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Abstract

Using techniques of Lie groups and ergodic theory, it can be shown that
in a compact manifold of constant negative curvature, the closure of a to-
tally geodesic, complete (immersed) submanifold of dimension atleast 2 is
a totally geodesic immersed submanifold. The main purpose of this article
is to illustrate some important ideas involved in this method, by giving a
proof for the simplest case of a codimension-1 totally geodesic immersed
submanifold.

1 Introduction

In this article we prove the following theorem :

Theorem A Let M be a compact, connected, oriented riemannian manifold with
constant negative curvature and dimension n > 3. Let D be a complete, oriented
riemannian manifold, whose connected components are (n — 1)-dimensional and
simply connected and let ¢ : D — M be a totally geodesic smmersion. Then ¢(D)
ts either compact or dense tn M.

Let F(D) be the oriented orthonormal (n — 1)-frame bundle over D, ¥ (M) be
the oriented orthonormal n-frame bundle over M and ¢, : F(D) — F(M) be the
immersion induced from ¢. Then ¢,(F (D)) is either compact or dense in F(M).

A riemannian immersion ¢ : D — M is called totally geodesic if $ o~ is a
geodesic in M for every geodesic v in D.

We shall prove this theorem using Lie groups, discrete subgroups and ergodic
transformations on homogeneous spaces. As we shall see in §2, the Theorem A
can be reformulated in the group theoretic setup as follows :

Theorem B Let G = SOy(1,n), ' C G be a discrete subgroup such that T\G is
compact and let H = SOo(1,n— 1), where n > 3. Then every H-invariant subset
of T\G 1is either dense or it is a union of finitely many closed H-orbits.

Certain techniques for studying the closures of orbits have been developed in
[M2], [DM1], [DM2] and [DM3]. We shall give an elementry proof of Theorem B
closely following the line of arguments in these references.

In the last section we shall discuss some related results of a more general
nature.
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2 Group theoretic interpretation

For convenience we recall some known facts about hyperbolic spaces and their
groups of isometries; (see also [Fl, Preliminaries]).

2.1 The hyperbolic n-space and its ssometry group

Let SOy(1,n) denote the connected component of the group of linear transfor-
mations of IR™*! preserving the bilinear form

n
(%,¥) = Zoyo — E ZiYs.
=1
S00(1,n) acts on IR™*! in the standard way and its orbit through the point
f, = *(1,0,...,0) € R™! is a sheet of the hyperboloid

" ={x € R"": (x,x) =1 and z, > 0}.

.
The bilinear form —(:, ) restricted to the tangent bundle T(X") C " x R"*! is
positive definite. With this riemannian structure, £” has the constant sectional
curvature —1 and SOg(1,n) is the group of its oriented isometries.

It is a well-known fact that all equi-dimensional, simply connected, complete
riemannian manifolds of a fixed constant sectional curvature are isometric. Hence
we call any n-dimensional, simply connected, complete riemannian manifold with
constant curvature —1 (for example, (£, —{,-)})); the Hyperbolic n-space and
denote it by IH".

2.2 Identifications
The stabilizer of f, in §O(1, n) consists of matrices of the form
1 olxn
(Onxl k ) ? k € SO(n),

where 0;x; is an £ X j matrix with all entries zero. We obtain the identification,
500(1,n)/SO(n) ~ H" (1)
given by gSO(n) ~ gfy, for all g € SO,(1, n).

Notations. Let M be an oriented riemannian manifold of dimension n. The ori-
ented orthonormal n-frame bundle over M is denoted by 7(M) and the orhtonor-
mal k-frame bundle over M is denoted by 7*¥(M), where 1 < k < n.
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Remark 2.1 Let E be an oriented n-dimensional euclidean vector space. Given
any orthonormal (n — 1)-frame [v1,...,Vn_;] in E, there exists unique v, € E
such that [vy,...,Vy] is an oriented orthonormal n-frame in E. This shows that
for M as above, there is a canonical isomorphism, ¥~} (M) ~ 7(M).

