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Unipotent flows and counting lattice 
points on homogeneous varieties 

By ALEXESKIN,*SHAHARM O Z E S , ~and NIMISHSHAH$ 

1. Introduction 

In this paper, using ergodic properties of subgroup actions on homoge- 
neous spaces of Lie groups, we study the asymptotic behavior of the number 
of lattice points on certain affine varieties. Consider for instance the following: 

Example 1. Let p(X) be a monic polynomial of degree n 2 2 with integer 
coefficients and irreducible over Q. Let M, (Z) denote the set of n x n integer 
matrices, and put 

V,(Z) = {A E M,(Z) : det ( X I  -A) =p(X)). 

Hence Vp(Z) is the set of integral matrices with characteristic polynomial p(X). 
Consider the norm on n x n real matrices given by I(z,)/ and= dm, 
let N(T,  V,) denote the number of elements of V,(Z) with norm less than T .  

THEOREM Suppose further that p(X) splits over R, and for a root a1.1. 
ofp(X) the ring of algebraic integers in Q(a) is ~ [ a ] .Then, asymptotically as 
T - m ,  

where h is the class number of Z[a], R is the regulator of @a),  D is the 
discriminant of p(X), w, is the volume of the unit ball in Rn(n-1)/2, and A(s) = 
7r-s r (~)C(2~) .  

Example 1 is a special case of the following counting problem which was 
first studied in [DRS]and [EM]: 

*Research partially supported by the NSF and the Alfred P. Sloan Foundation. 
tsponsored in part by the Edmund Landau Center for Research in Mathematical Analysis, and 

supported by the Minerva Foundation (Germany). 
$Research a t  MSRI supported by NSF grant DMS-8505550. 
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The counting problem. Let W be a real finite dimensional vector space 
with a Q structure and V a Zariski closed real subvariety of W defined 
over Q. Let G be a reductive real algebraic group defined over Q, which acts on 
W via a Q-representation p: G --+ GL(W). Suppose that G acts transitively 
on V. Let 1 1  . 1 1  denote a Euclidean norm on W. Let BT denote the ball of 
radius T > 0 in W around the origin, and define 

the number of integral points on V with norm less than T. We are interested 
in the asymptotics of N(T,  V) as T -+ co. We use the rich theory of unipo- 
tent flows on homogeneous spaces developed in [Marl], [DMl], [Ratl], [Rat2], 
[RatS], [Rat4], [Shall and [DM31 to obtain results in this direction. 

Let I? be a subgroup of finite index in G(Z) such that W(Z)r  c W(Z). 
By a theorem of Borel and Harish-Chandra [BH-C], V(Z) is a union of finitely 
many I?-orbits. Therefore, to compute the asymptotics of N(T, V), it is enough 
to consider each I?-orbit, say 0,separately and compute the asymptotics of 

Suppose that C3 = vo . I? for some vo E V(Z). Then the stabilizer H = 
{g E G: vog = vo) is a reductive real algebraic Q-subgroup, and V " H\G. 
Define 

RT = {Hg E H\G: vog E BT), 

the pullback of the ball BT to H\G. 
Assume that Go and H0 do not admit nontrivial Q-characters. Then by 

the theorem of Borel and Harish-Chandra, I?\G admits a G-invariant (Borel) 
probability measure, say p ~ ,  and (rnH)\Hadmits an H-invariant probability 
measure, say pff. Now the natural inclusion (I? f' H)\H -+ F\G is an H-
equivariant proper map. Let T: G --+ I?\G be the natural quotient map. Then 
the orbit T(H)is closed, (I? n H)\H E T(H),and p~ can be treated as a 
measure on r \ G  supported on T(H).Such finite invariant measures supported 
on closed orbits of subgroups are called homogeneous measures. Let XHiG 
denote the (unique) G-invariant measure on H \ G  induced by the normalization 
of the Haar measures on G and H. 

The following result was proved in [DRS]; subsequently, a simpler proof 
appeared in [EM]. 

1.2. 
(equivalently, H is the set of fixed points of an involution of G, and G is Q- 
simple). Then asymptotically as T --+ m, 

THEOREM Suppose that V is afine symmetric and I? is irreducible 
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Translates of homogeneous measures. For any g E G, let p ~ g  denote the 
translated measure defined as 

p ~ g ( E )= ~ H ( E ~ - ' ) ,  for all Bore1 sets E c r \ G .  

Note that p ~ g  is supported on .rr(H)g. A key ingredient in the proofs of The- 
orem 1.2 in [DRS] and [EM] is showing that if H is the set of fixed points of 
an involution of G, then for any sequence {gi) C G such that {Hgi) has no 
convergent subsequence in H\G,  the translated measures p ~ g i  get 'equidis- 
tributed' on r \ G  as i -+ oo;that is, the sequence {pHgi) weakly converges to 
p ~ .The method of [DRS] uses spectral analysis on r \ G ,  while the argument 
of [EM] uses the mixing property of the geodesic flow. However, both methods 
seem limited essentially to the affine symmetric case. It should be remarked 
that for the proof of Theorem 1.2 one needs only certain averages of translates 
of the form p ~ g  to become equidistributed. 

Motivated by this approach to the counting problem, we study the limit 
distributions of translates of homogeneous measures. We show that under 
certain conditions if for some sequence {gi) we have l i m p ~ g i  = v , then the 
measure v is again homogeneous. We give exact algebraic conditions on the 
sequence {gi) relating it to the limit measure v. Using this analysis, we show 
that the counting estimates as in Theorem 1.2 hold for a large class of ho- 
mogeneous varieties. The following particular cases of homogeneous varieties, 
which are not affine symmetric, are of interest. We first place Example 1 in 
this context. 

Example 1, continued. Note that Vp(Z) is the set of integral points on the 
real subvariety Vp = {A E M,(R): det(XI -A) = p(X)) contained in the vector 
space W = M,(R). Let G = {g E GL,(R): det g = f1). Then G acts on 
W via conjugations, and Vp is a closed orbit of G (see [New, Th. 111.71). Put 
I? = G(Z) = GL, (Z). The companion matrix of p(X) is 

The centralizer H of vo is a maximal Q-torus and HO has no nontrivial Q- 
characters. We emphasize that H is not the set of fixed points of an involution, 
and the variety Vp = H \ G  is not affine symmetric. Nevertheless, we show 
that N(T ,Vp,I?vo) XH\~(RT) .  By computing the volumes, we obtain the 
following estimate: 
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1.3. 
less than T .  Then asymptotically as T -4 oo, 

THEOREM Let N(T,Vp) be the number of points on Vp(Z) of norm 

where cp > 0 is an explicitly computable constant. 

We obtain a 'formula' for calculating cp; for the sake of simplicity, we 
calculate it explicitly only under the additional assumptions on p(X) of Theo- 
rem 1.1. See [BR]for some deeper consequences of the above result. 

Example 2. Let A be a nondegenerate indefinite integral quadratic form 
in n 2 3 variables and of signature (p, q), where p 2 q, and B a definite integral 
quadratic form in m 5 p variables. Let W = MmXn(IR) be the space of m x n 
matrices. Consider the norm on W given by lI(xij)I = dm.Define 

VA,B= {X E Mmxn(R) : XAtX = B) .  

Thus a point on VA,~(iZ) corresponds to a way of representing B by A over Z. 
We assume that VA,~(iZ) is not empty. 

The group G = SO(A) acts on W via right multiplication, and the action 
is transitive on V A , ~ .  The stabilizer of a point J E V A , ~is an orthogonal group 
HE in n -m variables. Let I? = G(Z). Then the number of I?-orbits on V A , ~ ( Z )  
is finite. Let J1, . . . ,Jh be the representatives for the orbits. 

1.4. 
with norm less than T. Then asymptotically as T --+ oo, 

THEOREM Let N ( T , V A , ~ )  denote the number of points on V A , ~ ( Z )  

where r = min(m,q), and CA,B > 0 is an explicitly computable constant (see 
equation 40). 

Remark 1.5. In some ranges of p, q, m, n this formula may be proved by 
the Hardy-Littlewood circle method, or by O-function techniques. Using our 
method one also obtains asymptotic formulas for the number of points in the 
individual orbits rJi. 

Remark 1.6. In the case m > q, the asymptotics of the number of integer 
points does not agree with the heuristic of the Hardy-Littlewood circle method, 
even if the number of variables mn is very large compared to the number of 
quadratic equations m(m + 1)/2. The discrepancy occurs because the null 
locus {X: XAtX = 0) does not contain a nonsingular real point (cf. [Bir, 
Th. 11) and so the 'singular integral' vanishes. 
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Limiting distributions of translates of homogeneous measures. The fol- 
lowing is the main result of this paper, which allows us to investigate the 
counting problems. The result is also of general interest, especially from the 
viewpoint of ergodic theory on homogeneous spaces of Lie groups. 

THEOREM1.7. Let G be a connected real algebraic group defined over 
Q ,  C G(Q) an  arithmetic lattice i n  G with respect to  the Q-structure o n  
G, and T: G --+ r \ G  the natural quotient map. Let H c G be a connected 
real algebraic Q-subgroup admitting no nontrivial Q-characters. Let p~ denote 
the H-invariant probability measure o n  the closed orbit T(H) .  For a sequence 
{g i )  c G, suppose that the translated measures p ~ g i  converge to  a probability 
measure p o n  r \ G .  Then there exists a connected real algebraic Q-subgroup L 
of G containing H such that the following holds: 

(i)  There exists co E G such that p is a ~ ~ - ~ L ~ - i n v a r i a n t  measure supported 
on  r(L)co. I n  particular, p i s  a homogeneous measure. 

(ii)  There exist sequences { y i )  c and ci -+co i n  G such that y i- lHyi  c L 
and Hgi  = Hyici for all but finitely many  i E N. 

Our proof of this theorem is based on the following observation: 

PROPOSITION1.8. Let the notation be as i n  Theorem 1.7. Then either 
there exists a sequence C i  --+ c i n  G such that pi = pHCi for all i E N ( i n  which 
case / L  = p H c ) ,  or  p is invariant under the action of a nontrivial unipotent 
one-parameter subgroup of G. 

Thanks to this proposition, we can apply the well-developed techniques of 
unipotent flows to study limit distributions of translates of homogeneous mea- 
sures, and eventually to the problem of counting lattice points on homogeneous 
varieties. It is of interest to note that much of the motivation for the extensive 
study of the behavior of unipotent flows on homogeneous spaces came from 
number theory. The celebrated Oppenheim conjecture, which was proved by 
G. A. Margulis in [Marl], concerning values of irrational indefinite quadratic 
forms at integer vectors, had led M. S. Raghunathan to formulate his conjec- 
ture concerning the closures of unipotent orbits. The Raghunathan conjecture 
as well as a measure theoretic version of it (conjectured by S. G. Dani and 
by G. A. Margulis) were proved in M. Ratner's seminal work [Ratl-41. We 
refer the reader to the ICM addresses of Margulis [Mar2], Ratner [Rat5], and 
S. G. Dani [Dan2], and a survey article of Bore1 [BorS] for a discussion of these 
and related questions. 

In order to be able to apply Theorem 1.7 to the problem of counting, we 
need to know some conditions under which the sequence { p H g i )  of probabil- 
ity measures does not escape to infinity. Suppose further that G and H are 
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reductive. Let Z ( H )  be the centralizer of H in G. By rationality ; . r (Z(H))  
is closed in r \ G .  Now if ; . r (Z(H)) is noncompact, there exists a sequence 
{ z i )  c Z ( H )  such that {;.r(zi))is divergent; that is, it has no convergent sub- 
sequence. Then p ~ z iescapes to the infinity; that is, p H z i ( K )  --+ 0 for any 
compact set K c r \ G .  The condition that ; . r (Z(H))is noncompact is equiva- 
lent to the condition that H is contained in a proper parabolic Q-subgroup of 
G. In the converse direction, we have the following (see [EMS]): 

THEOREM1.9. Let G be a connected real reductive algebraic group defined 
over Q, and H a connected real reductive Q-subgroup of G, both admitting 
no  nontrivial Q-characters. Suppose that H i s  not  contained i n  any proper 
parabolic Q-subgroup of G defined over Q. Let r c G(Q) be an  arithmetic 
lattice i n  G and ;.r: G -+ r \ G  the natural quotient map. Let p~ denote the 
H-invariant probability measure o n  ;.r(H). Then  given an  E > 0 there exists a 
compact set K c r \ G  such that p H g ( K )  > 1- E ,  for all g E G. 

