
CLOSURES OF TOTALLY GEODESIC IMMERSIONS
IN MANIFOLDS OF CONSTANT NEGATIVE CURVATURE

For convenience we recall some known facts about hyperbolic spaces and their
groups of isometries; (see also [FI, Preliminaries]).
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2.1 The hyperbolic n-space and its isometry group

Let 800(1, n) denote the connected component of the group of linear transfor-
mations of IRn+l preserving the bilinear formAbstract

Using techniques of Lie groups and ergodic theory, it can be shown that
in a compact manifold of constant negative curvature, the closure of a to-
tally geodesic, complete (immersed) submanifold of dimension atleast 2 is
a totally geodesicimmersed submanifold. The main purpose of this article
is to illustrate some important ideas involved in this method, by giving a
proof for the simplest case of a codimension-l totally geodesic immersed
submanifold.

n

(x, y) = XoYo - L X;y;.
;=1

800(1, n) acts on IRn+l in the standard way and its orbit through the point
fo= t(I, 0, ... ,0) E IRn+l is a sheet of the hyperboloid

En = {x E IRn+l : (x,x) = 1 and Xo > O}.
"The bilinear fopn -(.,.) restricted to the tangent bundle T(En) c En X IRn+l is

positive definite. With this riemannian structure, En has the constant sectional
curvature --'1 and 800(I,n) is the group of its oriented isometries.
It is a well-known fact that all equi-dimensional, simply connected, complete

riemannian manifolds of a fixed constant sectional curvature are isometric. Hence
we call any n-dimensional, simply connected, complete riemannian manifold with
constant curvature -1 (for example, (En,_(-,')); the Hyperbolic n-space and
denote it by lHn.

In this article we prove the following theorem :

Theorem A Let M be a compact, connected, oriented riemannian manifold with
constant negative curvature and dimension n 2: 3. Let D be a complete, oriented
riemannian manifold, whose connected components are (n - I)-dimensional and
simply connected and let 4> : D -+ M be a totally geodesic immersion. Then 4>(D)
is either compact or dense in M.

Let T(D) be the oriented orthonormal (n -I)-frame bundle over D, T(M) be
the oriented orthonormal n-frame bundle OVerM and 4>. : T(D) -+ T(M) be the
immersion induced from 4>. Then 4>. (T(D» is either compact or dense in T(M).

A riemannian immersion 4> : D -+ M is called totally geodesic if 4> 0 'Y is a
geodesic in M for every geodesic 'Y in D.
We shall prove this theorem using Lie groups, discrete subgroups and ergodic

transformations on homogeneous spaces. As we shall see in §2, the Theorem A
can be reformulated in the group theoretic setup as follows:

Theorem B Let G= 800(1, n), reG be a discrete subgroup such that r\G is
compact and let H = 800(1, n -1), where n 2: 3. Then every H -invariant subset
of r\G is either dense or it is a union of finitely many closed H-orbits.

Certain techniques for studying the closures of orbits have been developed in
[M2], [DMI], [DM2] and [DM3]. We shall give an elementry proof of Theorem B
closely following the line of argument$ in these references.
In the last section we shall discuss some related results of a more general

nature.

2. f! Identifications

The stabilizer of fo in 800(1, n) consists of matrices of the form

(
1 01xn) k E 80(n),

Onx1 k '

where O;x; is an i x j matrix with all entries zero. We obtain the identification ,

800(I,n)j80(n) _lHn

given by g80(n) ,.."gfo, for all 9 E 800(1, n).

Notations. Let M be an oriented riemannian manifold of dimension n. The ori-
ented orthonormal n-frame bundle overM is denoted by T(M) and the orhtonor-
mal k-frame bundle over M is denoted by Tk(M), where 1 ~ k ~ n.



Remark 2.1 Let E be an oriented n-dimensional euclidean vector space. Given
any orthonormal (n - I)-frame [vt. ... , Vn-l] in E, there exists unique Vn E E
such that [vt. ... , vn] is an oriented orthonormal n-frame in E. This shows that
for M as above, there is a canonical isomorphism, .1n-1(M) ~ .1(M).

For 1 :$ i:$ n, let ti = t(O, ... ,I, ... ,O) ERn+!, with 1 in the (i+ 1)lh
co-ordinate and 0 in all the others; here tx denotes the transpose of a matrix X.
The tangent space to En at fo, denoted by Tto(En), is spanned by {ft. ... ,fn}.
Now 80(n) acts simply transitively on the set of all oriented orthonormal n-
frames in Tto(En). Hence 800(1, n) acts simply transitively on .1(En) and we
have the identification,

e.-4 Totally geodesic immersions in manifolds of constant negative curvature

Let M be a connected, oriented, n-dimensional, complete riemannian manifold
with constant sectional curvature -1. Then the universal covering space of M
is isometric to mn. Now there exits a discrete group r consisting of oriented
isometries acting properly discontinuously on mn such that M is isometric to
r\mn. Since r c 800(I,n), by identifications 1and 2,

r\800(1, n) / 80(n) ~ r\mn ~ M,
r\800(1, n) ~ r\.1(mn) ~ .1(M).