For1 < i < n, let f; = *(0,...,1,...,0) € R™!, with 1 in the (i + 1)**
co-ordinate and O in all the others; here *X denotes the transpose of a matrix X.
The tangent space to L™ at f, denoted by Tg¢ (Z"), is spanned by {fi,...,f.}.
Now SO(n) acts simply transitively on the set of all oriented orthonormal n-
frames in Ty, (E"). Hence SOo(1,n) acts simply transitively on 7(Z") and we
have the identification,

S0o(1,n) ~ F(Z") = F(H") (2)
given by g ~ [gfy,...,gf.],e, C Tyt (E7), for all g € SOo(1,n).

2.8 Totally geodesic submanifolds of TH"

We want to describe all totally geodesic immersions in to IH®. Observe that
if L is a riemannian manifold and o is an isometry of L, then each connected
component of the o-fixed set in L is a totally geodesic submanifold of L.

For 1 < k < n — 1, consider the standard inclusions

TF < T" and SOy(1,k) < SO¢(1,n).
Using the above remark it is easy to verify that L* is a totally geodsic submanifold
of ",
Let ¥ be a simply connected, complete riemannian manifold of dimension k

and ¢ : ¥ — IH" be a totally geodesic immersion. Then there exits an isometry
g € SOy(1,n) such that ¢(¥) = g - =*. In view of the identification 1, we have

g-SO(1,K) (SO(n)) ~ $(¥) C H™. (®)

Suppose ¥ as above has dimension (n—1). The derivative D¢ : T(¥) — T(Z")
induces the immersion ¢, : F(¥) — F"~1(I"). Now there exits an isometry
g € SOo(1,n) such that ¢(¥) = g="! and ¢.(F(¥)) = gF(X""1) — F*-1(E").
In view of the identifications 1 and 2 and Remark 2.1, we have

&(¥) ~ g-S00(1,n —1)/SO(n — 1) — SOy(1,n)/SO(n),

. (F(¥)) ~ g-500(1,n — 1) < SOy(1,n). (4)

pza)

2.4 Totally geodesic immersions in manifolds of constant negative curvature

Let M be a connected, oriented, n-dimensional, complete riemannian manifold
with constant sectional curvature —1. Then the universal covering space of M
is isometric to IH*. Now there exits a discrete group I' consisting of oriented
isometries acting properly discontinuously on IH” such that M is isometric to
T'\IH". Since T' C SOqy(1,n), by identifications 1 and 2,

T'\SOo(1,7)/50(n) ~ T\H" ~ M,
T\SOo(1, ) ~ T\ F(H") ~ F(M). (5)

Let ¥ be a simply connected, complete, (n — 1)-dimensional riemannian
manifold and ¢ : ¥ — M be a totally geodesic immersion. The derivative
D¢ : T(¥) — T(M) induces the immersion ¢, : ¥(¥) — F(M), where (M) is
identified with #*~!(M) by Remark 2.1.

Let p : IH® — M be a locally isometric covering. Since W is simply connected,
there exits a totally geodesic immersion q; : ¥ — IH" such that ¢ = po $. Hence
due to identifications 4 and 5, there exits an isometry g € SOy(1,n) such that

(V) ~ TgS0o(1,n — 1)SO(n) C T\SO0y(1,n)/SO(n) ~ M,
&.(F(¥)) ~ TgS0y(1,n — 1) C T\SOy(1,n) ~ F(M). (6)
Using this dual language, Theorem A can be easily derived from Theorem B.
The next four sections are devoted to giving a proof of Theorem B. Some no-
tations and preliminaries are set up in §3. The main results needed to prove

Theorem B are given in §4 and §5. And the proof of the theorem is completed
in §6.

3 Some important subgroups of SOy(1,n)

1 o

Let B = (0 1 ) Then for all v,w € R™?, (v,w) = ‘vBw. Hence
nxn

G = 800(1,n) is the connected component of the identity of the group

{g €GL(n+1,IR):*'9gBg = B}

and its Lie algebra

§={Xegdr+1,R): ‘XB + BX =0}.
There is a right Adjoint action Ad of G on § given by
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X-Adg=g¢'Xg (X€g,9€Q).
Let D = SOo(1,1) C G and D C § be the associated Lie subalgebra. Let

01 _ [cosht sinht
a=( ).Thenexpta—(sinht cosht , for all t € R. Now

def ta O2xn—1
= = :t e R N
b {d(t) (on—lxz on—lxn—l) }
D = 4% (oxpie  Dnxn ) it e IR}.
- T \Op_1xz Idn—1xn-1