The proof of this result uses generalizations of some results of Dani and 
Margulis [DM2]. Combining this theorem with Theorem 1.7, we deduce the 
following consequences: 

COROLLARY1.10. Suppose that H is reductive and a proper maximal 
connected real algebraic Q-subgroup of G. Then for any sequence {g i )  c G, 
i f  the sequence { H g i )  i s  divergent ( tha t  is,  i t  has no  convergent subsequence) 
i n  H\G,  then the sequence { p H g i )  gets equidistributed with respect to  p~ as 
i -+ oo ( that  is, p ~ g i  --+p~ weakly). 

From this consequence, we obtain the following estimate regarding the 
counting problem stated in the beginning of the introduction: 

THEOREM1.11. Let G and H be as i n  the counting problem. Suppose 
that H O  is reductive and a maximal proper connected real algebraic Q-subgroup 
of G,  where H O  denotes the connected component of identity i n  H .  Then  
asymptotically as T --+ oo 

Remark 1.12. Suppose that H is the set of fixed points of an involution 
of G. Let L be a connected real reductive Q-subgroup of G containing H'. 
Then there exists a normal Q-subgroup N of G such that L = HON. Now if 
G is Q-simple, then H 0  is a maximal proper connected Q-subgroup of G (see 
[Bor2, Lemma 8.01); hence, Theorem 1.2 follows from Theorem 1.1 1. 

In the general case, we obtain the following analogue of Corollary 1.10. 
We note that the condition that H is not contained in any proper Q-parabolic 
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subgroup of G, is also equivalent to saying that any real algebraic Q-subgroup 
L of G containing H is reductive. 

1.13. 
defined over Q, and H a connected real reductive Q-subgroup of G not  contained 
in any proper parabolic Q-subgroup of G. Let r C G(Q) be a n  arithmetic lattice 
in G. Suppose that a sequence {gi) C G i s  such that the sequence {pH . gi) 
does no t  converge t o  the G-invariant probability measure. T h e n  after passing 
t o  a subsequence, there exists a proper connected real reductive Q-subgroup L 
of G containing H, and a compact set C c G such that 

COROLLARY Let G be a connected real reductive algebraic group 

For applying this result to the counting problem, we need to know that 
averages of translates of the measure p~ along the sets RT become equidis- 
tributed as T tends to infinity; i.e., we want the set of 'singular sequences', for 
which the limit measure is not G-invariant, to have negligible 'measure' in the 
sets RT as T --+ oo. This does not hold when the sets RT are 'focused' along 
H \ L  (C H\G):  

Definition 1.14. Let G and H be as in the counting problem. For a se- 
quence Tn-.oo, the sequence {RTn ) of open sets in H \G is said to be focused, 
if there exists a proper connected reductive real algebraic Q-subgroup L of G 
containing H0 and a compact set C c G such that 

lim sup AH\G(PH((Z(HO) nr )LC)  n R T ~ )> 0,
n+m 'H\G('T~ ) 

where Q H :  G --+ H\G is the natural quotient map. 

Note that since L is reductive and defined over Q, we have that r (L )  is 
closed in r \G .  In particular, (Z(HO) n r ) L  is closed in G. Also HOZL = zL 
for any z E Z(HO).  Now since C is compact, the set qH((Z(HO) n r )LC)  is 
closed in H\G. 

Now if the focusing of {RTn) does not occur, then using Corollary 1.13 
we can obtain the following analogue of Corollary 1.10: 

COROLLARY Let G and H be as in the counting problem. Suppose 1.15. 
that H0 i s  not  contained in any proper Q-parabolic subgroup of Go, and for 
some sequence Tn --+ oo, the sequence {RTn) i s  not  focused. T h e n  given E > 0 
there exists a n  open set A c H \ G  with the following properties: 

',\,(An RTn)lim inf >1-E  
n+m ' H \ G ( ~ T ~ )  

and given any sequence {gi) c PH-'(A), i f  the sequence {qH(gi)) i s  divergent 
in H\G, then  the sequence {/.LHgi)converges t o  p ~ .  
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This corollary allows us to obtain the counting estimates as in Theo- 
rems 1.2 and 1.11 for a large class of homogeneous varieties. 

THEOREM1.16. Let G and H be as i n  the counting problem. Suppose 
that H 0  i s  not  contained in any proper Q-parabolic subgroup of Go (equivalently, 
( Z ( H )n r ) \ Z ( H )  i s  compact),  and for some sequence Tn -+oo with bounded 
gaps, the sequence { R T n )  is no t  focused. Then  asymptotically 

From the proof of this theorem we also obtain the following version on 
counting points on closed I'-orbits on homogeneous varieties in place of integral 
points: 

THEOREM Let G be a reductive real algebraic group defined over 1.17. 
Q with no  nontrivial Q-characters and I' an  arithmetic lattice with respect to  
the Q-structure o n  G. Let H be a reductive real algebraic Q-subgroup of G 
such that ( Z ( H O )  n r ) \ Z ( H O )  i s  compact. Suppose that G acts linearly o n  a 
Euclidean vector space W and there exists a point p E W such that the orbit 
p . G i s  closed and H = {g E G: pg = p). Define BT c W and RT c H\G 
as i n  the counting problem. Suppose further that for some sequence Tn + cc 
with bounded gaps, the sequence { R T n )  i s  not focused. Then  asymptotically as 
T -+ oo, 

N ( T , p r )  = I P ~n BTI - XH\G(RT). 

For Examples 1 and 2 considered above, in Section 6 we will illustrate 
the use of Theorem 1.16 by verifying the nonfocusing of {RTn) .  We note that 
the nonfocusing assumption in Theorem 1.16 is not vacuous. In Section 7, 
we consider an example, where a sequence { R T n )  is focused and the counting 
estimate is different from what is predicted by Theorem 1.17. 

In the above setup one is required to verify the condition of nonfocusing in 
Theorem 1.16 separately for each application of the result. From our examples, 
it seems that the process of computing volumes of RT itself shows how to verify 
the focusing condition. 

The paper is organized as follows: In Section 2 we prove Proposition 1.8, 
and describe the results of M. Ratner classifying measures invariant under 
unipotent flows. In Section 3, we loosely follow some ideas and methods de- 
veloped by S. G. Dani and G. A. Margulis to study behavior of the translated 
orbits .ir(H)g in r\G near images of certain algebraic subvarieties of G. The 
main result of this section is Proposition 3.13, which gives a condition in terms 
of an appropriate representation space which holds when the limit measure p is 
not the G-invariant measure. In the course of completion of the proof of The- 
orem 1.7 in Section 4, we develop a general method to derive ergodic theoretic 
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information from the above mentioned condition. The counting Theorem 1.16 
is proved in Section 5. 

We would like to thank M. Burger, S. G. Dani, G. A. Margulis, G. Prasad, 
M. Ratner, Z. Rudnick, and P. Sarnak for useful discussions. We also thank 
the referee for valuable suggestions leading to significant improvement in the 
readability of the paper. Parts of this work were carried at  MSRI, University 
of Chicago, Princeton University, Institute for Advanced Study, and Stanford 
University. We would like to acknowledge their hospitality. 

2. Invariance under unipotents and Ratner's theorem 

First we make some reductions regarding the proof of Theorem 1.7: Let 
c E G be such that ~ ( c )  E supp(p). Since p ~ g i  --+ p,  there exist sequences 
{hi) C H and {yi) C I'such that yi-lhi-lgi -+ c as i --+ oo. Therefore, to 
prove the theorem we may assume, without loss of generality, that gi = yi 
for all i E N. Let L be a minimal connected real algebraic Q-subgroup of G 
containing y i - l ~ y ifor infinitely many i E N. By passing to a subsequence we 
may assume that yi-lHyi c L for all i E N. Again, without loss of generality, 
we can replace H by ylP1Hyl and yi by ylP1yi for all i E N. Thus H c L. 
At this stage it is enough to prove the following result for G = L and the 
homomorphisms pi: H -+ L given by pi(h) = yi-lhyi (Vh E H ) :  

2.1. 
over Q and with no nontrivial Q-characters. Let r c G(Q) and A c H(Q) 
be arithmetic lattices in G and H respectively. Let pi: H --+ G (i E N) be a 
sequence of Q-homomorphisms with the following properties: 

THEOREM Let G and H be connected real algebraic groups defined 

(1) No proper Q-subgroup of G contains pi(H) for infinitely many i E N. 

(2) For every h E H(Q),  there exists k E N such that {pi(h): i E N) c G ( ~ z ) .  

(3)  For any sequence hi -+ e in H, all the eigenvalues for the action of 
Ad(pi(hi)) on the Lie algebra of G tend to 1 as i --+ oo. 

(4)  For any regular algebraic function f on G, the functions f o pi span a 
finite dimensional space of functions on H. 

(5) For all i E N, pi(A) c I?. 
Let n-: G -+ I'\G be the natural quotient map and p~ denote the G-invariant 
probability measure on r \ G .  For each i E N,let pi denote the pi(H)-invariant 
probability measure on r(pi(H)) .  Then pi 4 p~ weakly as i --+ oo. 

Remark 2.1'. By property ( 5 ) , the map n- o pi: H --+ r \ G  factors through 
the canonical map Ti: A\H -+ r \ G  for all i E N. Let p~ denote the H-invariant 
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probability measure on A\H. Then pi = ( T ~ ) *(pH), the pushforward of p~ 
under ;.ri for all i E N. 

It is straightforward to  verify that the maps pi(h) = yi-lhyi satisfy the 
properties (1)-(5); use [Bor2, Cor. 1.9, p. 541 to verify property (4). 

Invariance under a unipotent flow. A basic observation in the proof of 
Theorem 2.1 is the following version of Proposition 1.8. 

PROPOSITION2.2. Let the notation be as in Theorem 2.1. Assume that 
pi(H) # G for infinitely many i E N. Then p is invariant under a nontrivial 
unipotent one-parameter subgroup of G. 

Proof. Let g and IIdenote the Lie algebras of G and H respectively. Let 
Dpi: fj + g denote the differential of pi at the identity. First suppose that, 
after passing to  a subsequence, there exists a sequence {Xi) c f j  and Y E g\{O) 
such that as i + co, 

(3) Xi + 0 and Dpi(Xi) +Y. 
Let t E R. By property (3) of the maps pi, Ad(exptY) is a unipotent 

transformation. Put hi = exp(tXi), for all i E N. Then as i + co, 

Thus p = ,uexp(tY), and the conclusion of the proposition holds (cf. [Moz]). 
If the condition in equation (3) does not hold, the set {Dp,(X): i E N) is 

relatively compact in g for all X E fj. 
Since H is a connected real algebraic group defined over Q,by weak ap-

proximation (see [PR, Th. 7.7]), H(Q) is dense in H. Hence there exists a 
finite set S c f~ and the subgroup generated by exp(S) is Zariski dense in H. 

Take any h E exp(S). Then the set D = {p,(h): i E N) is relatively 
compact, and by property (2) of the maps p,, there exists Ic E N such that 
D c G ( ~ z ) .  Since G ( ~ z )is discrete, D is finite. Hence, by passing to  a 
subsequence, we get that p,(h) = pJ (h) for all i, j E N and h E exp(S). Since 
the group generated by exp(S) is Zariski dense in H, this shows that p, = p, 
for all i , j .  Now by property (1) of the maps p,, we have p,(H) = G for all 
i E N. This contradicts the hypothesis of the proposition, and the proof is 
complete. 

