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Abstract. For an inclusion F < G < L of connected real algebraic groups such that F
is epimorphic in G, we show that any closed F -invariant subset of L/! is G-invariant,
where ! is a lattice in L. This is a topological analogue of a result due to S. Mozes, that
any finite F -invariant measure on L/! is G-invariant.
This result is established by proving the following result. If in addition G is generated

by unipotent elements, then there exists a ∈ F such that the following holds. Let U ⊂ F

be the subgroup generated by all unipotent elements of F , x ∈ L/!, and λ and µ

denote the Haar probabilitymeasures on the homogeneous spacesUx andGx, respectively
(cf. Ratner’s theorem). Then anλ→ µ weakly as n →∞.
We also give an algebraic characterization of algebraic subgroups F < SLn(R)

for which all orbit closures on SLn(R)/SLn(Z) are finite-volume almost homogeneous,
namely the smallest observable subgroup of SLn(R) containing F should have no non-
trivial algebraic characters defined over R.

1. Introduction
Let L be a Lie group, L its Lie algebra, Ad : L → GL(L) its adjoint representation, !
a discrete subgroup of L, and π : L → L/! the quotient map. Consider the action of L

on the quotient space L/! via left translations: g · π(h) = π(gh), ∀g, h ∈ L. Assume
that ! is a lattice in L; that is, there exists an L-invariant Borel probability measure on
L/!. From the point of view of applications to problems in number theory and geometry,
it is of interest to find algebraic descriptions of the closures of individual F -orbits, and the
F -ergodic F -invariant measures on L/!, where F is a subgroup of L.
A fundamental result in this regard is the following theorem due to Ratner [R1, R2].

Let F be a connected subgroup of L generated by Ad-unipotent elements (here u ∈ L is
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called Ad-unipotent if (Adu) − 1 is a nilpotent linear transformation on L). Then for any
x ∈ L/!, Fx is a finite-volume homogeneous set; that is, there exists a closed subgroup
H of L such that Fx = Hx and Hx has a finite H -invariant measure. Also, any finite
F -ergodic, F -invariant Borel measure, say µ, on L/! is a homogeneous measure; that is,
there exists a closed subgroup H of G such that µ is H -invariant and supp(µ) = Hx for
some x ∈ L/!, where supp(µ) denotes the support of the measure µ. The problem which
motivates this paper is to understand that to what extent the assumptions on F in these
theorems may be relaxed.
In [S4], the first-named author of this article obtained the same conclusions for the

action of any subgroup F of L such that the subgroup generated by unipotent elements
of Ad(F ) is Zariski dense in Ad(F ). Partial results indicate that a similar behaviour
occurs when F is a higher-dimensionalR-split abelian subgroup and L is semisimple (see
[Moz1, KS] for related results and conjectures).
At the other extreme, no such behaviour can be expected when F is a one-dimensional

R-split abelian subgroup of a semisimple group G contained in L. For example,
Furstenberg and Weiss have shown (oral communication) that if L = SL(2, R), ! =
SL(2, Z) and F is the group of diagonal matrices in L, then for every α ∈ [1, 3] there is an
F -orbit whose closure has Hausdorff dimension equal to α.
We now consider an example of the action of a subgroupF which is neither generated by

unipotent elements, nor diagonalizable over the reals. LetG be a connected semisimple Lie
group. Let {gt } ⊂ G be a one-parameter group of semisimple elements whose projection
on any (non-trivial) factor ofG is not contained in a compact subgroup. Let

U+ = {u ∈ G : g−t ugt → e as t →∞},

be the expanding horospherical subgroup associated with {gt }, and let F be the group
generated by {gt } and U+. If L = G, then any F -orbit onG/! is dense (see [DR]). More
generally when L ⊃ G, using Ratner’s theorems it was shown that Fx = Gx and it is a
finite-volume homogeneous set for all x ∈ L/! (see [S3]). In this article we shall show
that the dynamical property that Fx = Gx is shared by a larger class of subgroups F of G
which are described in terms of linear representations.

Epimorphic subgroups

Definition 1.1. Let G be a real algebraic group (that is, G is an open subgroup of the R-
points of a linear algebraic group defined overR). A subgroup F ofG is called epimorphic
in G (notation: F <epi G) if any F -fixed vector is also G-fixed for any finite dimensional
algebraic linear representation of G.

Epimorphic subgroups were introduced by Bergman [Be], and their in-depth study was
made by Bien and Borel [BB]. We note some examples of epimorphic subgroups: (i) a
parabolic subgroup of a semisimple group without compact factors; (ii) the subgroup F

generated by {gt } and U+, described above, is epimorphic in G (cf. [S3, Lemma 5.2]);
and (iii) a Zariski dense subgroup of a real algebraic group. It may be noted that any
non-compact simple algebraic group contains a three-dimensional algebraic epimorphic
subgroup (see [BB]).
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An ergodic-theoretic consequence of the representation-theoretic definition of an
epimorphic subgroup was first obtained by Mozes in the following.

THEOREM. [Moz2] Let L be a linear Lie group and ! a discrete subgroup of L. Let
G be a connected real algebraic group contained in L, and generated by unipotent one-
parameter subgroups. Let F be a connected real algebraic epimorphic subgroup of G.
Then any finite F -invariant Borel measure on L/! is also G-invariant. In particular, any
F -invariant F -ergodic Borel probability measure on L/! is homogeneous.
The same conclusion is valid for a connected epimorphic subgroup F of G of the form

T U , where T is a non-algebraic subgroup diagonalizable over R and U is a unipotent
subgroup normalized by T .

In [MT, Section 8], a similar result is proved for the actions on homogeneous spaces of
products of real and p-adic Lie groups.

Orbit closures. Let the notation be as above. For F <epi G, it is natural to ask: is it
true that every F -invariant closed subset of L/! is also G-invariant? An example, due to
Raghunathan (see [W1]), shows that this is not true for certain non-algebraic epimorphic
subgroups F of G. However if F is a connected real algebraic epimorphic subgroup of G,
we have the following result due to the second-named author of this article.

THEOREM. [W1] Let G be a connected real algebraic group defined over Q, and with no
non-trivialQ-characters. Let F be a connected real algebraic epimorphic subgroup of G.
Then every F -orbit in G/G(Z) is dense.

In this article we extend this result to prove the following.