800(1, n) ~ .1(En) = .1(mn)

given by g ~ [gft. ... ,gfn]gto C Tgto(En), for all g E 800(1, n).

Let IIf be a simply connected, complete, (n - I)-dimensional riemannian
manifold and 4> : IIf --t M be a totally geodesic immersion. The derivative
D4>: T(IIf) --t T(M) induces the immersion 4>.: .1(IIf) <-+ .1(M), where .1(M) is
identified with r-1(M) by Remark 2.1.

Let p ';mn --t M be a locally isometric covering. Since IIf is simply connected- 'there exits a totally geodesic immersion 4>: IIf--t mn such that 4>= p o~. Hence
due to identifications 4 and 5, there exits an isometry g E 800(1, n) such thatWe want to describe all totally geodesic immersions in to mn. Observe that

if L is a riemannian manifold and u is an isometry of L, then each connected
component of the u-flxed set in L is a totally geodesic submanifold of L.

For 1 :$ k :$ n - 1, consider the standard inclusions 4>(IIf)~ rg800(I,n -1)80(n) C r\800(I,n)/80(n) ~ M,
4>.(.1(IIf» ~ rg800(1, n - 1) C r\800(1, n) ~ .1(M). (6)

EA:<-+ En and 800(I,k) <-+ 800(I,n).

Using the above remark it is easy to verify that EA:is a totally geodsic submanifold
of En.

Let IIf be a simply connected, complete riemannian manifold of dimension k
and 4>: IIf --t mn be a totally geodesic immersion. Then there exits an isometry
g E 800(1, n) such that 4>(IIf)= g • EA:.In view of the identification 1, we have

Using this dual language, Theorem A can be easily derived from Theorem B.
The next four sections are devoted to giving a proof of Theorem B. Some no-
tations and preliminaries are set up in §3. The main results needed to prove
Theorem B are given in §4 and §5. And the proof of the theorem is completed
in §6.

3 Some important subgroups of 800(1, n)

Let B = (~ -I:nxn)' Then for all v,w ERn+!, (v,w) = tvBw. Hence

G = 800(1, n) is the connected component of the identity of the group

Suppose IIfas above has dimension (n-l). The derivative D4>: T(IIf) --t T(En)
induces the immersion 4>. : .1(IIf) --t .1n-1(En). Now there exits an isometry
g E 800(1, n) such that 4>(IIf)= gEn-1 and 4>.(.1(IIf» = g.1(En-l) <-+ r-1(En).
In view of the identifications 1 and 2 and Remark 2.1, we have

{g E GL(n + I,R) : tgBg = B}
4>(IIf)~ g . 800(1, n - 1)/80(n - 1) <-+ 800(1, n) /80(n),

4>.(.1(IIf» ~ g. 800(I,n -1) <-+ 800(I,n). 9 = {X E~(n+ I,R): IXB +BX=O}.
There is a right Adjoint action Ad of G on 9 given by



X.Adg=g-lXg (XEg, 9EG).

Let D = 800(1,1) C G and [) C 9 be the associated Lie subalgebra. Let

(
0 1) ( cosh t sinh t )a= . Then expta = . h ht ,for allt EIR. Now1 0 sm t COB

Remark 3.1 The maps exp : g± -+ N± are group isomorphisms, hence N±
are vector groups. Let u = exp(n+(v)) E N+. Then by Eq. 7, d,luc4 -+ 1 as
t -+ -00. Similary if v E N- then d,lVc4 -+ 1 as t -+ +00.
The group M is isomorphic to 80(n -1) and the group DM is the centralizer

of Din G.

{d(t) ~ (ta 02xn-l) : t E IR} ,
0n-lx2 On-lxn-l

{
c4 ~ (expta 02xn-l): t E IR}.

0n-lx2 Idn-lxn-l

Remark 3.2 Due to Eq. 8, the Lie subalgebras g+ and g- generate the Lie
algebra g. Hence the subgroup generated by N+ and N- is dense in G.

g+ = {n+(v) ~ ( ~ ~ ~~v) : v = ( ~l ) E IRn-1} ,
v V 0n-lxn-l Xn-l

g- {n-(v) ~ tn+(v) : v E IRn-1} ,

gO [) ffi M,
M = {m(A) ~ (02X2 02xn-l) : A + tA = o} .

On-lx2 An-1xn-l

,4.1 Ergodic transformations

Definition 4.1 Let X be a topological space and J.I, be a Borel measure on X. A
measure preserving transformation T of (X,J.I,) is called ergodic if the following
holds: for any measurable set E C X if J.I,(T(E) ~ E) = 0 then either J.I,(E)= 0
or J.I,(X\ E) = 0, where A ~ B ~ A uB \ A n B ...