With repect to the right Adjoint action of D, the Lie algebra § decomposes
into the direct sum of simultaneous eigenspaces as § = G* & G° ® §~, where

00 ty )
Gt = {nt*(v) “1 oo —ty - : ceR™!Y,
vy on-lxn—l Tn-1
g = {n‘(v) Etptv):ve lR"‘l},
G° = DaoM,
dof [ Ozxz2 Ozxn1 64 }
= = : A+*A=0;.
M {m(A) <0n—lx2 An_lx"_l)

For all v, w € R"!, t € R and (n — 1) x (n — 1) skew symmetric matrices
A, we have following commutation relations:

nt(v)-Add; = n*(e'v),

n~(v)-Add, = n(e7'v),

m(A) -Add, = m(4A) (M
[t )] =
[m(A nt (v ] A-v),
[n ),n ] V) +2m(w - tv — v - tw). (8)

Now §*, §~ and M are Lie subalgebrs of §. Let N*, N~ and M be the
connected Lie subgroups associated to G+, §~ and M respectively.
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Remark 3.1 The maps exp : §* — N* are group isomorphisms, hence N*
are vector groups. Let u = exp(n*(v)) € N*. Then by Eq. 7, di'ud; — 1 as
t — —oo. Similary if v € N~ then d; *vd; — 1 as t = +oo.

The group M is isomorphic to SO(n—1) and the group DM is the centralizer
of Din G.

Remark 8.2 Due to Eq. 8, the Lie subalgebras G* and §~ generate the Lie
algebra §. Hence the subgroup generated by N* and N~ is dense in G.

4 Ergodic properties of actions on homogeneous spaces

4.1 Ergodic transformations

Definition 4.1 Let X be a topological space and u be a Borel measure on X. A
measure preserving transformation T of (X, u) is called ergodic if the following
holds: for any measurable set E C X if u(T(F) A E) = 0 then either u(E) =0
or u(X \ E) =0, where AABY AUB\ ANB.

The following property of ergodic transformations makes the concept of er-
godicity very useful for applications.

Lemma 4.1 Let X be a second countable topological space and u be a Borel
measure on X such that u(E) > O for any non-empty open subset E of X. Let
T be an ergodic transformation on (X, u). Then for p-almost all z € X , the set
{T"z}nen i dense in X.

Proof. For a nonempty open subset E of X, define

x(8) = () T(B).

n=0

Then T(X(E)) D X(E). Now T preserves the measure u, hence

u(T(X(E)) A X(E)) = 0.

Since u(E) > 0, by the ergodicity of T-action u(X(E)) =
Let B be a countable open base of X. Let

Y= X(B)
EeB\9
Then for all y € Y the set {T"y},en is dense in X and u(Y) = 1. O

Remark 4.1 Let X =T\G. Since T is discrete and X is compact, there exists

a probability measure x4 on X which is invariant under the right action of G on
X (see [R, Chap. I)).
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Lemma 4.2 (Mautner, cf. [M1]) The right action of d = d; € D on X =
T\G is an ergodic transformation on (X, u).

Proof. Since p is finite and G-invariant, there is a continuous unitary represen-
tation p of G on the Hilbert Space ¥ = L?(X, 1), defined such that for all £ € ¥,
g € G and p-almost all z € X,

[€ - p(9)] (z) = &(zg).-
Suppose E is a measurable subset of X such that u(E -d AE) = 0. Let xg
denote the charecteristic function of E. Then £ = xg € X and for all k € Z,

€ p(d*) = x(ga+y= x5 = £
Let u € N*. Since p is unitary, for all k € ZZ,

(& p(u), &) = (£ p(d")p(u), € - p(d*)) = (£ p(d*ud™*), €).
By Remark 3.1, d*ud~* — 1 as k — +oo. Hence by continuity of p,

(€-p(u), &) = (&€).

Thus ¢ - p(u) = £ for all « € N*. Similarly, we can show that ¢ - p(w) = ¢
for all w € N~. Now by Remark 3.2, £ - p(g) = £ for all g € G. Thus xg = £ is
constant almost every where on X. Hence u(E) = 1 or 0. This shows that d acts
ergodically on (X, u). O

Lemma 4.2 and Lemma 4.1 imply that almost all orbits of D are dense in T'\G.
For our purpose we will need its following consequence regarding individual orbits
(see [D2, Preliminaries] for a general statement and references).