THEOREM 1.1. Let L be a Lie group, ! a lattice in L and Ad the adjoint representation
of L on its Lie algebra L. Let F < G be connected Lie subgroups of L such that Ad(G)

and Ad(F ) are real algebraic subgroups of GL(L). Suppose that Ad(F ) is epimorphic
in Ad(G). Then Ad(G) = Ad(F [G,G]), and any closed F -invariant subset of L/! is
F [G,G]-invariant, where [G,G] denotes the commutator subgroup ofG.
In particular, if G = [G,G], or if G intersects the center of L0 in a discrete subgroup,

then every closed F -invariant subset in L/! is G-invariant.

COROLLARY 1.2. Let L, !, G and F be as in Theorem 1.1. If G is generated by Ad-
unipotent one-parameter subgroups, then the closure of any F -orbit in L/! is a finite-
volume homogeneous set.

COROLLARY 1.3. Let F < G < L be an inclusion of connected real algebraic groups
such that F is epimorphic inG. Then any closed F -invariant subset inL/! isG-invariant,
where ! is a lattice in L.

Remark. Suppose that G is a connected real algebraic group generated by unipotent one-
parameter subgroups. Let F be a connected real algebraic epimorphic subgroup of G.
Then there exists a connected R-split solvable real algebraic subgroup, say T U , of F such
that T U <epi G (see [BB]), whereU is a connected unipotent subgroup and T is anR-split
real algebraic torus normalizing U .
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Thus most of our questions about the actions of algebraic epimorphic subgroups can be
easily reduced to the case of R-split solvable algebraic epimorphic subgroups.

Limiting distributions. In view of the above remark, we will deduce Theorem 1.1 from
the following stronger result, which is the main result of this article.

THEOREM 1.4. Let L be a Lie group and ! a lattice in L. Let G ⊂ L be a Lie subgroup
such that G = [G,G] and G has no non-trivial compact quotients. Let F be a Lie
subgroup of G such that Ad(F ) is a connected R-split solvable algebraic epimorphic
subgroup of Ad(G) of the form T U . Then there exists an open sub-semigroup T ++ ⊂ T

such that T ++ is noncompact and for a sequence {ai} ⊂ F , if {Ad ai} ⊂ T ++ and it is
divergent in T ++ then the following holds. Let Ũ be a connected Lie subgroup of F such
that Ad(Ũ) = U . Let ν be a Haar measure on Ũ and ψ ∈ L1(Ũ , ν) with ‖ψ‖1 = 1. Then
for any x ∈ L/! there exists a closed subgroup H of L containing G such that for any
bounded continuous function f on L/!,

lim
i→∞

∫

Ũ
f (aiux)ψ(u) dν(u) =

∫

L/!
f dµH , (1.1)

where Hx is closed, and µH is an H -invariant probability measure onHx. In particular,
for any non-empty open set' ⊂ Ũ ,

Fx = ∪∞i=1ai'x = Hx = Gx.

Consider the standard representations of Ad(G) on V = ⊕dimk=1 ∧k L, and on the
quotient V̄ = V/V G, where V G is the subspace of all Ad(G)-fixed vectors in V . The
main consequence of the hypothesis, that T U <epi Ad(G) and T is real algebraic, is the
following [W1, Lemma 1]: there exists a non-empty open sub-semigroup T ++ ⊂ T such
that if {gi} is a divergent sequence in T ++ then for any U -fixed vector v ∈ V ∪ V̄ , either
v is Ad(G)-fixed or giv →∞ as i →∞.
It is this semigroup T ++ which is involved in the statement of Theorem 1.4.
The proof of Theorem 1.4 uses Ratner’s classification of ergodic invariant measures for

actions of unipotent subgroups, and the techniques developed for analysing the behaviour
of unipotent trajectories near the images of algebraic subvarieties of L on L/! (see the
survey articles [R3, D3, M3]).
We obtain a variant of Theorem 1.4 by relaxing the conditions that G = [G,G] and F

is solvable (see Theorem 5.1).
We also obtain versions of Theorem 1.4 where one has uniform convergence in (1.1) as

x varies over certain relatively compact open subsets of L/! (see Theorems 3.1 and 3.2);
the following special case is of interest.

COROLLARY 1.5. Let the notation be as in Theorem 1.4. Furthermore, suppose that G

is a maximal proper connected subgroup of L. Then there exists an open sub-semigroup
T ++ ⊂ T with the following property. Let a compact setK ⊂ L/!, a bounded continuous
function f on L/!, and an ε > 0 be given. Then there exist finitely many closed orbits
Gx1, . . . ,Gxr such that for any compact set K1 ⊂ K \ ∪r

i=1Gxj , there exists a compact
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set S ⊂ T ++ such that for any a ∈ G with Ad a ∈ T ++ \ S the following holds:
∣∣∣∣

∫

Ũ
f (aux)ψ(u) dν(u)−

∫

L/!
f dµL

∣∣∣∣ < ε, ∀x ∈ K1,

where µL is the L-invariant probability measure on L/!.

Orbit closures and observable subgroups. Regarding the general question of
algebraically describing orbit-closures the following concept is useful.

Definition 1.2. Let G < L be an inclusion of connected real algebraic groups. If there
exists an algebraic linear representation ρ : L → GL(V ) and a vector v ∈ V such that
G = {g ∈ L : ρ(g)v = v} then G is called an observable subgroup of L (see [BHM] for
equivalent definitions).

Definition 1.3. Let F < L be an inclusion of connected real algebraic groups. The
observable envelope of F in L is defined to be the smallest (it exists) observable subgroup
of L containing F .

Remark. The observable envelope of F in L is also the largest connected real algebraic
subgroup of L in which F is epimorphic [BB, Proposition 1].

Now the following result is an immediate consequence of Theorem 1.1.

THEOREM 1.6. LetL be a connected Lie group and! a lattice inL. Let F be a connected
Lie subgroup of L such that Ad(L) and Ad(F ) are real algebraic. Let G be the smallest
closed connected subgroup of L containing F such that Ad(G) is observable in Ad(L).
Then any closed F -invariant subset in L/! is G-invariant.
Furthermore, if G is generated by Ad-unipotent one-parameter subgroups then the

closures of F -orbits are finite-volume homogeneous sets.

Using Theorem 1.6 we intend to describe the class of algebraic subgroups for which
any orbit-closure in any finite-volume homogeneous space is a finite-volume almost
homogeneous set.

Definition 1.4. A closed subset of L/! will be called finite-volume almost homogeneous
if it is of the form KS, where K is a compact subgroup of L and S is a finite-volume
homogeneous set.

THEOREM 1.7. Let L be a connected R-split real algebraic semisimple group (for
example, L = SL(n, R)). Let F be a connected algebraic subgroup of L, and G be
the observable envelope of F in L. Then the following statements are equivalent:
(1) G has no non-trivial character defined over R;
(2) For any lattice ! in L and any x ∈ L/!, the set Fx is finite-volume almost

homogeneous.