With repect to the right Adjoint action of D, the Lie algebra 9 decomposes
into the direct sum of simultaneous eigenspaces as 9 = g+ ffi go ffi g-, where

The following property of ergodic transformations makes the concept of er-
godicity very useful for applications.

For all v, wE IRn-t, t E IR and (n - 1) X (n - 1) skew symmetric matrices
A, we have following commutation relations:

Lemma 4.1 Let X be a second countable topological space and J.I,be a Borel
measure on X such that J.I,(E)> 0 for any non-empty open subset E of X. Let
T be an ergodic transformation on (X,J.I,). Then for J.I,-almost all x EX, the set
{TnX}nEN is dense in X.

Proof. For a nonempty open subset E of X, define

n+(v) . Add,
n-(v) . Add,

m(A)· Add,

n+(e'v),
n-(e-'v),

= m(A)

00

X(E) = U T-n(E).
n=O

[n+(w),n+(v)]

[m(A),n+(v)]

[n-(w),n+(v)]

J.I,(T(X(E)) ~ X(E)) = O.

Since J.I,(E)> 0, by the ergodicity of T-action J.I,(X(E)) = 1.
Let 8 be a countable open base of X. Let

n+(A. v),

2a(tw. v) + 2m(w· tv - v· *w). y = n X(E).
EE8\'"

Then for all y E Y the set {TnyhEN is dense in X and J.I,(Y)= 1.
Now g+, g- and M are Lie subalgebrs of g. Let N+, N- and M be the

connected Lie subgroups assoc~ated to g+, g- and M respectively. Remark 4.1 Let X = r\G. Since r is discrete and X is compact, there exists
a probability measure J.I, on X which is invariant under the right action of G on
X (see fR, Chap. I]).



e· p(d") = X(Eod-1j = XE = e·
Let u E N+. Since p is unitary, for all k E 'll,

,4.2 Minimal closed invariant sets

It was shown by G.A. Margulis in [M2] that minimal closed invariant sets of
the action of unipotent subgroups can be used very effectively for studying orbit
closures in homogeneous spaces of Lie groups.

Definition 4.2 Let F be a semi-group acting on a topological space X by con-
tinuous transformations. If a closed subset Z of X is invariant under the action
of F and no proper closed subset of Z is invariant under the F -action then Z is
called minimal closed F-invariant. Thus, if Z is a minimal closed F-invariant set
then every orbit of F in Z is dense.

Remark 4.2 Any compact F-invariant subset of X contains a minimal closed
F-invariant subset. To see this, use Zorn's lemma along with the fact that the in-
tersection of any totally ordered (With respect to set inclusion) family of compact
sets is nonempty. This remark will be used in §6.

Lemma 4.2 (Mautner, cf. [MI]) The right action of d = dl E D on X =
r\G is an ergodic transformation on (X,tt).

Proof. Since tt is finite and G-invariant, there is a continuous unitary represen-
tation p of G on the Hilbert Space )( = l2(X, tt), defined such that for all e E )(,
g E G and tt-almost all x EX,

[e· p(g)] (x) = e(xg).

Suppose E is a measurable subset of X such that tt(E . d 6 E) = O. Let XE
denote the charecteristic function of E. Then e = XE E )( and for all k E 'll,

(e· p(u), e) = (e· p(d")p(u), e· p(d"» = (e· p(d"ud-"), e).

By Remark 3.1, d"ud-" -+ 1 as k -+ +00. Hence by continuity of p,

(e· p(u), e) = (e, e).
Thus e· p(u) = e for all u E N+. Similarly, we can show that e· p(w) = e

for all W E N-. Now by Remark 3.2, e . p(g) = e for all g E G. Thus XE = e is
constant almost every where on X. Hence tt(E) = 1 or O. This shows that d acts
ergodically on (X,tt). 0

Lemma 4.2 and Lemma 4.1 imply that almost all orbits ofD are dense in r\G.
For our purpose we will need its following consequence regarding individual orbits
(see [D2, Preliminaries] for a general statement and refe~ences).

Lemma 4.3 Every orbit of the subgroup N+ D acting on X = r\G is dense.

Proof. Let x, y E X. Since d = dl ED acts ergodically on (X,tt), by Lemma 4.1,
there exist sequences Xi -+ x, Xi E X and ni -+ 00, ni E IN such that Xidn; -+ Y
as i -+ 00. Let the sequence gi -+ 1, gi E G be such that Xi = Xgi. Since
9 = g+ ffi go ffi g-, for all large i E IN there exist Wi E N-, Vi E N+ and
Z; E DM, such that gi = ViZ;Wi and Wi, Vi, Z; -+ 1 as i -+ 00.