This proposition allows us to use the nice algebraic behavior of unipotent 
flows in our investigation. 

Ratner's theorem on measure rigidity of unipotent flows. To study the 
measure ,u as in Proposition 2.2, we reformulate Ratner's description [Rat31 
of finite ergodic invariant measures for the actions of unipotent subgroups on 
homogeneous spaces of Lie groups. 
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Let G be a Lie group, r a discrete subgroup of G, and T: G + r \ G  the 
natural quotient map. Let 3-1 be the collection of all closed subgroups F of G 
such that Fnr is a lattice in F and the subgroup generated by unipotent one-
parameter subgroups of G contained in F acts ergodically on T(F)2 (Fnr)\F 
with respect to  the F-invariant probability measure. 

Note that for every F E 3-1, Ad(F n r) is Zariski dense in Ad(F),  where 
Ad denotes the Adjoint representation of G (see [MS, Prop. 2.11). 

Remark 2.3. Suppose that G is an algebraic Q-group and c G(Q) is 
an arithmetic lattice in G. Then every F E 3-1 is a Q-subgroup of G and the 
radical of F is unipotent (see [Shal, Prop. 3.21). 

PROPOSITION2.4. The collection 3-1 is countable. 

Proof. See [Rat3, Th. 1.11 or [DM3, Prop. 2.11 for different proofs of this 
result. 

Let U be a unipotent one-parameter subgroup of G and F E 3-1. Define 

LEMMA2.5 ([MS, Lemma 2.41). Let g E G and F E 3-1. Then g E 
N(F,U)\S(F ,U)  if and only if the group gP1Fg is the smallest closed subgroup 
of G which contains U and whose orbit through ~ ( g )is closed in r \ G .  Moreover 
in this case the action of U on r ( F ) g  is ergodic with respect to a finite g-lFg-
invariant measure. 

As a consequence of this lemma, 

(4) T(N(F,U) \ S(F,U)) = T(N(F,U)) \ T(S(F,U)), for all F E 3-1. 

Remark 2.6. Let G and be as in Remark 2.3, and g E G(Q). Then 
g E N(F,  U) \ S(F,U) if and only if the smallest Q-subgroup of G containing 
U is g-lFg (see [Shal, Prop. 3.21). 

Ratner's theorem [Rat31 states that given any U-ergodic invariant proba-
bility measure on r \ G ,  there exists F E 3-1 and g E G such that p is 9 - l ~ ~ -
invariant and p ( ~ ( F ) g )= 1. Now decomposing any finite invariant measure 
into its ergodic component, and using Lemma 2.5, we obtain the following de-
scription for any U-invariant probability measure on r \ G  (see [MS, Th. 2.21): 

THEOREM2.7 (Ratner). Let U be a unipotent one-parameter subgroup of 
G and ,u be a finite U-invariant measure on r \ G .  For every F E 3-1, let p~ de-
note the restriction of ,u on T(N(F,U)\ S(F,U)). Then p~ is U-invariant and 
any U-ergodic component of , u ~is a g-lFg-invariant measure on the closed 
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orbit 7r(F)g for some g E N(F,U) \ S(F,U) .  In particular, for all Borel mea- 
surable subsets A of r \ G ,  

where If* c If is a countable set consisting of one representative from each 
r-conjugacy class of elements in If. 

3. Local behavior of t ranslates  of H-orbits 

In this section we study the following situation: we have a relatively com- 
pact open set R c H with a probability measure v such that the measure 
pv on R extends to a Haar measure on H, where p is a continuous function 
which is bounded above and below by strictly positive constants on 0. Given 
a sequence {gi) c G, we have maps +i: R + r \ G  given by &(h) = ~ ( h g i ) ,for 
all h E a.For each i E N, let v, E P ( r \ G )  be such that vi(E) = v(+i-l(E)) 
for all Borel sets E c r \ G .  Suppose that vi + p in P ( r \ G )  and p is invariant 
under some nontrivial unipotent one-parameter subgroup U of G. 

We want to analyze the case when the limit measure p is not the G-
invariant measure. By Ratner's description of p as in Theorem 2.7, there exists 
a proper subgroup F E If, eo > 0, and a compact set Cl c N(F,  U) \ S(F,U )  
such that p(7r(C1)) > EO.  Thus for any neighborhood Q, of 7r(C1), we have 
v(4i1(Q,))> eo for all large i E N; that is, the image of R 'spends a fixed 
proportion of time in @'. To investigate the behavior of the maps q5i near 
r ( N ( F ,  U) \ S(F, U)), we follow the methods of Dani and Margulis as in [DM31 
(cf. [Shall). This involves constructing a linear representation of G associated 
with F as follows. 

Linearixation of neighborhoods of singular subsets. Let F E If. Let g 
denote the Lie algebra of G and let f denote its Lie subalgebra associated to 
F .  For d = dimf, put VF = /Idg, the d-th exterior power, and consider the 
linear G-action on VF via the representation /Id Ad, the d-th exterior power of 
the Adjoint representation of G on g. Fix p~ E /Idf\ {O), and let 7 ~ :  G + VF 
be the map defined by qF(g) =p p .  g =p p .  (/Id Adg) for all g E G. Note that 

PROPOSITION3.1 ([DM3, Th. 3.41). The orbit p~ . is discrete in VF. 

Remark 3.2. In the arithmetic case described in Remark 2.3, the above 
proposition is immediate. 
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Now let U be a unipotent one-parameter subgroup of G. Let the notation 
be as in the previous section. First we recall a version of [DM3,Prop. 3.21. 

PROPOSITION3.3. Let AF be the linear span of q F ( N ( F , U ) )i n  VF .  Then  

~ F - ' ( A F )  = N ( F , U ) .  

Put r F  = N G ( F )fl r .  Then for any y E rF,we have .ir(F)y= .ir(F), 
and hence y preserves the volume of .ir(F).Therefore I det (Ad y I f ) 1 = 1; hence 
p~ . y  = fp F .  Now define 

The action of G factors through the quotient map of VF onto V F .  Let pF 
denote the image of p~ in VF,and define ?F:  G + VF as q F ( g )  = PF . g for 
all g E G. Then rF= ?jF-'(pF)n r .  Let AF denote the image of AF in VF.  
Note that the inverse image of AF in VF is AF.  

For every x E r\G, define the set of representatives of x in VFto be 

Using Lemma 2.5 and Proposition 3.3, we get 

R e p ( ~ ( g ) )fl AF= r g  n AF PF ' g ,  for a11 g E N ( F ,I J )  \ S ( F ,  U ) .  p ~ .  = 

We extend this observation in the following result (cf. [Shal, Prop. 6.51). 

3.4 ([DM3,Cor. 3.51). 
Then  for any compact set K c X \ r ( S ( F , U ) ) ,there exists a neighborhood Q, 
of D i n  VF such that any x E K has at most  one representative i n  Q,. 

PROPOSITION Let D be a compact subset of A F .  

Using this proposition, we can uniquely represent in the parts of the 
trajectories &(a)lying in K.  In order to understand the behavior of these 
trajectories in Q,, we need to study certain growth properties of the following 
class of functions: 

Certain growth properties for a class of functions. 

Definition. For any n E N and A > 0, let E ( n ,  A) be the collection of 
functions 4: R +Q: of the form 

n n-1 

4( t )= xx aiitlee"", for all t E a, 
i=l l=O 

where ail E Q: and X i  E Q: with l X i  1 5 A for all i .  

Let EG(n,A) be the collection of functions 8: R + G such that the follow- 
ing holds: for any 1< d < dimg and any v E /ldg,if we define 4(t)= f (v.B(t)) 
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('vt E R) ,  where f is a linear functional on /ldg,or if we define 4(t)= Ilv. 6 ( t )  1 1 2  
('vt E R ) ,  where 1 1  . 1 1  denotes a Euclidean norm, then 4 E E ( n ,  A) .  

Take m E N. Let EG(m,  n ,  A)  be the set of functions O: Rm + G such that 
for any x E Rm with llxll = 1 and any y E Rm, if we define 8( t )= O ( y  + t x ) ,  
for all t E R, then 6 E E G ( n , h ) .  

Remark 3.5. These functions arise in our study in the following context: 
Let m E N ,  and { X I , .. . , X,) c G. Define O: Rm + G by 

Then there exist A > 0 and n E N such that for any g E G, the map t HO(t)g  
belongs to  EG(m,n,A).  Here A depends on the choice of (Xi)l5ilm only up 
to an upper bound on the absolute values of eigenvalues of {Adexp(Xi ) :  i = 
1, . . . , m ) ;  while n is independent of the choice. 

The following growth property of functions in E ( n ,A) plays an important 
role in the sequel; see [EMS, Cor. 2.101 for a proof. 

PROPOSITION3.6. For any n E N and A > 0, there exists a constant 
So = So(n,A) > 0 such that the following holds: given E > 0, there exists 
M > 0 such that for any 4 E E(n,A)  and any interval I of length at most So,  

I{t E I :  I f ( t)l < ( l / M )sup I f (t>l>lI E . 111. 
t E I  

Such growth properties for polynomials of bounded degrees were used in 
many works on dynamics of unipotent flows. The next result is a basic tool 
for our analysis. 

Case of one-dimensional trajectories. 

PROPOSITION Let n E N ,  A 1 0, a compact set C c AF and an E > 03.7. 
be given. Then there exists a (larger) compact set D C AF with the following 
property: For any neighborhood Q, of D in VF there exists a neighborhood q of 
C in VF (with Q c a) such that for any 6' E EG(n ,h ) ,  any v E VF,and any 
interval I of length at most So(n,A), if v . 6'(I) $ Q,, then 

Proof. Let C be a finite collection of linear functionals on VF such that 

AF = n f €~ f - l ( 0 ) .  
By Proposition 3.6, there exists M > 0 such that for any interval J of 

length at  most So ( n ,  A)  and $I E E (n,A) ,  

I{t E J :  I$I(t)lI (11M)SUP l$I(t)01 2 E . I Jl. 
t€J 
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For R > 0, define B ( R )  = { v  E VF:llv112< R ) .  Let R > 0 be such that 
C c B ( R ) .  Put 

D = AFn B ( M .  R ) .  

For c > 0, let Z,(C) be the image of { v  E VF:  If (v)l< c, 'df E C) in VF.Now 
given a neighborhood Q, of D, there exists c > 0 such that Z,(C) n B ( M  . R )  
c Q,. Let 

!P = ZClM(C)n B ( R ) .  

Then Q is a neighborhood of C contained in a. 
Fix any v E V F ,  let ir be its image in VF.  Let J be any connected 

component of { t  E I :  V . Q ( t )E a ) .  Suppose that ir . 6'(I) $ Q,. Then there 
exists a1 E such that ir . Q(al)@ a .  Therefore either I fo(v . 6'(a1))l2 c for 
some fo  E C or Ilv. 6 ' ( ~ ~ ) 1 1 ~2 M . R.  Hence by the choice of M > 0 and since 
6' E E G ( ~ , A ) ,  

I{t E J :  l f ( v .  e(t))l  < C / M  and 1 1 ~ .( C ) I I ~ < ~ 1 1  E .  1 J I .B 
From this, equation (5) follows. 

The following result is one of the main components of our proof of The- 
orem 1.7. Similar results for unipotent trajectories were obtained in [DMl], 
[Shall, [DM3], and [MS]. 

PROPOSITION Let n E N,A 2 0, E \3.8. > 0, a compact set K c r\G 
r ( S ( F , U ) ) ,  and a compact set C c AF be given. Then there exists a (larger) 
compact set D c AF with the following property: for any neighborhood Q, of 
D in VF,there exists a neighborhood Q of C in VF (with !P c Q,) such that for 

following conditions is satisfied: 

1. There exists y E r such that p~ . yQ( I )c a. 
2. I{t E I :  ~ ( 6 ' ( t ) )  E K and pF . r . O ( t )n !P # 0)I < E .  111. 