The implication (1)⇒ (2) of the theorem follows immediately from Theorem 1.6. For
the converse we use a result of Sukhanov [Su] on the structure of observable subgroups.
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Finite invariant measures. Regarding the invariant measures for the actions of
epimorphic subgroups, we extend the result due to Mozes, mentioned above, to the actions
of all (possibly non-algebraic) epimorphic subgroups of G.

THEOREM 1.8. Let L be Lie group and ! a discrete subgroup of L. Let G be a
subgroup of L which is generated by Ad-unipotent one-parameter subgroups. Let F be a
connected Lie subgroup ofG such that Ad(F ) is an epimorphic subgroup of Ad(G). Then
Ad(G) = Ad(F [G,G]), and any finite F -invariant Borel measure on L/! is F [G,G]-
invariant.
In particular, if G = [G,G], or if G intersects the center of L in a discrete subgroup,

then any finite F -invariant Borel measure on L/! is G-invariant.

The proof of the above theorem uses Ratner’s theorem and a generalized version of
Borel’s density theorem due to Dani [D2].

Locally finite invariant measures. We recall that a Borel measure which is finite on
compact sets is called locally finite. Using a variant of Theorem 1.4 (see Theorem 5.1)
we obtain the following result on locally finite F -invariant Borel measures.

THEOREM 1.9. Let L be a Lie group and ! a lattice in L. Let G be a Lie subgroup of
L generated by Ad-unipotent one-parameter subgroups. Let F be a connected subgroup
of L such that Ad(F ) is a real algebraic epimorphic subgroup of Ad(G). Then Ad(G) =
Ad(F [G,G]), and any locally finite F -invariant Borel measure µ on L/! is F [G,G]-
invariant.
Moreover, there exists a countable partition of L/! into F [G,G]-invariant Borel

measurable subsets Xi (i ∈ N) such that µ(Xi) < ∞ for each i.
In particular, any locally finite F -ergodic F -invariant Borel measure on L/! is a finite

F [G,G]-invariant homogeneous measure.

In other words, the subgroup action of F on a finite-volume homogeneous space of
L has Property-(D) (see [M1] for a definition, and [M2, Theorem 15] for examples of
subgroup actions with Property-(D)).
In Example 8.1 we show that Theorem 1.9 is not valid without the assumption that

Ad(F ) is real algebraic.
The article is organized as follows. First we obtain some results about representations of

epimorphic subgroups, and recall some results on unipotent flows on homogeneous spaces
in §2. The main theorem, Theorem 1.4 is proved in §3. The results on orbit closures of
epimorphic subgroups are deduced in §4. A variant of Theorem 1.4 is obtained in §5.
The results relating observable subgroups and orbit closures are obtained in §6. The finite
invariant measures for epimorphic subgroup actions are studied in §7. The locally finite
invariant measures are considered in §8.

2. Basic results
In this section we collect some results about linear representations of epimorphic
subgroups, and on unipotent flows on homogeneous spaces.
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2.1. Epimorphic subgroups. Let G be a connected real algebraic group which is
generated by algebraic unipotent elements. Any connected real algebraic epimorphic
subgroup of G contains a connected R-split solvable algebraic epimorphic subgroup,
which is a semidirect product of the form T U , where T is a connected R-split torus and U

is an algebraic unipotent subgroup normalized by T (see [BB]).
Let T U , as above, be an R-split solvable epimorphic subgroup of G. Let X(T ) denote

the group of algebraic characters on T defined overR. Let ρ : G → GL(V ) be an algebraic
linear representation ofG. Define

C(ρ) = {χ ∈ X(T ) \ {1} : ∃ v ∈ V such that ρ(U)v = v,

and ρ(t)v = χ(t)v, ∀t ∈ T }. (2.2)

A sequence {ai} ⊂ T is called C(ρ)-divergent, if

lim
i→∞

χ(ai) = ∞, ∀χ ∈ C(ρ). (2.3)

The main results of this paper are based on the existence of C(ρ)-divergent sequences.

LEMMA 2.1. [W1, Lemma 1] Let the notation be as above. Then

T + = T +(C(ρ)) = {t ∈ T : χ(t) > 1,∀χ ∈ C(ρ)}

is a non-empty open sub-semigroup (a ‘cone’) in T .
In particular {tn} is a C(ρ)-divergence sequence for any t ∈ T +.

It follows that there exists a non-empty open sub-semigroup T ++ ⊂ T + such that
any divergent sequence (that is, eventually escaping every compact set) in T ++ is C(ρ)-
divergent. (See [W2] for another proof and some applications of this lemma.)

PROPOSITION 2.2. Let ρ : G → GL(V ) be an algebraic linear representation of G such
that V has no non-zero G-fixed vectors. Let a sequence {vi} ⊂ V be such that 0 /∈ {vi}.
Let ' be a neighbourhood of the identity in U and {ai} be a C(ρ)-divergent sequence in
T . Then as i →∞,

sup
ω∈'

‖ρ(aiω)vi‖ → ∞, (2.4)

where ‖ · ‖ is any norm on V .

The proof uses the following.

LEMMA 2.3. [S3, Lemma 5.1] Let V be a finite dimensional normed linear space overR.
Let N be a connected unipotent subgroup of GL(V ). Let W = {v ∈ V : N · v = v}, and
let PrW denote a projection onto W . Then for any neighbourhood ' of the identity in N

there exists C > 0 such that the following holds: for every v ∈ V there exists ω ∈ ' such
that

‖v‖ ≤ C · ‖PrW (ω · v)‖.
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Proof of Proposition 2.2. Let W = {v ∈ V : ρ(U)v = v}. By the Lie–Kolchin theorem,
W /= 0. Since T U is epimorphic in G and V has no G-fixed vectors, there is no non-zero
T -fixed vector inW . SinceW is T -invariant and T is R-split,

W = ⊕χ∈C(ρ)W
χ , (2.5)

were Wχ = {v ∈ W : ρ(t)v = χ(t)v,∀t ∈ T }. Let PrW be a T -equivariant projection
ontoW .
Since 0 /∈ {vi}, by Lemma 2.3, there exists a sequence {ωi} ∈ ' such that

0 /∈ {PrW(ρ(ωi )vi)}.
Therefore, by the definition of C(ρ)-divergent sequences and (2.5), as i →∞,

‖ρ(ai) · PrW(ρ(ωi )vi )‖ → ∞,

and hence ‖PrW(ρ(aiωi )vi)‖ → ∞. From this (2.4) follows. !