Now for all large i E IN,

Let H = 800(1,n - 1) C G. Now D = 800(1,1) C H. Put N1 = N+ nHand
M1=MnH.
Let Y be a closed H-invariant subset of r\G. Now H contains the subgroup

N1D and by Lemma 4.3 we know that every orbit of the subgroup N+ D is dense
in r\G. Let N2 be a one-parameter subgroup of N+ such that N+ = N2N1. In §6
we show that under certain 'local' condition, Y contains an orbit of N2• This will
imply that Y = r\G. The next proposition is a crucial step for obtaining, under
that condition, a N2-invariant subset in Y. It will be convenient to introduce
some notations to state and prove the proposition.
Let )( be the Lie algebra corresponding to H. Let )(+ = g+ n)(, oMl = oM n)(

and )(- = g- n )(. Then )( = )(+ ffi 1) ffi oMl ffi )(-. Also )(+ and oMl are the Lie
subalgebras corresponding to N1 and M1respectively.
Let P be the ortho-complement of )( in 9 with respect to the symmetric

bilinear form Q : 9 X 9 -+ JR, defined by Q(X,Y) = tr(XY). NowQ is non-
degenerate on 9 as well as on )( and it is invariant under the right Adjoint action
of G on g. Therefore 9 = P ffi )( and P is invariant under the Adjoint action
restricted to H. Let P+ = P n g+, po = P n go and P- = P n g-. Then

P = P+ ffi po ffi P-.

Let N2 be the connected Lie subgroup corresponding to the Lie subalgebra
P+. Now g+ = P+ ffi )(+ and N+ = N2N1.
Let [elo"" en-I] denote the standard ordered basis of JRn-l. Then the set

{n+(te,,) : 1 ~ k ~ n - 2} is a basis of )(+, p+ ~ n+(ten_l) is a basis of P+,
p- ~ n-(&en-d is a basis of P- and the set

Therefore XVi~; -+ Y as i -+ 00. Since x, y are arbitrary, this shows that for all
x E X the orbit xN+ D is dense in X. 0



{
O<!!.f (X _tX)'X = (On-2Xn-l) 1::;k::;n-2}PI. - m I. k· I. ek '

is a basis of pO.
Let X = f\G and Y be the closure of the given H-invariant subset in X. Then
Y is H-invariant. We want to show that either Y = X or Y is a union of finitely
many closed H-orbits.

Let Y1 be a minimal closed H -invariant subset of Y and Z be a minimal closed
N1-invariant subset of Y1• The existance of these sets follows from Remark 4.2.

Since 9 = Pffi)(, there exist a neighbourhood (f of 0 in 9 and a neighbourhood
n of 1 in G such that the map (q,y) f-+ expq·expy, (q E P n (f, y E)( n (f) is a
diffeomorphism onto n.

Fix z E Z for rest of the proof. Let g E n be such that zg E Y. Write
g = (exp q)h for some q E P n(f and h E H. Since Y is H -invariant, z exp q E Y.
Define

Proposition 5.1 (Margulis, cf. [DMI, Lemma 2.2]) Let {qi},EINC P \ P+
be a sequence such that qi -+ 0 as i -+ 00. Then there exist a one-parameter
subgroup {Ut},EIRC N1, a sequence ti -+ 00 and a non-constant polynomial cp
such that if {qi}iEIN is replaced by a suitable subsequence then for every s E ill.,
as i -+ 00,

Proof. For each i E lN, let fJiE ill., {Uk,i : 1 ::; k ::; n - 2} C ill. and OiE ill. be
such that

n-2
qi = fJip- + LUk,iP~ +O,p+.

1.=1

Now as i -+ 00 : fJ, -+ 0, 0, -+ 0 and Uk" -+ 0 for all 1 ::; k ::; n - 2. Since
{q,},EINnP+ = 0, there exists k E {I, ... ,n - 2} such that replacing {q, };EINby a
subsequence, we get fJi t- 0 or Uk" t- 0 for all i E IN. Consider the one-parameter
subgroup

12 = {q E P n (f: zexpq E Y}.

If we choose"iV~mall enough then one of the following possibilities occurs:

I. OE~.

II. 0 E Q \ {o} and 12 C P+.

III. 12 = {o}.

We shall prove that a) if Case I occurs then Y1 is dense in f\G,b) if Case III
occurs then Y1 is a closed H-orbit and it is a connected component of Y and
c) the occurrence of Case II leads to a contradiction. This shows that either
Y = X or every connected component of Y is a closed H-orbit. Note that since
Y is compact, it has only finitely many connected components. This will prove
Theorem B.

q, .Ad Ut q, + t . [q" n+ (tek)] + (t2/2) . [[q" n+Cek)], n+ (tek)]
q, + (fJ,t) . p~ + (Uk" t + fJ,t2/2) . p+.