Lemma 4.8 Every orbit of the subgroup N*D acting on X =T\G ¢s dense.

Proof. Let z, y € X. Since d = d; € D acts ergodically on (X, 1), by Lemma 4.1,
there exist sequences z; — z, z; € X and n; — o0, n; € IN such that z;d" — y
as 1 — oo. Let the sequence ¢; — 1, ¢; € G be such that z; = zg;. Since
G =60 6°@® G, for all large ¢ € IN there exist w; € N, v, € N* and
z; € DM, such that ¢; = v;z;w; and w;, v;, z; = 1 as 1 — oo.

Now for all large 1 € IN,

z;d™ = zvid™ (d "™ z,d™) (d " wd™).
By Remark 3.1, as 1 — oo,
d"zdV =2 —1 and d™wdv — 1.

Therefore zv;d™ — y as ¢t — co. Since z, y are arbitrary, this shows that for all
z € X the orbit zN*D is dense in X. O
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4.2 Minimal closed tnvartant sets

It was shown by G.A. Margulis in [M2] that minimal closed invariant sets of
the action of unipotent subgroups can be used very effectively for studying orbit
closures in homogeneous spaces of Lie groups.

Definition 4.2 Let F be a semi-group acting on a topological space X by con-
tinuous transformations. If a closed subset Z of X is invariant under the action
of F and no proper closed subset of Z is invariant under the F-action then Z is
called minimal closed F-invariant. Thus, if Z is a minimal closed F-invariant set
then every orbit of F in Z is dense.

Remark 4.2 Any compact F-invariant subset of X contains a minimal closed
F-invariant subset. To see this, use Zorn’s lemma along with the fact that the in-
tersection of any totally ordered (with respect to set inclusion) family of compact
sets is nonempty. This remark will be used in §6.

5 Orbits of unipotent groups under linear actions

Let H = SOp(1,n — 1) C G. Now D = SOy(1,1) C H. Put N, = N* N H and
My=MnH.

Let Y be a closed H-invariant subset of ['\G. Now H contains the subgroup
N, D and by Lemma 4.3 we know that every orbit of the subgroup N*D is dense
inT\G. Let N, be a one-parameter subgroup of N* such that N+ = N,N;. In §6
we show that under certain ‘local’ condition, ¥ contains an orbit of N;. This will
imply that ¥ = I'\G. The next proposition is a crucial step for obtaining, under
that condition, a N,-invariant subset in Y. It will be convenient to introduce
some notations to state and prove the proposition.

Let X be the Lie algebra corresponding to H. Let X* = TN}, My = Mn¥
and ¥~ =6 "NX. Then ¥ =XT®D® M, & X¥~. Also X* and M; are the Lie
subalgebras corresponding to N; and M, respectively.

Let P be the ortho-complement of ¥ in § with respect to the symmetric
bilinear form Q : § x § — IR, defined by Q(X,Y) = tr(XY). Now Q is non-
degenerate on § as well as on ¥ and it is invariant under the right Adjoint action
of G on §. Therefore § = P & X and P is invariant under the Adjoint action
restricted to H. Let P* =P NG+, P°=PNG%and P~ = PN G-. Then

P=pPteoPor .
Let N; be the connected Lie subgroup corresponding to the Lie subalgebra
P*t. Now Gt = P* @ {* and N* = N, N;.
Let [ey,...,e,—1] denote the standard ordered basis of IR*™!. Then the set
{n*(‘ex) : 1 < k < n— 2} is a basis of ¥*, p* %f n*(%e,_,) is a basis of P+,
p~ % n~(*e,_;) is a basis of P~ and the set



{p?, Y m(Xe —'Xe) : Xi = (0"‘;:"") ,1<k<n~ 2}

is a basis of P°.