Using the same argument we obtain the following.

PROPOSITION 2.4. Let ρ : G → GL(V ) be an algebraic linear representation. Then
given a neighbourhood' of e in U , there exists a constant C > 0 such that

sup
ω∈'

‖ρ(aω)v‖ ≥ C‖v‖, ∀v ∈ V, ∀a ∈ T +(C(ρ)).

When V has non-zero G-fixed vectors, we need additional conditions on G to obtain
the stronger conclusion as in (2.4).

PROPOSITION 2.5. Suppose further thatG = [G,G] (and recall thatG has no non-trivial
compact quotients). Let ρ : G → GL(V ) be an algebraic linear representation. Let ρ̄ be
the corresponding representation of G on V̄ = V/V G, where V G denotes the space of
G-fixed vectors on V . Let a sequence {vi} ⊂ V be such that {vi} ∩ V G = ∅. Let ' be a
neighbourhood of e in U and {ai} be a C(ρ⊕ ρ̄)-divergent sequence in T . Then as i →∞,

sup
ω∈'

‖ρ(aiω)vi‖ → ∞. (2.6)

Proof. Since G = [G,G], there are no non-trivial solvable quotients of G, and hence
V/V G has no non-trivial G-fixed vectors. Let {v̄i} denote the image of {vi} on V̄ . Let
PrV G denote a T -equivariant projection onto V G.
Suppose that (2.6) does not hold. Then supω∈' ‖ρ(aiω)vi‖ is bounded along a

subsequence. After passing to a subsequence, there are two cases:
(i) PrV G(vi) →∞, or
(ii) PrV G(vi) is bounded.
If (i) holds, then

PrV G(ρ(ai)vi) = ρ(ai)PrV G(vi) ≥ PrV G(vi) →∞,

a contradiction. If (ii) holds, then by our hypothesis on {vi}, we have that 0 /∈ {v̄i}.
Therefore by Proposition 2.2,

sup
ω∈'

‖ρ̄(aiω)v̄i‖ → ∞,

which is also a contradiction. !
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2.2. Flows on finite-volume homogeneous spaces

Notation. For d,m ∈ N, let Pd,m(L) denote the set of continuous maps, : Rm → L such
that for all c, a ∈ Rm and X ∈ L, the map

t ∈ R 4→ Ad(,(tc + a))(X) ∈ L

is a polynomial of degree at most d in each coordinate of L (with respect to any basis).
Let VL = ⊕dim

k=1 ∧kL, the direct sum of exterior powers of L, and consider the linear
action of L on VL via the direct sum of the exterior powers of the Adjoint representation.
Fix any norm on VL.
For any non-trivial connected Lie subgroupW of L, and its Lie algebraW, we choose

a non-zero vector pW in the one-dimensional subspace ∧dim W ⊂ VL.

The following result, essentially due to Dani and Margulis [D1, DM2], is one of
the most important results for studying unipotent flows on non-compact finite-volume
homogeneous spaces.

THEOREM 2.6. Let ! be a lattice in L and π : L → L/! be the natural quotient. Then
there exist closed subgroups W1, . . . ,Wr of L such that π(Wi) is compact, ! · pWi is
discrete for each 1 ≤ i ≤ r , and the following holds. Given d,m ∈ N and α, ε > 0, there
exists a compact set K ⊂ L/! such that for any , ∈ Pd,m(L), and any bounded open
convex set B ⊂ Rm, one of the following conditions is satisfied:
(i) there exists γ ∈ ! and i ∈ {1, . . . , r} such that

sup
t∈B

‖,(t)γ .pWi‖ < α.

(ii) (1/|B|)|{t ∈ B : π(,(t)) ∈ K}| ≥ 1− ε, where | · | denotes a Lebesgue measure on
Rm.

See [S3, Theorem 2.2] for the deduction of this result from the results of Dani and
Margulis for semisimple groups.

Remark. In the above result, if L is a semisimple real algebraic group defined overQ and
with no compact factors, and! is an arithmetic lattice in L with respect to theQ-structure,
then the subgroupsWi are the unipotent radicals of maximal Q-parabolic subgroups of L.
The number r ofWi ’s needed is at most the product of the Q-rank of L and the number of
‘cusps’ in the fundamental domain of!.

2.3. Singular sets. For the rest of §2, let L be a connected Lie group, and ! a discrete
subgroup of L (here ! need not be a lattice in L.)
Let H = H! denote the collection of all closed connected subgroups H of L such

that H ∩ ! is a lattice in H , and the subgroup generated by the one-parameter unipotent
subgroups ofL contained inH acts ergodically onH/H∩!with respect to theH -invariant
probability measure.

THEOREM 2.7. [R1, Theorem 1.1] The collectionH is countable.
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Let W be a subgroup of L which is generated by one-parameter Ad-unipotent
subgroups.
For any H ∈ H, we define:

N(H,W) = {g ∈ L : W ⊂ gHg−1}
S(H,W) =

⋃
{N(H ′,W) : H ′ ∈ H,H ′ ⊂ H, dimH ′ < dimH }

N∗(H,W) = N(H,W) \ S(H,W).

We note that:

N(H,W) = NL(W)N(H,W)NL(H) (2.7)

N(H,W)γ = N(γ−1Hγ ,W), ∀γ ∈ ! (2.8)
N∗(H,W) = NL(W)N∗(H,W)(NL(H) ∩!). (2.9)

LEMMA 2.8. [MS, Lemma 2.4] For any g ∈ N∗(H,W), the group gHg−1 is the smallest
closed subgroup of L which contains W and whose orbit through π(g) is closed. In
particular,

π(N∗(H,W)) = π(N(H,W)) \ π(S(H,W)). (2.10)

LEMMA 2.9. The natural map

N∗(H,W)/(NL(H) ∩!) → π(N∗(H,W))

is injective.

Proof. Let g1, g2 ∈ N∗(H,W) be such that π(g1) = π(g2). By Lemma 2.8, giHg−1i

is the smallest closed subgroup of L whose orbit through π(gi) is closed, for i = 1, 2.
Therefore g1Hg−11 = g2Hg−12 . Hence g−12 g1 ∈ NL(H)∩!. This completes the proof.!

2.4. Ratner’s theorem. Using Ratner’s description [R1] of the finite W -invariant W -
ergodic Borel measures on L/! and Theorem 2.7, one can describe finite W -invariant
measures as follows:

THEOREM 2.10. [R1] LetL,! andW be as above. Letµ be a finiteW -invariant measure
on L/!. Then there exists H ∈ H such that

µ(π(N(H,W))) > 0 and µ(π(S(H,W))) = 0.