Case I : (cf. [DM3, Prop. 8, Case a) ])

In this case there exists a sequence {q,};EINC P \ P+ such that q, -+ 0, as
i -+ 00 and zexpq, E Y, for all i E IN.max{!Uk"I t" IfJiltn = 1.

Replacing {qi};EINby a subsequence, there exist AI. A2E ill. such that as i -+ 00,

fJ,tl -+ Al and Uk"t, -+ A2• Note that max{IA11, IA21} = 1. Since fJitl -+ Al and
t, -+ 00, we have fJ, t, -+ 0 as i -+ 00.

Let cp be a polynomial defined by cp(s) = A1s + A2s2, S E ill.. Then cp is
non-constant and for every s E JR, as i -+ 00,

Step 1 Replacing {q,};EIN by a suitable subsequence, there exist a one-parameter
subgroup {UthEIR C Nb a sequence t, -+ 00 and a non-constant polynomial cp
such that far every s E ill., as i -+ 00,



{o<!!.c (X _tX)'X = (On-2Xn-1) I:::;k:::;n-2}Pk - m k k· k ek '

is a basis of PO.
Let X = r\G and Y be the closure of the given H-invariant subset in X. Then
Y is H-invariant. We want to show that either Y = X or Y is a union of finitely
many closed H-orbits.

Let Y1 be a minimal closed H -invariant subset of Y and Z be a minimal closed
N1-invariant subset of Y1• The existance of these sets follows from Remark 4.2.

Since 9 = P $}{ , there exist a neighbourhood 'If of ° in 9 and a neighbourhood
n of 1 in G such that the map (q,y) 1-+ exp q. expy, (q E P n 'If, y E }{n'If) is a
diffeomorphism onto n.

Fix z E Z for rest of the proof. Let g E n be such that zg E Y. Write
g = (expq)h for some q E P n'If and h E H. Since Y is H-invariant, zexpq E Y.
Define

Proposition 5.1 (Margulis, cf. [DM1, Lemma 2.2]) Let {q;};EINC P \ P+
be a sequence such that qi -+ 0 as i -+ 00. Then there exist a one-parameter
subgroup {U,hEIR C Nll a sequence t; -+ 00 and a non-constant polynomial r.p
such that if {q;hEIN is replaced by a suitable subsequence then for every 8 E nt,
as i -+ 00,

ProoF. For each i E lN, let 9; E nt, {Uk,; : 1 :::;k :::;n - 2} C nt and 6; E nt be
such that

Q = {q E P n 'If: zexpq E Y}.

If we choos'e '11. small enough then one of the following possibilities occurs :
n-2

q; = 9;p- +LUk,;p~+ 6;p+.
k=l

Now as i -+ 00 : 9; -+ 0, 6; -+ 0 and Uk,; -+ 0 for alII:::; k :::;n - 2. Since
{q;};EINnP+ = 0, there exists k E {I, ... ,n - 2} such that replacing {q;hEIN by a
subsequence, we get 9; '" 0 or Uk,i '" 0 for all i E IN. Consider the one-parameter
subgroup

I. OE~.

II. 0 E ~ \ {O} and Q C P+.

III. Q = {O}.
We shall prove that a) if Case I occurs then Y1 is dense in r\G,b) if Case III

occurs then Yi is a closed H -orbit and it is a connected component of Y and
c) the occurrence of Case II leads to a contradiction. This shows that either
Y = X or every connected component of Y is a closed H-orbit. Note that since
Y is compact, it has only finitely many connected components. This will prove
Theorem B.

qi' Adu, qi + t· [qi,n+(tek)] + (t2/2). [[qi,n+Cek)],n+Cek)]

qi + (9; t) . p~ + (Uk,;t + 9i t2/2) . p+.
Case I : (cr. [DM3, Prop. 8, Case a) J)

In this case there exists a sequence {qi};EINC P \ P+ such that qi -+ 0, as
i -+ 00 and zexpq; E Y, for all i E IN.max{IUk,;lt;, 19;1tn = 1.

Replacing {q;hEIN by a subsequence, there exist '\1> '\2 E nt such that as i -+ 00,
9;tl -+ '\1 and Uk,;t; -+ '\2. Note that max{I'\ll, 1>'21}= 1. Since 9; tl -+ '\1 and
t; -+ 00, we have 9; t; -+ 0 as i -+ 00.

Let r.p be a polynomial defined by r.p(s) = >'18 + '\282,8 E nt. Then r.p is
non-constant and for every sEnt, as i -+ 00,

Step 1 Replacing {q;hEIN by a suitable subsequence, there exist a one-parameter
subgroup {U,hEIR C NlJ a sequence t; -+ 00 and a non-constant polynomial r.p
such that lor every sEnt, as i -+ 00,



Step 1 (cf. [M2, Lemma 4]) Given any compact set K C N1, there exists U E
N1 \ K such that zu E zO.