Proof. Let a compact set D c AF be as in Proposition 3.7. Let Q, be a 
given neighborhood of D in VF.We replace by a smaller neighborhood of D, 
and by Proposition 3.4, the set Rep(x) n Q, contains at most one element for 
all x E K. By the choice of D there exists a neighborhood !P of C contained 
in Q, such that equation (5) holds. 

Now put 

(6)  E E K and p ~ .= { t  E I :  r ( Q ( t ) )  r .  Q( t )  n Q # 0). 

of length at most So(n,A), one of the EXcEG(n,A) and any interval I E 6' any 
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Let t E E. By the choice of a, there exists a unique vt E p~ .F such that 
vt . e( t )  E a .  Now suppose that condition 1 does not hold. Then for every 
t E E ,  there exists a largest open interval I ( t )  c I containing t such that 

(7)  vt . e ( I ( t ) )c and vt . B(I( t ) )6a. 
Put  Z = { I ( t ) :  t E E) .  Then for any Il E Z and s E Il n E ,  we have 
I ( s )  = I l .  Therefore for any t l ,t 2  E E ,  if t l  < t2  then either I ( t l )  = I ( t 2 )or 
I ( t l )n I ( t 2 )c ( t l ,  t 2 ) .  Hence any t E I is contained in a t  most two distinct 
elements of Z. Thus 

Now by equations (5) and (7 ) ,for any t E E ,  

Therefore by equations (8)and (9 ) ,we get 

which is condition 2 for 2 ~in place of E.  

Case of higher dimensional trajectories. To obtain a higher dimensional 
analogue of Proposition 3.8, we need the following results: 

Let m E N. Let S be the unit sphere in Rm centered at  0 and let a be a 
rotation invariant measure on S .  

LEMMA3.9. Given E > 0 there exists €1 > 0 such that for any measurable 
subset A c S with a ( A )< el .a ( S ) ,any ball B cRm, and any bo E B ,  

LEMMA3.10. Given E > 0 there exists K. E (0 , l ) such that the following 
holds: For a ball B c Rm and a measurable subset E c B ,  if lEl > K . .  IBI then 
for any bo E B, 

Proofs of Lemmas 3.9 and 3.10. Observe that it is enough to  prove the 
results for a unit ball B ,  for which the assertions are easily verified. 

The following result is a generalization of Lemma 3.10: 

LEMMA3.11. Given E > 0 there exists 7 = q ( m , ~ )E (0 , l )  such that 
the following holds: For a ball B i n  Rm and nonempty measurable subsets 
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E , F  c B,  if IEUFI > (1-7) lBI  and IEl 2 IFI, then there exis tsbo E F such 
that 

Proof. Let K E ( 0 , l )  be as in Lemma 3.10 for the given E > 0. Put 
7 = 3-(m+1)(1- 6 ) .  Let E and F be nonempty measurable subsets of B such 
that IE U FI > ( 1- 7)lBI and IEl 2 IFI. 

If ( E ( / ( B (> K ,  then by Lemma 3.10, equation (10) follows for any toE F .  
Therefore we can assume that IEIIIBI 5 K .  Recall that if m~ denotes the 
Lebesgue measure of Rm restricted to E then there exists a measurable subset 
E* c E such that IE \ E* I 0 and the Radon-Nikodym derivative of r n ~= with 
respect to the Lebesgue measure is 1 at all t E E* (see [Rud, Th. 8.61). Thus for 
a sufficiently small ball B' centered at a point of E * ,  I E nB'I > K I B'I. However, 
for sufficiently large balls B' B,  IE fl B'I 5 KIB'I,because IEl 5 K~BI.  
Therefore there exists a covering C of E* consisting of balls B' c B such that 

First suppose that F fl B' # 0 for some B' E C. Then for any toE F r- B', 
equation (10) follows from equation (11) and Lemma 3.10, applied to B' in 
place of B .  

Now suppose that F nB' = 0 ,  for all B' E C. Put D = B \ ( EUF ) .  Then 
due to equation ( l l ) ,  

(12) D B B = 1 - , for all B' E C. 
By [Rud, Lemma 8.41, there exists a finite subcollection C' c C consisting 

of disjoint balls such that 

C B > 3-m.  (E l .  
B/€Cr 

Hence using equation (12),since I E 1 > ( ( 1- 7 ) / 2 )I BI, we get 

which is a contradiction and the proof is complete. 

In the next proposition we obtain the basic property regarding the dy- 
namical behavior of E G ( m ,n, A)-type trajectories (cf. [Sha2, Prop. 5.41 in the 
case of polynomials of several variables). 

PROPOSITION Let m E N ,  > 0 ,  a compact set 3.12. n E N ,  A > 0 ,  E 

K c r \ G  \ r ( S ( F , U ) ) ,  and a compact set C c AF be given. Then  there exists 
a (larger) compact set D c .AF, and there exists 7 > 0 depending o n  E and 
m, so that for any neighborhood Q, of D i n  VF,there exists a neighborhood Xi? 
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of C contained in Q, such that for any O E EG(m,n ,A)  and a ball B C Rm 
of diameter at most So(n,A) (see Prop. 3.6), one of the following possibilities 
holds: 

1. Let BK = { t  E B: ~ ( @ ( t ) )E K ) .  Then lBKl < ( 1  - 7 ) .  IBI. 

2. There exists y E I' such that p ~ .y O ( B )  c Q,. 

Proof. For the given compact sets C and K, let D be a compact sub- 
set of AF as in Proposition 3.8 for e l ( 4 m )  in place of E .  Let Q, be a given 
neighborhood of D. We replace Q, by a smaller neighborhood of D; thus by 
Proposition 3.4, the set Rep(x) n Q, contains at most one element for any 
z E K .  Let Q c Q, be a neighborhood of C in VFsuch that the conclusion of 
Proposition 3.8 holds for e l ( 4 m )  in place of e.  

Let ~1 > 0 be such that the conclusion of Lemma 3.9 holds for ~ / 2> 0 in 
place of E .  Let 7 E (0 ,  e / 4 )  be such that the conclusion of Lemma 3.11 holds 
for el in place of e.  

Take a O E E G ( m ,n,A )  and a ball B c Rm of diameter at most So(n,A )  
(see Prop. 3.6). For every y E F, 

Note that for yl,y2 E F if p~ . yl # p~ . yz then Ayl n Ayz= 0.  

There are three cases: 

( 1 )  There exists some toE BK \ uyErAy. 

( 2 )  Aye = BK for some yo E F. 

( 3 )  There exist yl,y2 E F such that P ~ y l# p ~ y 2 ,Ari # 0 and IAyl1 < IAY21. 

Define 

{ { t o > 1 in case ( 1 )  
F = {t E B: PF - O ( t )  6Q , )  in case ( 2 )  

4 1 ,  in case (3 ) .  
Put E = BK \ F .  Note that BK n F = 8 in Case ( 2 ) .  Now suppose that 
possibilities 1 and 2 of the proposition do not hold. Then 

and F # 0. Also IF1 5 IEl. Therefore by Lemma 3.11, there exists toE F 
such that if we define 
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then 

(13) 1x1 2 (1  - E1)ISI. 
For every x E S ,  define Bx = { t  E R: t .x+to E B )  . Then by equation (13) 

and Lemma 3.9, 

Take any x E C.  Apply Proposition 3.8 for the function O(t)= O(t.x+ to) ,  
for all t E R and I = Bx.Then by the definition of C, in each of the three 
cases we conclude that possibility 1 of Proposition 3.8 does not hold. Therefore 
according to possibility 2 of Proposition 3.8, if we define 

Ax = l{t E Bx:  r ( e ( t ) )E K and Rep(r(O(t)) )n Xi? # @)I, 
then IAxl/lBxl < ~ l ( 4 m ) .Put 

A =  U ( t o + A x . x ) .  
X E  C 

Then A is a measurable subset of B .  By the polar decomposition of B with to 
as a pole, 

Now possibility 3 follows from equations (14)and (15)and the assumption 
that possibility 1of the proposition does not hold. This completes the proof. 

In the proof of Theorem 2.1, we need the following consequence of Propo-
sition 3.12. 

PROPOSITION3.13. Let m , n  E N and A > 0 be given. Let B be a 
ball of diameter at most So = So(n,A) (see Prop. 3.6) in Rm around 0. Let 
Oi: Rm + G  ( i  E N )  be mappings in E (m ,n ,A )  and A, be the probability 
measure on rr(Oi(B))which is the pushforward under rr oO, of the normalized 
Lebesgue measure on B .  Suppose that X i  + X weakly in the space of probability 
measures on r \ G .  Suppose there exist a unipotent one-parameter subgroup U 
of G and F E 7-l such that X(rr(N(F,U)))> 0 and X ( r ( S ( F , U ) ) ) .Then there 
exists a compact set D c AF such that the following holds: For any sequence 
of neighborhoods { a i )  of D in vF,there exists a sequence {y i )  c r such that 
for all large i E N ,  

Proof. Choose a compact set C1 c N ( F ,U )\ S ( F ,U )  and an E > 0 such 
that X(r(C1))> E .  Let q > 0 be as in the statement of Proposition 3.12. 
There exists a compact set K c X \ r ( S ( F ,U ) )such that 
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~t C = i jF(C1)c AF Then there exists a compact set D of AF containing 
with the property that given a neighborhood Q, of D in VF there exists 
neighborhood Q of C in VF contained in Q> such that the conclusion of 

Proposition 3.12 holds. 
By the choice of K ,  there exists io E N such that possibility 1 of Propo-

sition 3.12 does not hold for Oi, for all i 2 io. Now possibility 3 of Proposi-
tion 3.12 applied to Oi,  for any i 2 io ,says that 

Since 7r(?jF-l(Q))is a neighborhood of 7r(C1),this means Xi(n(C1))5 E ,  which 
is a contradiction for all large i E N. 

Thus for any decreasing sequence { a i )  of neighborhoods of D in VFsuch 
that niEwQi= D ,  the possibility 2 of Proposition 3.12 holds for Oi and aifor 
all large i E N. Hence there exists a sequence { y i )  c r such that equation (16) 
holds. 

Thus we can reduce the study of limits of translates of the measure p~ to 
a simpler situation in terms of finite dimensional linear representations. We 
shall carry out further analysis of the condition given by equation (16) in the 
next section. 

4. Proof of Theorem 2.1 

Let m = dim(H) and { X I , .. . , X m )  be a basis of I). Define a map 
O: Rm+ H by 

For any h E H and i E N ,  define 63:: EXm + G as @(t)= pi(hO(t)) ,for 
all t E R. By property (3)  of the maps pi ,  it follows that absolute values 
of all the eigenvalues of Ad exp(DpiXk) = Ad pi(expX k )  are bounded above 
by a positive constant independent of i E N and 1 5 Ic 5 m. Therefore by 
Remark 3.5, there exist n E N and A > 0 such that 63: E EG(m,n ,A) ,  for 
all i E N .  Let B be a ball of diameter at most So(n,A) in Rm around 0 (see 
Prop. 3.6). Let A: denote the probability measure on T ( @ ( B ) )which is the 
pushforward under 7r o Oh of a multiple of the Lebesgue measure restricted 
to B .  

It will be convenient to recall a result from [EMS,Th. 3.51 which is deduced 
from [DM3,Th. 6.11. 