Moreover, almost every W -ergodic component of the restriction of µ to π(N(H,W))

is concentrated on gπ(H) for some g ∈ N∗(H,W), and it is invariant under gHg−1. In
particular, if µ(π(S(L,W))) = 0 then µ is L-invariant.

See [MS, Theorem 2.2] or [D3, Corollary 5.6] for its deduction.
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2.5. Linear presentation. For H ∈ H, let VL(H,W) denote the linear span of the set
N(H,W) · pH in VL, and let H denote the Lie algebra of H . We note that (cf. [DM1,
Proposition 3.2])

N(H,W) = {g ∈ L : g · pH ∈ VL(H,W)} (2.11)

and

N1
L(H)

def= {g ∈ NL(H) : det(Ad g| ) = 1}
= {g ∈ L : g · pH = pH }. (2.12)

THEOREM 2.11. [DM1, Theorem 3.4] For H ∈ H, the orbit ! · pH is discrete. In
particular, N1

L(H)! is closed in L/!.

The following result is one of the basic technical tools used for applying Ratner’s
measure classification to understand limiting distributions of ‘polynomial like’ trajectories
[DM1, S1, MS, S2, D3].

THEOREM 2.12. [S3, Theorem 4.1] Let H ∈ H, d,m ∈ N and ε > 0 be given. Then for
any compact set C ⊂ π(N∗(H,W)), there exists a compact set D ⊂ VL(H,W) with the
following property. For any neighbourhood. of D in VL, there exists a neighbourhood/
of C in L/!, such that for any , ∈ Pd,m(L), and a bounded open convex set B ⊂ Rm,
one of the following holds:
(i) ,(B)γ · pH ⊂ . for some γ ∈ !.
(ii) (1/|B|)|{t ∈ B : π(,(t)) ∈ /}| < ε.

3. Limit distributions of translates of measures
In this section we will complete the proof of Theorem 1.4, and also obtain certain uniform
versions of the theorem.

Proof of Theorem 1.4. We will prove the theorem for x = π(e). The general case follows
by replacingG with gGg−1 and F with gFg−1, if x = π(g), g ∈ L.
Let the representation ρ : Ad(G) → GL(VL) be the direct sum of the exterior powers

of the inclusion Ad(G) ⊂ GL(L). Let ρ̄ be the corresponding representation of Ad(G)

on VL/(VL)G as defined in Proposition 2.5. By Lemma 2.1, there exists an open sub-
semigroup T ++ in T such that if {ai} ⊂ F is a sequence such that {Ad(ai)} is divergent in
T ++, then

{Ad ai} is a C(ρ ⊕ ρ̄)-divergent sequence in T . (3.13)

Without loss of generality we may assume that ψ vanishes outside a compact subset
of Ũ . Let λ̃ be the Borel measure on Ũ such that dλ̃ = ψ dν. We identify the Lie
algebra Ũ of Ũ with Rm, where m = dim Ũ . Without loss of generality we may assume
that ν is the pushforward of the Lebesgue measure on Rm under the exponential map
exp : Ũ(= Rm) → Ũ , and that λ̃ is a probability measure. Let B be a ball in Rm centred
at zero such that supp(λ̃) ⊂ exp(B). Let λ denote the pushforward of λ̃ on L/! under
π . To prove the theorem, it is enough to show that aiλ → µH as i → ∞ (recall that
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aiλ(E) = λ(a−1i E) for any Borel measurable subset E of L/!). Note that the subgroup
H as in the conclusion of the theorem does not depend on the choice of the sequence {ai},
because Gx = Hx. Thus it is enough to prove the convergence for some subsequence of
{ai}.
For each i ∈ N, define ,i : Rm → L as ,i (t) = ai exp(t), ∀t ∈ Rm. Since Ũ is a

nilpotent Lie algebra, there is d ∈ N such that,i ∈ Pd,m(L) for all i ∈ N.

CLAIM 3.1. Given δ > 0 there exists a compactK ⊂ L/! such that

aiλ(K) > 1− δ, ∀i ∈ N.

Suppose that the claim fails to hold. Since dλ̃ = ψ dν, there exists ε > 0 such that for
any compact set K ⊂ L/!,

1
|B| |{t ∈ B : π(,i (t)) ∈ K}| < 1− ε,

for all i in a subsequence. For each i, we apply Theorem 2.6 for , = ,i and α = 1/i .
Then, after passing to a subsequence, there is a non-zero p ∈ VL such that the following
holds. The orbit! · p is discrete and for each i ∈ N there exists vi ∈ ! · p, such that

sup
u∈expB

‖aiu · vi‖ → 0 as i →∞. (3.14)

After passing to a subsequence we may assume that for all i ∈ N, vi is not fixed by G.
Since {vi} is a discrete set not containing zero, we apply Proposition 2.4 (with Ad(G) in
place of G), to obtain a contradiction to (3.14). This proves the claim.

By Claim 3.1, the set of measures {aiλ} is relatively compact in the space of probability
measures on L/!. Thus to show that aiλ → µH as i → ∞, it suffices to show this for
all convergent subsequences. So we pass to a subsequence, and assume aiλ → µ for a
probability measure µ on L/!.
Define

W = {w ∈ Ũ : a−1i wai → e as i →∞}. (3.15)

Note that W is a connected Lie subgroup of F and consists of Ad-unipotent elements.
By passing to a subsequence of {ai}, we may assume that dimW does not change if we
replace {ai} by any subsequence.
CLAIM 3.2. The limit measure µ is W -invariant.

Let w ∈ W . Then for all i ∈ N,

waiλ = aiwiλ, where wi = a−1i wai . (3.16)

For any bounded continuous function f on L/!, we have
∣∣∣∣

∫
f d[aiwiλ]−

∫
f d[aiλ]

∣∣∣∣

=
∣∣∣∣

∫

Ũ
f (aiπ(wiu)) dλ̃(u)−

∫

Ũ
f (aiπ(u)) dλ̃(u)

∣∣∣∣
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=
∣∣∣∣

∫

Ũ
f (aiπ(wiu))ψ(u) dν(u)−

∫

Ũ
f (aiπ(u))ψ(u) dν(u)

∣∣∣∣

=
∣∣∣∣

∫

Ũ
f (aiπ(u))ψ(w−1

i u) dν(u)−
∫

Ũ
f (aiπ(u))ψ(u) dν(u)

∣∣∣∣

≤ ‖f ‖∞ ·
∫

Ũ
|ψ(w−1

i u)− ψ(u)| dν(u).