ProoF. Since Z is compact and N1 is non-compact, there exists a sequence
{Ui}iEfi C N1 such that as i -. 00, ZUi -. Z' E Z and Ui -. 00. Since Z
is minimal closed Nl-invariant, z'Nl is dense in Z. Let u' E N1 be such that
z'u' E zO. Hence for all large enough i E IN, (ZUi)U' E zO but UiU' ¢ K. This
proves Step 1.

Step 2 zN1 n zO c z(N+ DM1 nO).

ProoF. Let U E N1 be such that zu E ZO. Then by Eq. 9 there exists 9 E N2HnO
such that zu = zg.

Since Vi -. I, there is io E IN such that gVioEO. Since ZVioE Y, we have

Proof. Fix s E m.. Put Yi = Z exp qi E Y and Z; = ZU"I E Z, for all i E IN.
Since Z is compact, by passing to subsequences, we may assume that as i -.00,
Z; -. z' for some z' E Z. Now by Step I, as i -.00,

YiU"1= Z; exp(U_"lqiU"J -. i exp(cp(s)p+)

Put V = exp(cp(s)p+) E N2• Since YiU"1E Y and Y is closed, z'v E Y. .
Since Z is minimal closed N1-invariant, z'N1 is dense in Z. Now N2 normahzes

Nit therefore

Step 3 Y contains an orbit of N2•

ProoF. Note that cp(O) = O. Hence we can choose F = {exp(tp+) : t ~ O} or
{exp(tp+) : t ~ o}, so that

Fe {exp(cp(s)p+) : s Em.} .

Now by Step 2, ZF C Y.
Since Y is compact, by Remark 4.2, ZF contains a minimal closed F-invariant

subset Zl' If v E N2 then there exists w E F such that wv E F and hence

ZVioU= ZUVio= zgVio E Y n zO.
Therefore by'EIl' 9 there exist v E N2 and h E H such that vh E 0 and zgVio =
zvh. Hence gVio= vh, because 00-1 n G. = {I}.

Now according to the notations in §5,

Case In: (cf. [DM3, Prop. 8, Case b) J)
In this case zH contains a neighbourhood of z in Y and hence it is an open

subset of Y. Now Y1 \ zH is a closed H -invariant subset of Y1· Since Y1 is closed
minimal H-invariant, Y1 = zH. Thus Y1 is a closed orbit of H and is a connected
component of Y. This is what wanted to show in this .case.

p+' Ad(gvio) = p+. Ad(vh) = p+ . Adh E P.

Put q = p+ . Adg. Since q E P and VioE N2 \ {I}, from Eq. 8 it follows that,
q . Ad VioE P only if q E P+. Writing 9 = v' h' for suitable v' E N2 and h' E H,
we get q = p+ . Adh'. Since P+ is the fixed point space of Ad(N1) in P and
N1DM1 is the normalizer of N1 in H, we have q E P+ only if h' E N1DM1.
Hence 9 E N2N1DM1 = N+ DM1. This completes the proof of Step 2.

By Steps I and 2, there exist U E N1 \ TI and 9 E (N+ DM1 n 0) such that
zu = zg. Then 6 = gu-1 E G. \ {I}. By Remark 3.1, there exists to > 0 such that
o.,oud,-.lE 0 and for all t > 0, o.,(N+DM1 n O)d;-l C O. Now o.,oG.d;'/ = G.d-l.

'0

Hence

Zl = Zl(WV) = ZlV
Thus Zl is N2 invariant. This proves Step 3.

Since Y is N1D invariant, by Step 3, Y contains an orbit of N2(N1D) = N+ D.
Now by Lemma 4.3, Y = X = f\G, as we wanted to show in this case.

Y n zO C z(N2H n 0) (9)

and there exists a sequence {VihEfi C N2 \ {I} such that Vi -. 1, as i -. 00
and ZVi E Y for all i E IN. Since Y is compact and f is discrete, we can choose
o small enough so that 00-1 n GII = {I} for all Y E Y, where GII denotes the
stabilizer of Y in G.

o.,o6dt;/ = (o.,ogd;;/)(o.,ou-1d;;/) E (G•.r.l n 00-1) \ {I}.
'0

This contradicts the choice of 0, for zd;.,1 E Y. Hence Case II does not occur.
This completes the proof of Theorem B. 0

Remark 6.1 Theorem B is still valid if we assume that f\G admits a finite G-
invariant measure, even though it need not be compact. In order to extend our
proof in this case, we will need to show that any closed N1-invariant subset of
f\G contains a minimal compact N1-invariant subset. A result due to S.G. Dani
and G.A. Margulis achieves precisely this (see [DMI, Corollary 1.5] and 1M3]).
Now with the help of the proof of Proposition 8 in IDM3], the reader may be able
to verify, without much difficulty, the Theorem B under the above assumption.