THEOREM.Given m E N ,  n E N ,  A > 0,  a compact set K C r \ G ,  
R > 0,  and E > 0,  there exists a larger compact set K' C r \ G  such that for 
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any 4 E EG(m,n,il)and a ball B of diameter at most R in Rm, one of the 
following holds: 

Note that for each h E H, there exists a finite sequence {hj)5,0 c H such 
that ho = e, h, = h, and I{t E B: hj-1O(t) E hjO(B))I > EIB~for 15j 5 r. 
Now for each i E N, we apply the above Theorem for 4 = O,h' and K = K j  
to  obtain Kj+1 = K' such that $(Kj+1) > 1- E, where KO = { ~ ( e ) }and 
0 5 j 5 r. In particular, x:(K,+~) > 1- E for all i E N. 

Any compact subset of H is covered by finitely many sets of the form 
hO(B), where h E H .  Therefore by Remark 2.1' there exists a compact set 
K' c r \ G  such that pi(K1) > 1 - E for all i E N. Now by passing to  a 
subsequence, there exists a probability measure p on r \ G  such that pi + p 
weakly as i + co. 

By Proposition 2.2, p is invariant under a nontrivial unipotent one-param- 
eter subgroup, say U ,  of G. By a version of Ratner's Theorem as in Theo- 
rem 2.7, there exists F E 7-l such that ~ ( T ( N ( F ,  U))) > 0 and p ( r (S (F ,  U))) = 
0. 

Since H(Q) is dense in H, a given compact subset of H can be covered 
by finitely many open sets of the form hO(B) with h E H(Q). Therefore by 
passing to a subsequence, there exists h E H(Q) such that {A:) converges 
weakly to a probability measure Ah and x~(T(N(F,U))) > 0. 

There exists a constant c > 0 such that for any Bore1 measurable set 
A c r \ G ,  we have A: (A) < cpi (A) ('di E N). Hence Ah is absolutely continuous 
with respect to p. Therefore Ah (T(S(F,U))) = 0. 

Now by Proposition 3.13, there exists a compact set D c .AF, a decreasing 
sequence of relatively compact neighborhoods Qi of D in VF with n z l Q i  = D, 
and a sequence {yi) c r such that for all i E N, 

Let R' = hQ(B)nH(Q). Let S be the collection of all real valued functions 
on R' of the form 

w f (PF .YP~(w)) ,  
where y E G, i E N, and f is a real linear functional on VF which factors 
through VF + VF. By property (4) of the maps pi, S spans a finite dimensional 
space of functions on 0'. Therefore there exists a finite set C c R' such that 
for any 4 E S, if 4(C) = 0 then +(R1) = 0. 

Now for any s E C and i E N, 
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By property (2) of the maps pi, there exists Ic E N such that {pi(s): i E N, s E 
C) c G ( ~ z ) .  Since p ~ y  . G ( ~ z )is a discrete subset of VF and Q1 is bounded, 
by passing to a subsequence, we may assume that 

p~ . ~ i ~ i ( s )  . for a11 i E N, s E C.= p ~ y 1p 1 ( ~ ) ,  
Therefore by the choice of C, for all w E R', 

(17) p ~ y i. pi ( w )  = P F Y ~. p1(w) , for all i E N.  

Since H(Q) is dense in H and hO(B) is open in H, equation (17) holds for all  
w E hO(B). 

Now putting w = e in equation (17), we get pFyi = p ~ y l .Thus 

(18)  P F Y ~  . pi (g) = ~ F Y I. PI (g) c @i, for all i E N, g E hO(B). 
Since n g l Q i  = D, we have that 

Therefore by Zariski density of hO(B) in H and Proposition 3.3, 

~ 1 ~ i(H)C N(F ,  U), for all i E N. 

Replacing F by y l - l ~ y ~ ,  we obtain that 

(19)  pi(H) c N(F,  U), for all i E N. 
Take any i E N. Let L E 3-1 be of minimal dimension such that L cF and 

pi(H) c N(L,  U). By definition 

S(L, U) = U {N(L1, U): L1 E 3-1, L1 c L, dim L1 < dim L). 

Since H is a connected real algebraic group, each pi(H) is an irreducible real 
subvariety of G. Therefore if pi(H) c S(L,  U) , then pi(H) c N(L1, U) for 
some L1 E 3-1 with L1 c L and dim L1 < dim L. This contradicts the choice of 
L. Hence pi(H) S(L,  U). Thus pi(H(Q))\S(L,  U) is Zariski dense in pi(H). 

Let w E pi(H(Q))\ S(L, U). By Remark 2.6, the smallest Q-subgroup of G 
containing U is w - l ~ w .  Since U c L, by dimension considerations wP1Lw c 
L. Thus w E N(L). Now by Zariski density, 

Since L is the smallest Q-subgroup of G containing U, it is determined 
independent of the choice of i. Therefore equation (20) holds for all i E N. 
Therefore by property (1) of the maps pi, we have G = N(L). In particular, 
N(L,  U) = G. Since L c F and N(F,  U) \ S(F,U) # 0, we have L = F .  Now 
since p(.lr(S(F, U)) = 0 by Theorem 2.7, every U-ergodic component of p is 
F-invariant. Hence ,u is F-invariant . 

Now we project everything onto F \G ,  and use induction on dim(G) as 
follows. Put G = F\G.  Then G is a connected real reductive group defined 
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over Q, and the quotient homomorphism 4: G + G is defined over Q. Put 
i='= 4(r ) .  Then i? c G(Q) is an arithmetic lattice in G. Put Pi = 4 o pi for 
all i E N. Note that the properties (1)-(5) continue to hold for the maps pi. 
Let q: r \ G  -t r \ G  and F: G -t r \ G  be the natural quotient maps. Then 
qo r r=Fo(p .  

Let q,: P ( r \ G )  + p(r\G)be the pushforward map induced by q from 
the space of (Borel) probability measures on r \ G  to that on p\G. This map 
is continuous with respect to the topologies of weak-star convergence on both 
the spaces. Let pi = q*(pi) and ji = q,(p). Then pi is the pi(H)-invariant 
probability measure supported on F(pi(H)),and Pi -+ P. 

Since U c F and dim U > 0, we have that dim G < dim G. Therefore 
to prove the theorem by induction on dimG, we can assume the validity of 
the theorem for G in place of G. Therefore ji is the G-invariant probability 
measure on p\G. Since F = ker4 and ,u is F-invariant, we have that p is 
G-invariant. This completes the proof of the theorem. 

Remark 4.1. From the above proof, it follows that G contains a normal 
subgroup F fX such that G = HF. 

5. Applications to the counting problem 

In this section we deduce the consequences of Theorems 1.7 and 1.9, and 
prove the counting Theorem 1.16. First we need some lemmas. 

Let G, H, and L be connected real algebraic groups such that H c L cG. 
Define 

Z(H,  L) = (g E G: 9 - l ~ ~c L). 

In view of Theorem 1.7, we want to understand the set Z(H,L) nr,when 
G, H and L are defined over Q. 

LEMMA5.1. Suppose that at least one of G, L and H is  reductive. Then  
Z(H,L) is a union of finitely many closed double cosets of the form Z(H) . g .L, 
where g E Z(H,L).  

Proof. Observe that Z(H,L) is a real subvariety of G. Therefore it has 
finitely many closed connected components. Take any g E Z(H, L). Put  
H1 = g-I ~ g .Then H1 c L and Z(H,L) = g . Z(H1,L). It is enough to show 
that Z(H1)L contains a neighborhood of e in Z(Hl,  L). 

Let g, f i ,  and I denote the Lie algebras of G, H1,and L, respectively. Let 
X E g be a vector tangent to Z(Hl,  L) at  e. Then 
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If either G or L is reductive, let I' be the ortho-complement of I in g 
with respect to the Killing form. Otherwise, if H1 is reductive, let I' be an 
Ad(H1)-invariant complementary subspace of I in g. In both the cases, 

g =  I @ [  ' and ~ d ( ~ l ) ( I ' ) = l ' .  

Therefore, 

[I, b] C I and [ IL ,  g] c t'. 

Write X = XI +X2, where X1 E I and X2 E t'. Then by equations (21) and 
(22), 

[X2,bl = 0. 

This shows that X E I + 8, where a, is the Lie algebra of Z(Hl).  Thus at  the 
identity, the tangent space of Z(H1,L) is contained in the tangent space of 
Z(H1) . L. By definition Z(H1)L c Z(H1,L). Therefore Z(H1)L contains a 
neighborhood of e in Z(H1,L). This completes the proof. 

LEMMA5.2. Let G, H, and L be connected reductive real algebraic groups 
defined over Q such that H c L C G. Let r c G(Q) be an arithmetic lattice 
in G. Then there exists a finite set D c Z(H,L) nr such that 

Z(H,L) nr = (z(H) n r )  . D . (L nr ) .  

Proof. By [Borl, Prop. 7.71, there exists a vector space V with a Q-
structure, a point p E V(Q), and a rational representation of G on V such 
that the orbit G .p is closed in V and L = {g E G: g .p = p). By Lemma 5.1, 
A = Z(H,L ) p  is a union of finitely many closed Z(H)-orbits. Since Z(H) is 
a reductive real algebraic group defined over Q, by [Borl, Th. 9.111, the set 
A nr . p is a finite union of Z ( H )  n r-orbits. Hence there exists a finite set 
D c I? such that 

Z(H, L) n r L  = (Z(H) n I')DL. 

Now the result follows. 

Proof of Corollary 1.13. By Theorem 1.9, after passing to a subsequence, 
{ ~ ~ g i )converges weakly to a probability measure p on r \ G .  By Theorem 1.7, 
after passing to a subsequence, there exist a Q-subgroup L' of G containing H 
and sequences {y,!) c r nZ(H,L') and c: + cb such that Hgi = Hy,!c!,,for all 
i E N. Since H is not contained in any proper Q-parabolic subgroup of G, we 
have that L' is reductive. By Lemma 5.2, after passing to a subsequence, there 
exist y E Z(H,L) n and a sequence {yi) c Z(H)nr such that y,l = yiyL1for 
all i E N. Put L = y ~ ' y - l ,co = ycb and ci = yc; for all i E N. Then H c L, 
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ci -+ CO, and 
ffyi-lgi = y i - l ~ g-- y i - l ~ y , ! ~ ;c H~L'C:= L C ~ ,  

for all i E N. Hence gi E yiLci, for all i E N. 

Proof of Corollary 1.15. In view of Remark 4.1, let L be the collection 
of subgroups of G of the form HF, where F E 'FI and H c N(F) .  Since 3.1 
is countable, we can write L = {Li)iEn. Let C = {Ci)iEwbe an increasing 
sequence of compact subsets of G such that G = UiEwCi.For every k E N, put 

Since { R T , ) ~ ~ Nis not focused, for every k E N there exists nk E N such that 

Therefore the set 
J4 = UE,(Rn,+, \ Bk) 

satisfies equation (2). 
Let a sequence {gi) C q ~ - '(A)be such that {qH(gi)) is divergent in H\G.  

Then for every n E N, there exists in E N such that qH(gi) 6Rr, for every 
i > in. Therefore for any compact set C c G and any L E L', 

Hence by Corollary 1.11, p is G-invariant. 

Correspondence between counting and translates of measures. We recall 
some observations from [DRS, Sect. 21; see also [EM]. Let the notation be as in 
the counting problem stated in the introduction. For T > 0, define a function 

where XT is the characteristic function of BT. By construction FTis left r -
invariant, and hence it will be treated as a function on r \G .  Note that 

Since we expect, as in Theorem 1.2, that 

we define 
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Thus Theorem 1.16 is the assertion 

The connection between Theorem 1.16 and Corollary 1.15 is the following 
proposition: 

PROPOSITION Let the notation and conditions be as in Theorem 1.16. 5.3. 
Then FT, :r, 1 in the weak-star topology on Lm(I'\G,pG); that is, (FT,,+)+ 

(I,$) for any compactly supported continuous function $ on r \ G .  