Now since wi → e and the left regular representation of Ũ on L1(Ũ , ν) is continuous,
∣∣∣∣

∫
f d[aiwiλ]−

∫
f d[aiλ]

∣∣∣∣ → 0, as i →∞.

Therefore, since aiλ → µ, we have aiwiλ → µ. Therefore by (3.16), wµ = µ,
completing the proof of the claim.

It will be proved (Claim 3.3) that W is non-trivial. In view of Claim 3.2, we
apply Theorem 2.10 to obtain that there exists a closed subgroup H ∈ H, such that
µ(π(S(H,W))) = 0 and µ(π(N(H,W))) > 0. Let a compact set C ⊂ π(N∗(H,W)) be
such that µ(C) > 0.
Since dλ̃ = ψ dν, there exists ε > 0 such that for any Borel measurableE ⊂ supp(λ) ⊂

L/!,

1
|B| |{t ∈ B : π(exp(t)) ∈ E}| < ε ⇒ λ(E) < µ(C)/2. (3.17)

We apply Theorem 2.12 for ε > 0, d ∈ N, m ∈ N, , = ,i , B ⊂ Rm chosen as above.
For the compact set C as above there exists a compact set D ⊂ VL(H,W) such that the
following holds. For each i ∈ N, let .i be a relatively compact neighbourhood of D in VL

such that .i+1 ⊂ .i and ∩∞i=1.i = D. Then there exists an open neighbourhood/i of C
in L/! such that one of the following conditions holds:
(i) there exists vi ∈ ! · pH such that ai exp(B)vi ⊂ .i ;
(ii) (1/|B|)|{t ∈ B : π(ai exp(t)) ∈ /i}| < ε.
Since aiλ → µ, and /i’s are neighbourhoods of C, there exists i0 ∈ N such that
λ(a−1i /i ) > µ(C)/2 for all i ≥ i0. Therefore by (3.17), condition (ii) does not hold,
and hence condition (i) must hold for all i ≥ i0; that is

ai exp(B) · vi ⊂ .i ⊂ .1, ∀i ∈ N. (3.18)

Note that .1 is compact and {vi} ⊂ ! · pH is discrete (by Theorem 2.11). Therefore by
Proposition 2.5, after passing to a subsequence, we conclude thatG · vi = vi for all i ∈ N.
Now since ! · pH is discrete and ∩i.i = D, after passing to a subsequence we have that
vi = v1 ∈ D. Let γ ∈ ! be such that v1 = γ ·pH . ThenGγ ·pH = γ ·pH and γ ·pH ∈ D.
Therefore by (2.11) γ ∈ N(H,W). In view of (2.8), replacingH by γHγ−1, without loss
of generality we may assume that γ = e. Therefore G · pH = pH , and hence by (2.12)
G ⊂ N1

L(H).
Since AdF ⊂ Ad(G), we have F ⊂ N1

L(H). By Theorem 2.11, π(N1
L(H)) is closed.

Therefore supp(µ) ⊂ π(N1
L(H)). Also since e ∈ N(H,W), we haveW ⊂ H . Therefore

by Theorem 2.10, µ is H -invariant.
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If we can prove that H contains G, then µ is G-invariant. Since F ⊂ G, we have that
supp(µ) ⊂ π(F ) ⊂ π(H). Since µ is H -invariant, we have that µ = µH . Thus the proof
will be complete once we prove the following.

CLAIM 3.3. If H is a subgroup of L such that W ⊂ H and G ⊂ NL(H) then G ⊂ H . In
particular,W is non-trivial.

To prove this claim, letH ′ be the subgroup generated by all Ad-unipotent one-parameter
subgroups of H . Then H ′ satisfies the hypothesis of the claim, and it is enough to prove
thatG ⊂ H ′. Therefore replacingH by H ′ without loss of generality we may assume that
Ad(H) is a connected real algebraic group.
Consider the action of T on the Lie algebra F of F . Since T is R-split, there is a set D

of R-rational characters on T such that

F = ⊕χ∈DFχ ,

where Fχ = {v ∈ F : tv = χ(t)v, ∀t ∈ T }. There existsM > 0 such that if we define

D+ = {χ ∈ D : χ(Ad ai) →∞} and D0 = {χ ∈ D : χ(Ad ai) ≤ M,∀i ∈ N},
(3.19)

then, after passing to a subsequence,D = D+ ∪D0. Let

W = ⊕χ∈D+Fχ . (3.20)

From (3.15) and the remark following it, we conclude thatW is the Lie algebra ofW .
Let H1 = FH . Let H and H1 denote the Lie algebras of H and H1, respectively. Let E

be the T -invariant linear complement of H in H1. SinceW ⊂ H , by (3.20)

E ⊂ ⊕χ∈D0Fχ . (3.21)

Let q be a non-zero vector in VL associated to E. Then

pH1 = q ∧ pH . (3.22)

Let χ0 ∈ X(T ) such that

t · q = χ0(t)q , ∀t ∈ T . (3.23)

By (3.21) and (3.19),

χ0(Ad ai) ≤ Mdim , ∀i ∈ N. (3.24)

Since Ad(G) is generated by unipotent elements and G ⊂ NL(H), we have G ∈
N1

L(H). In particular, tpH = pH for all t ∈ T . Therefore by (3.22) and (3.23),

t · pH1 = χ0(t)pH1 , ∀t ∈ T . (3.25)

Note that

U · pH1 = pH1 . (3.26)
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Now by (2.2), (2.3), (3.13), (3.24), (3.25) and (3.26), we conclude that pH1 is a T U -
fixed vector. Since T U is epimorphic in Ad(G), pH1 is Ad(G)-fixed. Therefore G

normalizesH1.
Thus Ad(G) normalizes Ad(H1). Note that Ad(H1) = Ad(F )Ad(H) is a real algebraic

group. Let M = (Ad(G) ∩ Ad(H1))0. Since T U ⊂ M , M is a connected real algebraic
normal epimorphic subgroup of Ad(G). HenceM = Ad(G). Thus Ad(G) ⊂ Ad(H1).
The image of Ad(G) in Ad(H1)/Ad(H) ∼= Ad(F )/(Ad(F )∩Ad(H)) is solvable. Since

G = [G,G], we have that Ad(G) ⊂ Ad(H). Therefore G ⊂ ZH , where Z is the centre
of L. The image of G in ZH/H is abelian. ThereforeG = [G,G] ⊂ H , completing the
proof of the claim, and hence the proof of the theorem. !