Case II: (cf. [DM3, Prop. 8, Case c) ])

In this case there exists neighbourhood 0 of 1 in G such that



on th~ be~aviour of the orbits of nontrivial unipotent one-parameter subgroups
contamed m H. In fact, Theorem C proves a particular case of the following very
general conjecture due to M.S. Raghunathan.

Conjecture 1 (Raghunathan) Let G be a Lie group, r be a lattice in G and
H be a subgroup generated by unipotent elements of G contained in it. Then for
~ry x E r\G, there exists a closed subgroup L of G containing H such that,
xH = xL and xL supports a finite L-invariant measure.

An element u EGis called unipotent if the map Ad u is a unipotent auto-
morphism of the Lie algebra of G. We note that if a connected subgroup H of G
is semisimple and has no connected nontrivial compact normal subgroup then
H is generated by unipotent elements of G contained in it. '
We refer the reader to the survey articles by S.G. Dani [Dl] and G.A. Mar-

gulis [Ml,M4] for various developements related to Raghunathan's conjecture.
Recently, ,~his conjecture has been proved by Marina Ratner. She first classiffied
all finite ergedic invariant measures of H on f\G (see [Ral]) and then proved
the following stronger theorem, which implies Raghunathan's conjecture.

Theo~e~ E (Ratner [Ra2], see also [DS,Sh]) Let G be a Lie group, r be
a latt.ce m G and {Ut : t E JR.} be a unipotent one-parameter subgroup of G.
Then for every x E r\G there exists a closed subgroup L such that xL is closed
XL. adm.its an L:in~ariant probability measure u and the {UthER-orbit through
x .s uniformly d.str.buted wt'th respect to u; that is, for all bounded continuous
functions f on f\ G,

Using the ideas from [M2], [DMl] and [DM2] and using the method of the proof
of the Main theorem in ISh], the following result can be proved :

Theorem C Let G = 800(1, n) and r be a discrete subgroup of G such that r\G
admits a finite G-invariant measure (i.e. r is a lattice in G). Let H = 800(I,k)
for some 2 :$ k :$ nand Y be a closed H-invariant subset of r\G. Then Y has
finitely many connected components; each of them is of the form xLCC', where
C' is a compact subset of CG(H), the centralizer of H in G, and L = 800(1, m),
k:$ m:$ n, C a compact subgroup ofCG(L) and x E X are such that xH = xLC.

In particular, if Y is the closure of a single orbit of H then Y = y(g-l LCg),
where y E Y, g E CG(H) and Land C are as above.

Theorem D Let M be a complete, connected riemannian manifold with con-
stant negative curvature and finite riemannian volume. Let D be a complete
riemmanian manifold, whose connected components are simply connected and of
dimension k ;:::2 and let tP : D -+ M be a totally geodesic immersion. Then
there exists a complete riemannian manifold L and a totally geodesic immersion
t/J : L -+ M such that the following holds :

1. L has finitely many components, possibly of different dimensions, and each
one of them has finite riemannian volume.

e. t/J(L) is the closure of tP(D) in M.
9. Let ~ : D -+ L be a riemannian immersion such that tP t/J o~' Let
~. : 1'''(D) -+ 1'''(L) be the immersion of the orthonormal k-frame bundles,
which is induced from the derivative of~. Then ~.(1'''(D)) is dense in
1'''(L).

lim -T
1rT f(xut) dt = r f duo

T-oo 10 1.,L

Note that the closure of a geodesic in M need not be the image of a closed
immersion. To give an example of such a geodesic, let p : M -+ M be the
universal cover of M and let ::y_ and ::y+ be two distinct geodesics in M such that
'Y± = po::Y± are closed compact geodesics in M. Since M is isomorphic to the
Hyperbolic n-space, there exists a geodesic::Yin M such that ::Y(-oo)= ::Y_(-oo)
and ::Y(+oo)= ::Y+(+oo). Then the geodesic "1= po::Y of M winds around "1+in
one direction and "1- in the opposite direction. Clearly, "1-U'Y U "1+is the closure
of "1in M but it is not the image of a closed immersion into M.
In the group theoretic setup, the geodesics in M correspond to orbits of the

subgroup 800(1,1) in r\G. Note that 800(1,1) does not contain any unipotent
element other than identity, while our proof of Theorem B depends crucially

Acknowledgements: I wish to thank S.G. Dani and Gopal Prasad for a number of stimu-
lating conversations and their remarks regarding Raghunathan's Conjecture. Thanks are
due. to Etienne Ghys, who suggested to me the geometric implications of Raghunathan's
conJec~ure. I ,express my thanks to A. Haefliger for providing me an opportunity to give
a talk In the Workshop on Group theory from a Geometrical View Point'. I also thank
the ICTP for its hospitality and support to participate in this workshop.