Proposition 5.1 (Margulis, cf. [DM1, Lemma 2.2]) Let {¢;}ien C P\ P*
be a sequence such that ¢ — 0 as ¢ — oo. Then there exist a one-parameter
subgroup {us}er C N1, 6 sequence t; — co and a non-constant polynomial ¢
such that if {g;}icnv 15 replaced by a suitable subsequence then for every s € IR,
as 1 — oo,

g - Ad(un,) — p(s)p"

Proof. Foreachi € N, let ; € R, {043 : 1 <k <n—-2} CIR and § € IR be
such that

n-2
@ =0ip” +3 onipy+8pT.
k=1
Nowasi —»oco: §; = 0,6 — 0and 0; — Oforall1 < k < n—2. Since
{¢:}iewN P+ = @, there exists k € {1,...,n —2} such that replacing {g:}iew by 2
subsequence, we get §; # 0 or 0;; # O for all ¢ € IN. Consider the one-parameter
subgroup

{u‘ dof expn"’(t . 'e,,) :te IR} C Ny

Then by Eq. 8,

g-Adu, = g+t [g,n*(er)] + (2/2) - [[gn* (fex)] n* (‘er)]
g + (6:t) -p‘l + (orit +0; t2/2) -pt.

For each 1 € N, let t; > 0 be such that

ma.x{|o,,,,-|t,-, '9.' t‘z} =1.
Replacing {¢;}:enw by a subsequence, there exist Ay, A; € IR such that as { — oo,
6;t? — XAy and oy t; — Az. Note that max{|A|,|Az|} = 1. Since 8;t? — A, and
t; — oo, we have 6;t; — 0 as 1 — oo.
Let ¢ be a polynomial defined by p(s) = A;s + A2s?, s € R. Then p is
non-constant and for every s € R, as t — oo,

g - Aduy, — p(s)p™.
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6 Proof of Theorem B

Let X = T'\G and Y be the closure of the given H-invariant subset in X. Then
Y is H-invariant. We want to show that either Y = X or Y is a union of finitely
many closed H-orbits.

Let Y; be a minimal closed H-invariant subset of Y and Z be a minimal closed
Nj-invariant subset of Y;. The existance of these sets follows from Remark 4.2.

Since § = P®X, there exist a neighbourhood ¥ of 0 in G and a neighbourhood
01 of 1 in G such that the map (¢,y) — expg-expy, (e PN¥, ye XNT)isa
diffeomorphism onto Q1.

Fix z € Z for rest of the proof. Let ¢ € 1 be such that zg € Y. Write
g = (expg)h for some g € PNW¥ and h € H. Since Y is H-invariant, zexpg €Y.
Define

Q={¢qePnNVU:zexpg €Y}
If we choose ¥ small enough then one of the following possibilities occurs :
LoeQ\ P
I. 0 @\ {0} and Q C P*.
. Q = {o0}.

We shall prove that a) if Case I occurs then Y; is dense in I['\G,b) if Case III
occurs then Y is a closed H-orbit and it is a connected component of Y and
¢) the occurrence of Case II leads to a contradiction. This shows that either
Y = X or every connected component of Y is a closed H-orbit. Note that since

Y is compact, it has only finitely many connected components. This will prove
Theorem B.

Case 1 : (cf. [DM3, Prop. 8, Case a) )

In this case there exists a sequence {¢;}ie;wy C P\ Pt such that ¢; — 0, as
i — o0 and zexpg; €Y, for all t € IN.

Step 1 Replacing {g;}iem by a sustable subsequence, there exist a one-parameter

subgroup {u;}tem C Ny, @ sequence t; — oo and a non-constant polynomial ©
such that for every s € R, as { — oo,

g - Adu,, — p(s)p*.

This is just a restatement of Proposition 5.1.

Step 2 (cf. [M2, Lemma 1])  For every s € R, Zexp(p(s)p*) C Y.
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{Pg ch(Xk —'Xi): X = (0"_::"_1) ,1<k<n- 2}
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Proof. Fix s € IR. Put y; = zexpg; € Y and & = 2uy; € Z, for all z € IN.
Since Z is compact, by passing to subsequences, we may assume that as 1 — oo,
2 — 2 for some z' € Z. Now by Step 1,as t — oo,

Yitlat, = 2 €Xp(ti—at,qitiat;) — 7 exp((s)p")

Put v = exp(p(s)pt) € Nj. Since yiuy, € Y and Y is closed, Zv €Y.
Since Z is minimal closed Nj-invariant, 2'N; is dense in Z. Now N, normalizes
N,, therefore

Zv=2Nw CYvINjv=YN, =Y.
Step 3 Y contains an orbit of N3.