Proof. As in [DRS, Sect. 21, 

is a function on H\G. 
Let E > 0 be given. Since the sequence {RT,) is not focused, we obtain 

a set A cH \ G  as in Corollary 1.15. Break up the integral over RTn into the 
integrals over RT, n A and RTn \ A. By equation (2) and the boundedness 
of $, the second integral is O(E). By Corollary 1.15, for any sequence {gi) c 
qHP1 (A), if {qH(gi)) has no convergent subsequence in H \G,  then p ~ . g i  + p ~ .  
Hence ,-

We use dominated convergence theorem to justify the interchange of limits. 
Now 

1 
= lim / (d,1)~ X H \ G+ O(E) 

n'm X ~ \ ~ ( R ~ , )R T , ~ A  

Since E is arbitrary, the proof is complete. 

PROPOSITION 5.4. There are constants a(6) and b(6) tending to 1 as 
6 -+ 0 such that 

5 lim Sup XH\G(R(~+G)T)b(6) 5 lim inf XH\G(R(~-~)T) 5 ~ ( 6 ) .  
T+W XH\G(RT) T+W XH\G(RT) 
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For a proof, see Appendix A. 

Proof of Theorem 1.16. Combining Propositions 5.3 and 5.4 exactly as 
in [DRS, Lemma 2.31, we obtain that FT~ -+ 1 pointwise on r \ G  as i -+ cm. 
As we observed before, this completes the proof. 

6.  Examples 

Given a "counting problem", i.e., the problem of estimating the number 
of lattice points on a homogeneous variety V = pG as described in the intro-
duction, in order to apply Theorem 1.16 we need to: 

1. Verify that the centralizer Z(HO)of the component of the identity of the 
stabilizer is anisotropic over Q; that is, r (Z(HO))is compact. 

2. Verify that for any sequence Ti+ cm, the sequence {RT,) in H \G of 
pull backs of balls of radii Tiaround the origin is not focused (see Defi-
nition 1.14). 

In this section we verify these conditions for the examples discussed in .the 
introduction and complete the proofs of the counting estimates given there. 

Example 1. 

Proof of Theorem 1.3. Let D be the centralizer of vo in Mn(R). Since the 
eigenvalues of vo are distinct, D is an abelian algebra of dimension n. Also D 
has a natural Q-structure, and hence Q-dim(D(Q)) = n. 

Let a be a root of p(X). Then (1,a , .  . . ,an-') is a Q-basis of the field 
Q(a).  The multiplication by any x E Q(a) can be expressed as a matrix Cx 
with respect to this basis. Since C, = vo, we have that Cx E D(Q) for all 
x E Q(a).  By dimension considerations, the linear map C: Q(a) -+ D(Q) is 
an isomorphism of algebras over Q. Let Norm: Q(a)  + Q be the norm map. 
Then Norm(x) = det(Cx) for all x E &(a).  

Let H be the stabilizer of vo in G. Then H = D n G. Hence H(Q) = 
ker(1 Norm I ) .  Also CP1(H(z))is a subgroup of finite index in the group of 
units in Q(a). Since the units in Q(a)  form a lattice in the group of unit norm 
elements, we have that H(Z) \H is compact. Hence H0 is Q-anisotropic. Since 
the dimension of H is n -1, we have that H0is a maximal connected real torus 
in G defined over Q. Since a maximal Q-torus of a proper Q-parabolic subgroup 
admits nontrivial Q-characters, H0 is not contained in a proper Q-parabolic 
subgroup of G. 

Thus in order to apply Theorem 1.16 to complete to proof of the present 
theorem, it remains to compute the volume growth of the pullback sets RT, 
and to verify that they are not focused. 
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Reduction to the diagonal case. Suppose that p(X) has r > 0 pairs of com- 
plex conjugate roots, say X I ,  XI,. . . ,AT, X,, and s > 0 real roots, say p1,. . . ,p,. 
Then 2r + s = n. Suppose that Xk = xk + iyk, where xk, yr, E R, 1 5 k 5 r .  
There exists go E G such that 

(24) = v = d i g  (( ) , . . . ) ( xr yT ) )
-Y1 21 -Yr XT , P l , . . . , P s  . 

The stabilizer Hl of vl in G consists of elements of the form 

= i a g ( t ( c O s o l  c o s ~ ~  -sin cos 6,-sin& s i n " ) , . . . , t r (  COSO,6, sin& 

where n:=fsti = &I, t j  E R X ,  and Ok E W. Note that the map 4: Hl\G -+ 
H\G, defined by +(Hlg) = H(gog), for all g E G, is G-equivariant. For T > 0, 
define 

R$ = {Hlg E Hl\G: Ilg-'vlgll < T). 

Then RT = 4(R$)and XHiG(RT) = Note that conjugation goV O ~ ~ ~ \ ~ ( I ? & ) .  
preserves the Haar measures on H and HI.  

Haar integral on H1\G. Let N be the group of elements of the form 
n = (nij)i,j=l,...,r+sE SLn(R), where 

nij = 0 if i < j and nii is the identity matrix for each i. 
Let 

M = {diag(Ml, . . . ,MT,tl, . . . ,t,) E G: Mi E GL2(R), ti E WX). 

Then M N  is a standard parabolic subgroup of G. Hence G = M N K ,  where 
K = O(n). 

Let A be the maximal R-split torus in HI. Then H1 = A(K nHI)  and 
M E A x SL2(R)T. Let 

By Cartan decomposition of SL2(R), we have M = A(Kn M ) B ( KnM). Since 
K nM = K n HI, we get M = H I B ( K  nM).  Let dm be a Haar integral on 
M such that for any f E C,(M), 

where dh, db, and dkl are Haar integrals on HI, B and K nM ,  respectively, 
and b as in equation (26). 
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Since M normalizes N ,  we have that G = HIB N K .  Now let X H 1 i G  be 
the G-invariant measure on H1\G such that for any f E C,(H1\G), 

where dn and dk are Haar integrals on N and K ,  respectively, b as in equa- 
tion (26), and each dai is the Lebesgue integral on R. 

Coordinate description of R;. Note that R$ corresponds to the set 

{(b, n ,  k) E B x N x K: Iln-'b-lvlbnll < T). 

If we express 
b-lulb = diag(z1, . . . ,zr+,), 

then by equation (24), 

where b = (al?  a1-l, . . . ,ar ,  aT-l, 1,.. . , I ) .  
As in equation (25), for n = (nu) E N ?  if we express n-I = (nij) E N ,  

then 

where fij depends only on {nkl: k < 1 and 1 - k < j - 2) .  

NOW if we express n-l (bP1vl b)n = ( ~ ~ j ) ~ , j = ~ , , , , , ~ + ~ ,then 

where 

(29) 
Aij depends only on {zk: 1< k 5 r + s )  U {nkl: k < 1 and 1 - k < j - i ) .  

Thus R$ corresponds to the set 

(30)  {(b, n,  k) E B x N x K: + I(wu\ I 2  < T ~ ) .  
l<i<r+s l<i<j<r+s 
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Asymptotics of XH1\~(R&).  For i < j, let Lij denote the linear transfor- 
mation which takes the matrix nij to the matrix fiij = -nijzj + zinij. Then 
the eigenvalues of Lij are 

Hence the Jacobian of the transformation on N which sends (nij)i<j to (fiij)i<j 
is 

Now wij = fiij +Aij for all i < j .  By (29), the Jacobian of the transforma- 
tion which takes (nij)i<j to (wij)i<j is the constant J. Note that llzill N Iyila" 
as ai + cc for 1 5 i 5 r and I I z ~ + ~ =~ ~ for 1< k 5 s. Now using (30) and 
the change of variables (nij)i<j H (wij)i<j, we get that asymptotically 

where wn is the volume of the unit ball in EXn(n-1)/2. 

Nonfocusing of the sets RT. Now let L be the component of identity of 
the EX-points of a proper connected (reductive) Q-subgroup of G containing 
HO. Put L1 = g0-l Lgo. Then L1 > HI. From the structure of HI,one verifies 
that each irreducible subspace for the adjoint action of H1 on the Lie algebra 
of L1 is in fact invariant under the adjoint action of M .  Put Li = MOL~. 
Then Li is a proper reductive subgroup of G. Since MO contains the full 
diagonal subgroup of Go = SLn(R), we have that Li is the Levi part of a 
proper parabolic subgroup of SLn(EX). Hence Li is the Levi part of a standard 
parabolic subgroup associated to a permutation of the standard basis of EXn. 
Therefore the simple components of Li are SL,(EX), where m < n,  and H1 
intersects each one of them in a maximal torus. Therefore by the computation 
as above for each m in place of n ,  we conclude that for any compact set C c G, 

Since dimLi < dim(SLn(EX)) and B c Li,  we have that N @ L1; hence, 

Therefore 
lim XHl\G(~;C nR & ) / A ~ , \ ~ ( R $ )0.= 

T-cc 

Hence for any compact set C c G, 
lim XqG(LC nRT)/XH\G(R~)= 0. 

Tho0 

Thus the sets RT are not focused along any Q-subgroup L of G containing H. 
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Applying the counting theorem. Now we can apply Theorem 1.16 to con-
clude that 

vol(H n r \ H )
N(T, Vp, rvo) - vol(r\G) v o l ( R ~ )  

Hence 
N (T,V,) N c , T ~ ( ~ - ' ) / ~ ,  

where cp > 0 is an explicitly computable constant. This completes the proof 
of Theorem 1.3. 

As we mentioned earlier in the introduction, for the sake of simplicity we 
assume that all roots of p(X) are real and ~ [ a ]is the ring of integers in Q(a) ,  
where p(a)  = 0, and give a formula for c,. 

Proof of Theorem 1.1. Let XG and AH be any Haar measures on G and 
H, respectively. Let XHiG be the G-invariant measure on H \ G  such that for 
any f E Cc(G), if we put f ( ~ ~ )= JH f(hg)dXH(h) for all Hg H\G,  then 
f E Cc(H\G) and 

f d X ~= 1 fdXH\G. 
H\G 

Similarly, the choice of XG and AH determines volume forms on r \ G  and 
H(Z)\H. Let CG and CH denote the volumes of r \ G  and H(Z)\H, respectively. 
In view of the normalizations of the Haar measures on G and H, as chosen in 
the counting Theorem 1.16, we obtain that asymptotically 

Choice of XG and AH. Let D denote the full diagonal subgroup of GL, (R). 
Fix a Haar integral such that dx = n2=l dxi/xi on D ,  where x = (XI , .. . ,x,) 
and each dxi is the Lebesgue integral on R. Put HI = D n G. Fix a Haar 
integral da on H1 such that dx = t-ldtda, where x = tllna, t = I det X I ,  and 
a E HI. Let K = O(n) and N be the group of upper triangular unipotent 
matrices in GL,(R). Let dk be the Haar integral on K such that JK ldk = 1. 
Let dn = n,,j dnij be the Haar integral on N ,  where n = (nij) and dnij is 
the Lebesgue integral on R. In view of the Iwasawa decomposition G = KNA, 
the integral dg = dkdnda is a Haar integral on G. We choose XG such that 
dXG(g)= dg on G. Let go E G such that H1 = go-lHgo. We choose AH such 
that under the Adgo action the Haar integral dXH on H maps to the integral 
da on HI. 

Volume computations. Using [Terra,  Ex. 21, Eqn. 4.40, Th. 41, we de-
duce that 

(32) cG = 24,-1) fi A(k/2), where A(s) = i iST(s)<(2s) .  
k=2 
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Since we assume that Z[a] is the ring of integers in Q(a) ,  we have that 
C-'(H(z)) is the group of units in Q(a). By [Lang, Sect. V.l ,  p. 1101, if R is 
the regulator of Q(a) ,  then 

Since all roots of p(X) are real, we follow the computations in the proof of 
Theorem 1.3, and obtain asymptotically as T + 0 

where D = nifjp i  - p j  1 is the discriminant of p(X) and {pl , .  . . ,pn) are the 
roots of p(X). 

By [New, Th. 111.141, the number of distinct I?-orbits in V,(Z) is the class 
number, say h, of Z[a]. 