[DS] ~ani, S.G., Smillie, J.: Uniform distribution of horocycle orbits for Fuch-
sian Groups. Duke Math. J. 51, 185-194 (1984)

[Dl] ?ani, S.G.: D~namics of flows on homogeneous spaces: A survey. Proceed-
mgs of Coloqulo de Systemas Dinamicos (Guanajuato, 1983), Aportacione
Mat. 1, Soc. Mat. Mexicana, Maxico City, pp. 1-30, 1985



[D2] __ . Orbits of Horosphirical Flows. Duke Math. J. 53, 177-188 (1986)

[DMl] Dani, S.G., Margulis, G.A.: Values of quadratic forms at primitive inte-
gral points. Invent. Math. 08, 405-424 (1989)

[DM2] __ : Orbit closures of generic unipotent flows on homogeneous spaces
of SL(3,IR). Math. Ann. 286, 101-128 (1990)

H. Abels (Universitat Bielefeld, Bielefeld, Germany)
J. Barge (Institut Fourier, St. Martin d'Heres, France)
B. Bowditch (I.H.E.S., Bures sur Yvette, France)
M. R. Bridson (Cornell University, Ithaca, USA)
K. S. Brown (Cornell University, Ithaca, USA)
P. de la Harpe (Universite de Geneve, Switzerland)
T. Delzant (Universite Louis Pasteur, Strasbourg, France)
E. Ghys (Ecole Normale Superieure de Lyon, France)
P. A. Greenberg (C.I.E.A.- I.P.N., Mexico City, Mexico)
A. Haefliger (Universite de Geneve, Switzerland)
T. Januskiewicz (University of Wroclaw, Poland)
R. S. ~ul~i(,?raduate. Center, City University of New York, U.S.A.)
L. ParIs (Umversity of Wisconsin, U.S.A.)
F. Paulin (Ecole Normale Superieure de Lyon, France)
S. J. Pride (University of Glasgow, U.K.)
V. Sergiescu (Institut Fourier, Saint-Martin d'Heres, France)
N. A. Shah (TIFR, Bombay, India)
P. B. Shalen (University of Illinois at Chicago, U.S.A.)
H. Short (?raduat~ Ce~ter, City University of New York, U.S.A.)
J. R. Stalhngs (Umverslty of California, Berkeley, U.S.A.)

[DM3] __ : Values of quadratic forms at integral points: an elementary ap-
proach. L'Enseignement Math. 36, 143-174 (1990)

[Fl] Flaminio, L.: An extension of Ratner's rigidity theorem to n-dimensional
hyperbolic space. Ergod. Th. 8Dynam. Sys. 7, 73-92 (1987)

[Ml] Margulis, G.A.: Lie groups and ergodic theory. In: Avramov, L.L. (ed.)
Algebra - Some Current Trends. Proceedings Varna 1986. (Lect. Notes
Math., vol 1352, pp.13D-146) Berlin Heidelberg New York: Springer 1988

[M2] __ : Discrete subgroups and ergodic theory. In: Aubert, K.E., Bombieri,
E., Goldfield, D. (eds.) Number theory, trace formulas and discrete groups,
Symposium in honor of Atale Selberg, Oslo, 1987. New York London:
Academic Press 1989

[M3] __ . Compactness of minimal closed invariant sets of actions of unipotent
groups. Geometriae Dedicata, Special volume in honor of Jacques Tits, (to
be published in 1991)

[M4] __ : Dynamical and ergodic properties of subgroup actions on homo-
geneous spaces with applications to number theory. A Planary address in
ICM, Kyoto, 1990.

[R] Raghunathan, M.S.: Discrete subgroups of Lie groups. Berlin Heidelberg
New York: Springer 1972

[Ral] Ratner, M.: Invariant measures for unipotent translations on homogeneous'
spaces. Proc. Natl. Acad. Sci. USA 87, 4309-4311 (1990)

[Ra2] __ .' Raghunathan's topological conjecture and distributions of unipo-
tent flows. Preprint.

ISh] Shah, N. A.: Uniformly distributed orbits of certain flows on homogeneous
spaces. To appear in Math. Annalen.



INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS~~ @I . ~INTERNATIONAL ATOMIC UNITED NATIONS EDUCATIONAL, SCIENTIFIC fir ~1T~ § ENERGY AGENCY AND CULTURAL ORGANIZATION ".~

Group Theory from a
Geometrical Viewpoint

26 Marcb - 6 April 1990 ICTP, Trieste, Italy

Editors
E. Ghys
Ecole Normale Superieure de Lyon
France

A. Haefliger
Universite de Geneve
Switzerland

A. Verjovsky
ICTP, Trieste
Italy

"I)World Scientific\11 Singapore· New Jersey • London. Hong Kong