The same proof as above, with obvious modifications, yields the following uniform
version of Theorem 1.4.

THEOREM 3.1. Let the notation be as in Theorem 1.4. Suppose x ∈ L/! is such that
Hx is not closed for any proper closed subgroup H of L containing G. Let gi → e be
a sequence in L. Then there exists an open sub-semigroup T ++ ⊂ T with the following
property. Given a bounded continuous function f on L/! and ε > 0, there exists a
compact set S ⊂ T ++ and j ∈ N such that for any a ∈ F with Ad a ∈ T ++ \ S

∣∣∣∣

∫

Ũ
f (augix)ψ(u) dν(u)−

∫

L/!
f dµL

∣∣∣∣ < ε, ∀i ≥ j,

where µL denotes the L-invariant probability measure on L/!.

Proof. We start arguing by contradiction, and obtain a sequence {ai} ⊂ F such that {Ad ai}
is divergent in T ++. To adapt the proof of Theorem 1.4, the elements vi ∈ ! · pH are
replaced by elements of the form giγi · pH , where γi ∈ !. Note that since gi → e, any
accumulation point of {giγipH } is contained in the discrete set {! · pH }. In view of this
the proof of Theorem 1.4 goes through. !

The following refined uniform version of the above theorems can be obtained by arguing
as in the proof of [DM1, Theorem 3], and using Theorem 3.1. The result will not be used
later in the article, and we shall omit its proof.

THEOREM 3.2. Let the notation be as in Theorem 1.4. Then there exists an open sub-
semigroup T ++ ⊂ T with the following property. Let a compact set K ⊂ L/!, a bounded
continuous function f on L/!, and an ε > 0 be given. Then there exist finitely many
closed subgroups H1, . . . , Hr ∈ H!, and compact sets Cj ⊂ N(Hj ,G) (1 ≤ j ≤ r)

such that the following holds. For any compact set K1 ⊂ K \ ⋃r
j=1 π(Cj ), there exists a

compact set S ⊂ T ++ such that for any a ∈ F with Ad a ∈ T ++ \ S,
∣∣∣∣

∫

Ũ
f (aux)ψ(u) dν(u)−

∫

L/!
f dµL

∣∣∣∣ < ε, ∀x ∈ K1, (3.27)

where µL denotes the L-invariant probability measure on L/!.

Proof of Corollary 1.5. Note that

H /= L, g ∈ N(H,G) ⇒ G = gHg−1, N(H,G) = Gg.

Now the corollary follows from Theorem 3.2. !
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4. Closures of orbits of epimorphic subgroups
First we obtain a consequence of the proof of Theorem 1.4.

COROLLARY 4.1. Let L, ! and G be as in Theorem 1.4. Let F be a connected Lie
subgroup of L (not necessarily contained in G) such that AdF is a real algebraic
epimorphic subgroup of Ad(G). Then any closed F -invariant subset of L/! is G-
invariant.

Proof. It is enough to prove that for all x ∈ L/!, Gx ⊂ Fx. Conjugating, it suffices to
show π(G) ⊂ π(F ).
There exists an R-split solvable subgroup T U of Ad(F ), which is epimorphic in

Ad(G) [BB]. Therefore, without loss of generality we may assume that Ad(F ) = T U . We
argue just as in the proof of Theorem 1.4, for any sequence {ai} satisfying the conditions
of Theorem 1.4. The only difference here is that we do not assume F ⊂ G. The additional
assumption that F ⊂ G is used only in the paragraph preceding the proof of Claim 3.3 in
the proof of Theorem 1.4, and nowhere else.
In the notation of the proof above, without using the condition that F ⊂ G, we obtain

that µ is H -invariant and G ⊂ H . In particular, we conclude that π(F ) contains an H -
invariant subset, namely supp(µ).
Let Z = (Ad−1(e))0. Since Ad(F ) ⊂ Ad(G) ⊂ Ad(H), we have that F ⊂ ZH . Now

since H ∈ H, we have that Ad(H ∩ 1) is Zariski dense in Ad(H) [S1, Theorem 2.3].
Therefore π(ZL(H)) is closed, where ZL(H) denotes the centralizer of H in L [S4,
Lemma 2.3]. Therefore π(Z) = π(Z1) for a closed connected subgroup Z1 ⊂ ZL(H),
and π(Z1) has a finite Z1-invariant measure. Thus π(Z1H) has a finite Z1H -invariant
measure, and by [S4, Lemma 2.2], Z1H and π(Z1H) are closed. Since Ad(Z1 ∩ !) is
Zariski dense in AdZ1, we have that Ad(Z1H ∩!) is Zariski dense in Ad(Z1H). Let Z2
be the center of Z1H . Then π(Z2) is closed [S4, Lemma 2.3]. Since Z ⊂ Z2, we have
that Z1 ⊂ Z2. Thus Z1H/H is an abelian group.
Thus

supp(µ) ⊂ π(F ) ⊂ π(ZH) ⊂ π(Z1H). (4.28)

SinceH! is closed and! is countable,H(Z1 ∩!) is closed. Put X = Z1H/H(Z1 ∩!).
Then X is a compact abelian group. Let x0 denote the identity in X. By (4.28) there
exists z ∈ Z1H such that π(z) ∈ supp(µ). Then y = zx0 ∈ Fx0. Since X is an abelian
group, there exists a sequence {fi} ⊂ F such that fiy → x0 as i → ∞. Therefore there
exists a sequence {hi} ⊂ H such that π(fizhi) → π(e) as i → ∞. Now zhi = hiz,
π(z) ∈ supp(µ) and supp(µ) is H -invariant. Therefore π(e) ∈ F supp(µ). Now since
HF = FH , and supp(µ) is H -invariant, we conclude that

π(H) ⊂ HF supp(µ) = FH supp(µ) = F supp(µ) ⊂ π(F ).

In particular, π(G) ⊂ π(F ). This completes the proof. !

Next we note some more results about algebraic epimorphic subgroups of real algebraic
groups.
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PROPOSITION 4.2. [W1, Theorem 5] Let G be a connected real algebraic group and F

be a connected real algebraic epimorphic subgroup of G. Let G1 be the (real algebraic)
subgroup ofG generated by all one-parameter (algebraic) unipotent subgroups ofG. Then
FG1 = G and (F ∩G1)0 <epi G1.

PROPOSITION 4.3. Let G be a connected real algebraic group and F be a connected
real algebraic epimorphic subgroup of G. Let G0 be the subgroup of G generated by
all connected semisimple subgroups of G without compact factors. Then FG0 = G and
(F ∩G0)0 <epi G0.