Thus by equations (31), (32), (33), and (34), asymptotically 

Example 2. 

Proof of Theorem 1.4. Fix 5 E Let WEbe the m-dimensional 
subspace of Rn spanned by the rows of 5. Since 5Ay  = B is definite, the 
restriction of A to WEis definite. Choose an orthonormal basis for Wt with 
respect to A, and extend it to a basis of Rn such that the matrix of A takes 
the form 

where Jois a (n -m) x (n -m) diagonal matrix whose diagonal entries are 
f1's. In this basis 5 = (50,O) ,  where toE M,,,(R). Let H be the stabilizer 
of J in G and M = z(H'). Then 

where Ho E SO(Jo) and Mo E SO(m). In particular T(z(H')) is compact. 
In order to apply Theorem 1.16, it remains to show that the pullback sets 

{RT) are not focused, and to calculate their volume growth. 
Let 19 denote the Cartan involution B(g) = tg-'. Let K = {g E G: B(g) = 

g). Then K is a maximal compact subgroup of G and M c K. Let a be the 
involution of G = SO(A) defined by 
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Note that 80 = 08. Also the fixed point set of a is H = H M .  Thus H 
is an affine symmetric subgroup of G. There exists an R-split torus A such 
that a (a )  = a-l = 8(a) (Va E A) and G = HAK (see [Sch, Ch. 71). Thus 
H\G/K Z M x A. As we shall see, the nonfocusing of the sets RT will follow 
from the fact that they grow at the same rate in all directions of A. 

A-root-space decomposition of Lie(G). Let r = min(rn, q). Write matrix 
of the quadratic form A as 

where J1 is a diagonal matrix with A1 in each diagonal entry and I is the 
identity matrix. Note that in the above matrix, and all that follows, the first 
and the third columns are r elements wide, and the second column is n - 2r 
elements wide. Then ~ i e ( ~ )  is 

:: ) : t = ( t l  . . . ,t )  E RT, At = diag(tl, .  , t r )  
6 = { = ( E t  

0 AtE 

where E is a matrix with 1 in each anti-diagonal entries and 0 elsewhere. Put 
I O E( E 0I -Io ) .  

(Then 
O O E 

J ~ A J= 0 Jl 0 and J-'&J= 
E O O  

) 
0 0 -EAtE 

Put g = Lie(G) = BO(A),then 

where X, and the Y,  are arbitrary, the Zi E 50(E),and W E so(J1). Thus the 
positive roots C+(g, 6) obtained by diagonalizing 6 on g are given by: 

ti - t j  (dimgp = 1) ( l l i < j l r )  
(36)  P(&) = { ti + t j  (dim gp = 1) ( l l i < j l r )  

ti ( d i m g p = n - 2 r )  (1 < i  I r ) .  
Therefore the half sum of the positive roots is 

T 

(37)  p(kt)  = (112) C(n- 2i)ti. 
i=l 
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Haar measure on H\G. We will use a formula for a G-invariant integral 
d(Hg) on the symmetric space H\G (see [Sch, Th. 8.1.11): 

where ii+ is the positive (closed) Weyl chamber in 6, 

a(&) = (cash P(Ht ) )qpn (sinh ~ ( i t ) ) ~ '  , 
P 

p runs over the positive roots C+(g, a), and dimgp = pp + qp. 
Since H = H M ,  using the above formula a G-invariant integral d(Hg) on 

H\G is given by 

As t -+ +oo, both sinht and cosh t are asymptotic to (112) exp t. Therefore in 
the interior of ii+ , asymptotically 

Coordinate description of RT. Put ai = exp(ti), and express (al ,  . . . , a,) = 
qw, where w E ST-'. We will use the notation D,, = exp(&). 

Claim 1. The limit 

(39) X(m,w) = ;i",(1Iq)IIt . mD,wklI 

exists, it is independent of Ic E K, and the convergence is uniform in the 
parameters m E M and w E s:-', where ~1;'= ST-'n exp ii+. Moreover the 
function X(m, w) is continuous and bounded away from 0. 

To prove the claim, write 

IIt.mD,,kll = II(J~~~,O).JJ-'D,WII 
= II(tomo,+) . J-'D,WII 

= qll(tomo)1 . J-'D,II + 0(1), 
where mo E Mo, + E Mmx(n-m)(R) is bounded, and ([omo)l is the matrix 
obtained by replacing the last n - r columns of (tomo, 0) by 0. Thus 

lim (l/q)IIJ. mD,,kll = Il(tomo)i . J-'DWII 
V'W 

and the claim follows. 

Claim 2. Asymptotically, vol(RT) N c A , ~ T  where~(n-,-I) ,  
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To prove the claim we express 

dm dlc dw dq. 
= J K  L ; - I  <o. rnD, ,k tT)  S(Dnw W1".WT 

By Claim 1, and equations (38) and (37), asymptotically 

This proves the claim. 

Nonfocusing of the sets RT. 

Claim 3. Let L be a connected reductive real algebraic subgroup of G 
containing H .  Then O(L) = L, (recall that B(g) = tg-'). 

To prove the claim, let B1 be a Cartan involution of G stabilizing L. Since 
H c L is reductive, there exists 1 E L such that O2 = i;lO1il stabilizes H, 
where il is conjugation by I. Since 0 restricted to H is a Cartan involution 
of H, there exists h E H, such that 0' = ih1B2ih agrees with 9 on H .  Note 
that B1(L) = L. Since 0 and 0' are Cartan involutions of G, 8' = i,8ig1 for 
some g E G. Let gl = g-lO(g). Then 0' = ig,B. Since 9 and 8' agree on H, 
g1 E Z(H)  = M. 

Let P = {p E G: B(p) = p-l). By Cartan decomposition, G = P K  and 
K f l  P = {e). Write g =pk for p E P and k E K .  Then gl =p2 E P .  

But M nP = {e). Therefore gl = e, and hence 0 = 0'. Thus O(L) = L 
and the claim holds. 

Claim 4. The sequence {RT,) is not focused for any sequence Ti-+ oo. 

Now suppose that {RT,) is focused along a proper connected reductive 
real algebraic subgroup L of G containing H .  Let I = Lie(L), 4 = Lie(H) and 
e = Lie(K). With respect to the Killing form on g, let q = bi, p = ti, and 
q~ = I' np nq. Since O(L) = L, by Theorem A.1, L = Hexp(p n q n I)KL and 
G = LexpqLK. 

Now let C c G be a compact set. Then there exists a compact set c c q ~ ,  
such that 

Put  
A = {(m, w) E M x S;-l: m ~ , m - '  E L).  
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Then 
L K  = U{H~D,,K: (m,w) E A, q 2 0 ) .  

For q > 0, put 

U, = {(m,w) E M x s'-': HmD,,K f l  LC # 0). 
Then by equation (41), U, J, A as q -+ cm. Note that measure of A is zero 
with respect to the integral dmdk. Now by Claim 1 and the computations in 
Claim 2, we obtain that vol(RT n LC) = o(vol(RT)). This completes the proof 
of the claim. Now applying Theorem 1.16, we obtain Theorem 1.4. 

7. Effect of focusing on counting estimates 

We present an example where the sets RT ( T  >> 0) are focused along an in- 
termediate subgroup H c L C G. Unlike in Theorem 1.17, here N(T, V, 0)+ 
XHIG(RT) as T -+ m. This example was presented without proof in [EM]. 

Let G = SL2(C) and H = {diag(a, a-l): a E lRX) .  Let I' = g - 1 S ~ 2 ( ~ [ i ] ) g ,  
where g E SL2(lR) conjugates a hyperbolic element of SL2(Z) into H. Then 
I? nH\H is compact. Here we consider the Q-structure on G such that G(Q) = 
g-lSL2(&q[il)g. 

We will consider the following representation of G, with a closed orbit 
isomorphic to H\G. Fix N 2 4, and let (zl, z2) be coordinates on C2. Let 
W be the vector space of polynomial functions v(zl, z2,,51, f2)on C2 which are 
homogeneous of degree N in zl and 22,  and also in fl and e.The monomials 

m N-m - n  -N-n  , where 0 5 m, n 5 N ,  form a basis for W. Since G acts zl z2 z1 z2  
linearly on C2, it acts linearly on W by substitution; i.e., for g E G and w E W,  
we have [w .g] ( ~ 1 ~ 2 2 )  w((z1,22)g-') (V(z1, 22) E C2). = 

Consider the polynomial 

1 wThenStabG(p)= H. Let V = p . G .  Put U = { u ( w ) =  ( ,, ): w E C )  and 
K = SU(2). Then G = HUK. Since U is unipotent and K is compact, V is 
closed in the Hausdorff topology. Now since the G-action on W is linear, V is 
Zariski closed. Thus the variety V is naturally identified with H\G.  

Next we consider the distribution of the subset p . I '  C V. Let ( 1 .  / /  be a K-  
invariant norm on W. Then for T > O we have RT = {Hg E H\G: //p.gll < T). 
Put L = SL2(R). Then L is a Q-subgroup of G containing H with no nontrivial 
Q-characters. We will show that for any sequence Tn -+ cm, the sequence {RT,) 
is focused along L. 
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Coordinate description of RT. Since RT is K-invariant, it can be treated 
as a subset of H\G/K. Since G = HUK,  we can use U E Q1 as the coordinate 
space for H\G/K. We identify U with JR2 by the mapping (x, y) +-+u(x + iy). 
Thus we can identify RT with a subset of JR2. 

LEMMA7.1. In the EX2-coordinates RT = {(x,y): f (x,y) < T2), where 

f (x,y) = C l X  
2 + c2y2M + ~ 3 + 0(x2y2M-2)~ + ~ ( y ~ ~ - ~ ) .~ ~x ~ 

Here M = N - 2 > 2, ci > 0 (i = 1,2,3), and the big 0-terms in the definition 
off are sums of squares of monomials. 

Proof. Since (zl, 22) . u(w)-l = (zl,z2 -wzl), if w = x + iy, then 

Since the given norm on W is K-invariant, the distinct weight spaces are 
orthogonal. Therefore the norm can be expressed in the form 

where the A,,'s are positive constants. The conclusion of the lemma follows 
from equations (42) and (43). CI 

In view of the last lemma, by ignoring the lower order terms, we define 

h$ = + ~ x ~ ~{(x, y): c1x2 + ~2~~~ 3 < T2). ~ ~ 

Focusing of {RT) along the x-axis. 

LEMMA 7.2. For T >> 1, vol(R&) = O(T). Also for any E > 0, there 
exists c, > 0 such that 

lim sup vol(R&n {I91 > c.1) < E .  

T-cc VO~(%) 

Proof. We have (x,y) E R& ===+ y 2 M ( ~ 2  + c3x2) < T~- c1x2. Thus 
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-6 F 
FIGURE1. The sets RI, for N = 5 and T = 100,200. 

as T -w, and the limit is finite because M 2 2. 

In terms of the U x K-coordinates on H\G, the G-invariant integral is 
given by d(Hg) = du dk, where du is the Lebesgue integral on U " IFt2 and dk 
is a Haar integral on K. 

LEMMA7.3. For T >> 1, V O ~ ~ \ ~ ( R T )= O(T). Also for every E > 0, 
there exists c, > 0 such that 

lim sup VO~H\G(RTn { Y I  > c,}) 
&. 

T-cc VO~H\G(RT) 

Proof. For lyl >> 1, y2M-2 is dominated by y2M, and x2Y2M-2is domi-
nated by x2y2M.Thus, in this region, R&is an excellent approximation to RT. 
Hence the conclusion follows from Lemma 7.2. 

PROPOSITION7.4. The  sets RT are focused along L = SL2(R). I n  fact, 
for any E > 0 there exists a compact subset C of G such that 

lim inf VO~H\G(LCnRT) > I - & .  
~ + m  VO~H\G(RT) 
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Proof. For any c > 0 there exists a compact set C c G, such that RT f l  
L C  2 RT n {Iy/ < c). Now the conclusion of the proposition follows from 
Lemma 7.3. 