Proof. Note that p(0) = 0. Hence we can choose F' = {exp(tpt) : t > 0} or
{exp(tp*) : t < 0}, so that

FcC {exp(go(s)p*) 18 € ]R} .

Now by Step 2, ZF CY. o . '
Since Y is compact, by Remark 4.2, ZF contains a minimal closed F-invariant
subset Z;. If v € N; then there exists w € F such that wv € F and hence

Z1 = Zl(wv) = Zlv
Thus Z; is N, invariant. This proves Step 3.
Since Y is Ny D invariant, by Step 3, Y contains an orbit of No(N, D)= N*D.
Now by Lemma 4.3, Y = X = I'\G, as we wanted to show in this case.
Case ITI : (cf. [DM3, Prop. 8, Case b) ])

In this case zH contains a neighbourhood of z in Y and hence it is an open
subset of Y. Now Y; \ zH is a closed H-invariant subset of Y;. Since Y is closed
minimal H-invariant, ¥; = zH. Thus Y} is a closed orbit of H and is a connected
component of Y. This is what wanted to show in this case.

Case I : (cf. [DM3, Prop. 8, Case c) ])
In this case there exists neighbourhood Q of 1 in G such that

YNz Cz(N,HN Q) (9)

and there exists a sequence {v;}iew C Nz \ {1} such that v; = 1, as 1 —
and zv; € Y for all § € IN. Since Y is compact and T is discrete, we can choose
{1 small enough so that 20°1 N G, = {1} for all y € Y, where G, denotes the
stabilizer of y in G. ‘
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Step 1 (cf. M2, Lemma 4]) Given any compact set K C Ny, there exists u €
Ny \ K such that zu € 21).

Proof. Since Z is compact and N; is non-compact, there exists a sequence
{ui}iew C N; such that as § — oo, 2u; — 2' € Z and y; — co. Since Z
is minimal closed N;-invariant, 2'N; is dense in Z. Let u' € N; be such that
Z'v' € 20). Hence for all large enough ¢ € IN, (zu;)u’ € 20 but u,u' ¢ K. This
proves Step 1.

Step2 zN,N 20 C 2(N*DM N Q).

Proof. Let u € N be such that zu € Z0l. Then by Eq. 9 there exists g € N, HN(}
such that zu = zg.

Since v; — 1, there is 3y € IN such that gv;, € 1. Since 2v;, € Y, we have

2v5,u = zZuv;, = 2gv;, € Y N 20
Therefore bY'Eg. 9 there exist v € N; and h € H such that vk € 1} and 2gv;, =
zvh. Hence guv;, = vh, because N1 NG, = {1}.
Now according to the notations in §5,

pt - Ad(gvi,) = pt - Ad(vh) =pt - Adh € P.
Put ¢ = p* - Adg. Since ¢ € P and v;, € Nz \ {1}, from Eq. 8 it follows that,
¢+ Adv,, € P only if ¢ € Pt. Writing g = v’k for suitable v' € N2 and h' € H,
we get ¢ = p* - Adh'. Since P* is the fixed point space of Ad(N;) in P and
N,DM, is the normalizer of Ny in H, we have ¢ € P* only if &' € N,DM;.
Hence g € N,N1DM,; = N*DM,. This completes the proof of Step 2.

By Steps 1 and 2, there exist u € Ny \ @1 and ¢ € (N*DM; N N) such that
zu = zg. Then § = gu~! € G,\ {1}. By Remark 3.1, there exists ¢, > 0 such that
diud;,! € @ and for all t > 0, d(N*DM; N 0)d;! C N. Now dy,Gady)! = G, ypr.
Hence °

diybdy,’ = (diogdy,')(diou™"dr)) € (G N AOTY)\ {1},

This contradicts the choice of 2, for zd;,' € Y. Hence Case II does not occur.
This completes the proof of Theorem B. O

Remark 6.1 Theorem B is still valid if we assume that I'\G admits a finite G-
invariant measure, even though it need not be compact. In order to extend our
proof in this case, we will need to show that any closed Nj-invariant subset of
I'\G contains a minimal compact N;-invariant subset. A result due to S.G. Dani
and G.A. Margulis achieves precisely this (see [DM1, Corollary 1.5] and [M3]).
Now with the help of the proof of Proposition 8 in [DM3], the reader may be able
to verify, without much difficulty, the Theorem B under the above assumption.
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7 General Results

