore, the conclusion of the theorem follows from (4.8).

Note that Theorem 4.1 follows from Theorem 4.2.
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