Focusing function. Since L is affine symmetric, G = LBK,  where B = 
cosht i sinht 

{b(t) = ( -isinh cash ): t E W}. For c > 0, express u(ic) = lb(t)k, where 
1 E L, t > 0 and k E K. By multiplying the equation on the left by the inverse 
of its complex conjugate, and then taking the Hilbert-Schmidt norm of both 
sides, we get 2 + 4c2 = e4t + e-4t, i.e. c = sinh2t. In particular, we have the 
decomposition, G = Lu(iR)K. 

By [Sch, Sect. 8.4.21, a Haar integral on G in the L x B x K-coordinates 
is cosh2(2t)dl dt dk. Hence in the L x u(iW) x K-coordinates, the integral 
j(c) dl dc dk is G-invariant, where j(c) = d m .  Thus using the u(iW) x K-
coordinates on L\G, the G-invariant integral on L\G is d(Lg) = j(c) dcdk. 

For c E R, define XT(c) = {x E R: (x,C) E RT). By Lemma 7.1, IXT(c) / -
O ( C - ~ ) Tfor T >> 1. Now define 

X(c) = lim I X T ( ~ ) /  . 
T+cc v01qG(RT)' 

the limit exists because V O ~ ~ \ ~ ( R T )= O(T), by Lemma 7.3. Also, X(c) is 
continuous, and 

For g = lu(ic)k, where 1 E L, c E R, and k E K ,  define X(g) = X(c)/j(c). 
Then X is a left L-invariant and right K-invariant continuous function on G. 
We can also treat X as a function on L\G. Since M 2 2, by equation (45), 

Define the 'focusing map' on r \ G  by 

Then 

which is finite by equation (46). 
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Counting estimate. Let + be a compactly supported continuous function 
on r \G .  Then for any c E R,by Theorem 1.7, 

As in Proposition 5.3, define the 'counting function' on r \ G  by 

Then 

= lim 1 S dLJ-m_ dc SxT(c)T+W VO~H\G(RT)K dx 

1 
= lim 1dk[", IXT(C)IT-+W VO~H\G(RT) K 

the equations (49), (50), (51), and (52) follow from equations (48), (44), (46), 
and (47), respectively. Hence as in the proof of Theorem 1.16 given in Section 5, 
we obtain the following: 

THEOREM There exists a nonconstant continuous positive function 7.5. 
A(g) on I'\G such that asymptotically as T + CQ, 

Appendix A. Asymptotics of volume growth of RT 

In this appendix, we prove Proposition 5.4. Our argument is more involved 
than that of [DRS, Appendix 11 because we do not assume that H is an affine 
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symmetric subgroup, and we allow dilations of arbitrary symmetric convex sets 
BT,not only K-invariant balls. 

The following theorem is proved in [Mos]; see also [Hel, Ch. IV, exercise 
A.21. 

THEOREM A.1. Let G be an algebraic reductive group, H a reductive 
subgroup. Let K be a maximal compact subgroup of G, associated to a Cartan 
involution stabilizing H .  Let g, t and b denote the Lie algebras of G, H and 
K ,  respectively. Let p = t' and q = 4' with respect to the Killing form on g. 
Then 

G = H exp(p n q)K. 
For g E G, consider the corresponding decomposition g = hqk, where 

h E H, q E exp(qnp), and k E K .  Then h, q, and k are uniquely determined by 
g up to the transformation (h,q, k) +-+(hm, Ad m(q),m-lk), where m E H n K .  

Let M = K n H  and let T: K --+ M \ K  be the natural quotient map. There 
exists a submanifold K' of K such that e E K', T is a local diffeomorphism on 
K t ,  and T(K') has full K-invariant measure on M \ K .  

Let @: (p n q )  x K' -+ H \ G  be the map given by @(Y, k) = Hexp(Y)k. 
We will relate the invariant measure on H \ G  to the Euclidean measure on 
p n q ,  say dY, and the pullback of the K-invariant measure on M \ K  to  K', 
say dk. Let J @(Y, k) denote the Jacobian of @ at (Y, k). Then the Jacobian is 
independent of k E K'. We write J @(Y, k) = 6(Y). 

Now a G-invariant integral d(Hg) on H \ G  can be given by 

f (Hg) d(Hg) = , f (Hexp(Y)k)J(Y) dydk. 1/
Pnq K 

Using the polar coordinates on p f l  q ,  we write Y = rw, where r = ((YII 
and w = Y/((Y11. We also write S(Y) = S(r,w, k). 

LEMMAA.2. There exists n E N and A > 0 such that as a function of r ,  
we have rz6(r,w) E E(n,A) for all w E p n q  with llwll = 1, where 1 = dim(pn q). 

Proof (cf. [Sch, Thm. 8.1.11). Put q = exp(Y). For Z E p n q and X E 
T' (Kt) ,  

d>(exp(Z+ Y),expXkl) = H exp(Z + Y) exp(-Y) e x p ( ~ d ( ~ - ' ) ~ ) ~ k ' .  

Therefore 

where Pr,: g t q is the projection parallel to t). 
By [Var, Th. 2.14.31, 

Co 
l n  (ad Y)"(Z). 

n=O 
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Write Y = r w  in polar coordinates, where r > 0 and w E S1-', the unit 
sphere in p n q .  For w E SZ-l,let v,(w) and Wi(w) be the eigenvalues and 
eigenvectors, respectively, of adw E End(g). Since all vectors in p n q are 
semi-simple, we can choose the vi and Wi to depend continuously on w. By 
equation (54), 

dim g 1- e - r ~ i ( ~ )  
(d ~ X P ) Y( 2 )  + Adq(X) = x (2,Wi) + e r V i ( W ) ( ~ ,Wi) 

i=l rvi (w) 
Thus as a function of r, each matrix entry of P r , ( r ( ( d e ~ p ) ~ ( Z )+ Adq(X))) 
belongs to some E(nl ,A'), where n' and A' can be chosen independent of w. 
Therefore r1 times the Jacobian determinant S(r,w)  belongs to E (n ,A), for 
some n and A independent of w. 

Note that in the polar coordinates, the integral d(Hg) on H \ G  as i n  
equation (53) can be expressed as 

(55) 1 f (Hg) d(Hg) = / / / f (Hexp(rw)k)S(r,w)rL1 dr  dw. 
H\G r>O S1-l K' 

LEMMAA.3. There exists a constant C ,  independent of w, such that for 
any r > 1, 

b(r,w)rl-' < c SoT S(s,w)sz-Ids. 

Proof. In view of Lemma A.2, it is enough to show the following: Let So 
be as in Proposition 3.6. Then for all A 5 r 5 A +So and f E E (n ,A), 

Since we can make the change of variable x + x + A, we may assume 
A = 0. We may also assume that f is the maximum at r on [0,So]. Now 
equation (57) follows from Proposition 3.6. 

Shape of RT in (r,w, k)-coordinates. We are given a linear representation 
of G on a vector space TRN,a vector vo E TitN whose stabilizer is H, and a norm 
1 )  . 1 1  on TRN which may not be K-invariant. 

Let the notation be as above. For any w E Sn-l,choose a basis consisting 
of eigenvectors {v~(w)) ,N_~for exp(rw) such that 

The vi(w) can be made to depend continuously on w. Then if g = hexp(rw)k, 
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and hence 

where 

(59)  S r ( k )  = { ( r ,  w )  E (p n q) : 1 xer"(w)vi(w) . k /  5 T ) ,  
and 

LEMMAA.4. For T >> 0 the following holds: 
( i )  S T ( k )  is star-shaped. I n  particular, for each w E Sn-' and k E K ,  there 

exists a unique s > 0 ,  denoted b y  r ( T , w , k ) ,  such that 
N  

( i i )  r(u;T,w,k,)5 r ( T , w , k )+ P ( K ) , where P ( K )-t 1 as K -t 1. The function 
P ( K )  is independent of w and k .  

First assuming this  lemma, we prove t h e  following: 

PROPOSITIONA.5. For some functions a ( ~ )  + 1 and b ( ~ )  + 1 as K + 1,  

a(u;) 5 l im in f  m ( ~ T , k )I l im sup m(KT,k )  5 b ( ~ ) .  
T-CO m ( T , k )  T+, m ( T , k )  

Proof. Because S T ( k )  is star-shaped, we can d o  t h e  integration as i n  equa- 
t ion  (60)  i n  polar coordinates: 

~ ( w , k , T )  
m(T,w ,  k )  = 6( r ,  w ) r L 1  dr,  

and 
m(T,k )  = m(T,w ,  k )  dw. 

Therefore 

- log l ( T > ~ . k )
S ( s ,  w )  sl-' ds  
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where equation (62) follows from Lemma A.4 and equation (63) follows from 
the mean value theorem, for some 

[r(T,w, k), r(T,w, k) + P ( 4 1 .  
Thus 

with b(u;) + 1 as u; -+ 1. From this, equation (61) follows. 

Proof of Proposition 5.4. The result is an immediate consequence of Propo-
sition A.5 and equation (58). 

Proof of Lemma A.4. We will prove both the statements simultaneously. 
First we need to define Xmax(w)= max{Xi(w)), (Xi are as in equation (59)). 
Since all norms are equivalent, there exist constants cl ,  c2 such that 

cles"a~(w) 5 1 1 ~es*~(w)ui(w). = T < c2es*m"(w). 

This implies that if the region ST(k) is not star-shaped, say a ray hits the 
boundary dST(k) at two points 

p - C e S ~ " ( w ) u i ( w ) - k3 - ( j = 1 , 2 ) ,  

then 

(64) Is1 - s21< (10gc2- l0gc1)/X- = c3, 

where X+ = min, Xmax(w)> 0. 

Claim. For ,8> 0 and T suficiently large, 

(65) / Ce(r(w,*,r)+ri)*i(w)kuill>- ~ ~ ( 8 )  

with g(0) = 1, g'(0) > 0, and g(P) > 1 if 0 < P < c3 (c3 is defined in 
equation (64)). 

Assuming this for now, we immediately see that ST(k) is star-shaped for 
sufficiently large T:  since by equation (65) 

if 0 < p < cg, while by equation (64) this is the only range where coincidence 
may occur. Also equation (65) shows that, because ST(k) is star-shaped, 

.(w, k, T) +P 2 r(w, k, g(P)T).  
Since g is increasing near p = 0, for u; near 1 we can determine p by requiring 
g(P) = u;. Thus for sufficiently large T ,  and for u; near 1, 
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This proves Lemma A.4, assuming the claim. 

Proof of the claim. Let E > 0 be a small parameter to be chosen later. Put 
s = r ( T , q , k ) ,  X i  = e s ' i ( w ) u i ( ~ ) .k ,  and S,(w) = Xmax(w)- E .  Let A+(w)  = 
{i: Xi(,) > S,(w)) and A - ( w )  = {i: Xi(w) < S,(w)). For p > 0 ,  

6 ,  (a) 
- C5 C ( e P ' ~ ( w )  - e P ' t ( " J ) ) ~  *rnax(a) 

i€A - ( w )  

eP('-*)(l -c4 x (e'" 1 ) )-c5 x ( eP('+-e) - e4u) T-&/'+ 
i ~ A + ( w )  ZEA-( w )  1 , 

where X - = min, Xmax(w)> 0 ,  A+ = max, Xmax(w)> 0 ,  
and u = mini,, X i  ( w ). 

We can choose E small enough so that 

has positive derivative at p = 0 ,  and g l (P)  > 1 for 0 < p < cg. Then 

Since g2(P)  = c7(eP('+-') - ePY) vanishes at  P = 0 ,  we can adjust E > 0 so 
that for sufficiently large T ,  

with g(0)  = 1,  g'(0) > 0 ,  and g ( P )  > 1 for 0 < P < cs. This proves the 
claim. 
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