Using the ideas from [M2], [DM1] and [DM2] and using the method of the proof
of the Main theorem in [Sh], the following result can be proved :

Theorem C Let G = SO¢(1,n) and T be a discrete subgroup of G such that T\G
admits a finite G-invariant measure (i.e. T is a lattice in G). Let H = SOy(1, k)
Jor some 2 < k <n and Y be a closed H-invariant subset of T\G. Then Y has
finitely many connected components; each of them is of the form zLCC', where
C' is a compact subset of Cg(H), the centralizer of H in G, and L = SO,(1,m),
k < m < n, C a compact subgroup of Cg(L) and z € X are such that zH = zLC.

In particular, if Y s the closure of a single orbit of H then Y = y(¢~'LCy),
where y €Y, g € Cq(H) and L and C are as above.

This theorem has the following geometric consequence.

Theoremn D Let M be a complete, connected riemannian manifold with con-
stant negative curvature and finite riemannian volume. Let D be a complete
riemmantan manifold, whose connected components are simply connected and of
dimension k > 2 and let ¢ : D — M be a totally geodesic immersion. Then
there exists a complete riemannian manifold L and a totally geodesic smmersion
v : L — M such that the following holds :

1. L has finitely many components, possibly of different dimensions, and each
one of them has finite riemannian volume.

2. (L) is the closure of (D) in M.

8. Let ¢ : D — L be a riemannian immersion such that ¢ = Yod¢. Let
. : FX(D) — F*(L) be the immersion of the orthonormal k-frame bundles,
which 1s induced from the derivative of ¢. Then ¢.(F*(D)) is dense in
FH(L).

Note that the closure of a geodesic in M need not be the image of a closed
immersion. To give an example of such a geodesic, let p : M — M be the
universal cover of M and let 4_ and 4, be two distinct geodesics in M such that
Y+ = po A4 are closed compact geodesics in M, Since Mis isomorphic to the
Hyperbolic n-space, there exists a geodesic 7 in M such that A(—00) = F_(~00)
and 4(+o0) = 4;(+00). Then the geodesic v = p o4 of M winds around ~, in
one direction and «_ in the opposite direction. Clearly, v_ UyU~, is the closure
of 4 in M but it is not the image of a closed immersion into M.

In the group theoretic setup, the geodesics in M correspond to orbits of the
subgroup SOy(1,1) in T'\G. Note that SO(1,1) does not contain any unipotent
element other than identity, while our proof of Theorem B depends crucially
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on the behaviour of the orbits of nontrivial unipotent one-parameter subgroups
contained in H. In fact, Theorem C proves a particular case of the following very
general conjecture due to M.S. Raghunathan.

Conjecture 1 (Raghunathan) Let G be a Lie group, T be a lattice in G and
H be a subgroup generated by unipotent elements of G contained in it. Then for
every z € T\G, there ezists a closed subgroup L of G containing H such that,
zH = zL and zL supports a finite L-invariant measure.

An element u € G is called unipotent if the map Adu is a unipotent auto-
morphism of the Lie algebra of G. We note that if a connected subgroup H of G
is semisimple and has no connected nontrivial compact normal subgroup, then
H is generated by unipotent elements of G contained in it.

We refer the reader to the survey articles by S.G. Dani [D1] and G.A. Mar-
gulis [M1,M4] for various developements related to Raghunathan’s conjecture.
Recently, ‘t';his conjecture has been proved by Marina Ratner. She first classiffied
all finite ergedic invariant measures of H on I'\G (see [Ral]) and then proved
the following stronger theorem, which implies Raghunathan’s conjecture.

Theorem E (Ratner [Ra2], see also [DS,Sh]) Let G be a Lie group, T' be
a lattice in G and {u, : t € IR} be a unipotent one-parameter subgroup of G.
Then for every z € T\G there ezists a closed subgroup L such that zL 1s closed,
zL admits an L-invariant probability measure o and the {us}ier-orbit through
z s uniformly distributed with respect to o; that ss, for all bounded continuous
functions f on T\G,

. 1T
lim T/o f(a:u,,)dt =/;Lfdo',

T—vo00
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