Proof. Proposition 4.2 reduces the proposition to the case when G is generated by one-
parameter (algebraic) unipotent subgroups.
The projection of F onto G/G0 is an epimorphic subgroup of G/G0. Since G/G0

is a unipotent group, it has no proper epimorphic subgroups. Therefore FG0 = G. Put
F0 = F ∩G0. Since G0 is connected, to prove that (F ∩G0)0 <epi G0 it suffices to show
that F0 <epi G0. Since F/F0 ∼= G/G0 is unipotent and connected, we conclude that F/F0
is unipotent, and hence it has no non-trivial rational characters.
Consider an algebraic linear representation σ0 : G0 → GL(V0). Since G0 is a normal

subgroup of G, by [BHM] there exists an algebraic representation σ : G → GL(V ) such
that σ extends σ0, that is, V0 is a σ (G)-invariant subspace of V and σ0 is the restriction of
σ to (G0, V0). LetW = {v ∈ V : σ (F0)v = v}.
Since F0 is normal in F ,W is σ (F )-invariant. Let v ∈ ∧dimWW \{0}. Then there exists

a rational character χ on F such that σ (f )v = χ(f )v for all f ∈ F . Since σ (F0)v = v,
and F/F0 has no non-trivial rational characters, σ (F )v = v. Since F <epi G, σ (G)v = v.
HenceW is σ (G)-invariant.
Let σ1 : G → GL(W) denote the restriction of σ to W . Since σ1(F0) = 1 and F/F0 is

unipotent, we have that σ1(F ) is unipotent. Since σ1(F ) <epi σ1(G) and proper unipotent
subgroups are never epimorphic, we have that σ1(F ) = σ1(G) is a unipotent group. Since
G0 is generated by semisimple subgroups, σ1(G0) = 1. ThusG0 acts trivially onW . This
shows that all F0-invariant vectors in V are G0-invariant, proving that F0 <epi G0. !

Proof of Theorem 1.1. Without loss of generality, it is enough to prove that π([G,G]) ⊂
π(F ).
LetG0 be the subgroup ofG generated by all connected semisimple subgroups without

compact factors. Then by Proposition 4.3 applied to Ad(G), Ad(F ) and Ad(G0), we
get that Ad(G) = Ad(F )Ad(G0) = Ad(FG0) and (Ad(F ) ∩ Ad(G0))0 <epi Ad(G0).
We see now that Ad(G) = Ad(F [G,G]), and since [G0,G0] = G0, by Corollary 4.1,
π(G0) ⊂ π(F ). Therefore π(FG0) ⊂ π(F ). Now G/FG0 is an abelian group. Hence
[G,G] ⊂ FG0. This completes the proof of the theorem. !

Proof of Corollary 1.2. As in Theorem 1.1, Ad(F [G,G]) = Ad(G). Therefore F [G,G]
is generated by Ad-unipotent one-parameter subgroups. Therefore by Ratner’s theorem the
closure of any F [G,G]-orbit is a finite-volume homogeneous set. Now the conclusion of
the corollary follows from Theorem 1.1. !

Proof of Corollary 1.3. Note that in a connected real algebraic group, there is no
proper connected normal real algebraic epimorphic subgroup. Therefore F projects onto
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G/[G,G], i.e., G = F [G,G]. Now the conclusion of the corollary follows from
Theorem 1.1. !

5. A variant of Theorem 1.4.
Using Proposition 4.3, we will obtain the following variant of Theorem 1.4 by relaxing the
hypotheses thatG = [G,G] and F is solvable. The result will be used later in the proof of
Theorem 1.9.

THEOREM 5.1. Let L be a Lie group and ! a lattice in L. Let G be a subgroup of L

generated by one-parameter Ad-unipotent subgroups. Let F ⊂ G be a connected Lie
subgroup such that (G ∩ Ad−1(e))0 ⊂ F , and Ad(F ) is a real algebraic epimorphic
subgroup of Ad(G). Let W be the subgroup generated by all Ad-unipotent one-parameter
subgroups of F . Then there exists a ∈ F such that the following holds. Let λ be
a W -invariant W -ergodic probability measure on L/!, and x ∈ supp(λ) such that
Wx = supp(λ) (such an x exists by ergodicity). Then in the space of probability measures
on L/!,

anλ→ µ, as n →∞,

where µ is a (unique) G-invariant G-ergodic (and hence homogeneous) probability
measure with Gx = supp(µ).

Later the above result is used only in the case when Ad(F ) is an R-split solvable group.
However the theorem easily reduces to this case due to the following.

LEMMA 5.2. Let the notation be as in Theorem 5.1. Then there exists a connected Lie
subgroup F1 of F such that:
(i) Ad(F1) is an R-split solvable epimorphic subgroup of Ad(F );
(ii) if U is the maximal connected Ad-unipotent subgroup of F1 then (W,U) is a

Mautner Pair (that is, for any continuous unitary representation of W , any U -fixed
vector is alsoW -fixed);

(iii) (F ∩ Ad−1(e))0 ⊂ U .

Proof. There exists a connected Lie subgroup F1 of F such that (i) holds [BB]. Enlarging
F1 if necessary, we may assume that the radical of W (which is Ad-unipotent and
normal in F ) is contained in F1, and hence (iii) holds. Now (ii) follows from Mautner’s
phenomenon [Mo] if we prove the following.

CLAIM 5.1. There is no proper closed normal subgroup of W containing U .

By Proposition 4.2, if we put F2 = (F1 ∩W)0 then Ad(F2) is an epimorphic subgroup
of Ad(W). Suppose V is a proper closed connected normal subgroup of W containing
U . Since Ad(U) contains all unipotent elements of Ad(F2), the image of Ad(F2)
in Ad(W)/Ad(V ) is an epimorphic subgroup with no algebraic unipotent elements.
Since Ad(W)/Ad(V ) is generated by unipotent one-parameter subgroups, this leads to
a contradiction, unless Ad(V ) = Ad(W). Hence the claim follows in view of (iii). !
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Proof of Theorem 5.1. Let F1 be a subgroup of F subgroup F1 of F satisfying the
conclusion of Lemma 5.2. Let Ũ denote the maximal connected Ad-unipotent subgroup
of F1. Since (W, Ũ ) is a Mautner pair and λ is a finite W -invariant W -ergodic measure
on L/!, we conclude that λ is Ũ -ergodic. Therefore to prove the theorem, without loss of
generality we may assume that F1 = F andW = Ũ .
Write Ad(F ) = T U , where U = Ad(Ũ). Let G0 be the subgroup of G generated by

connected semisimple subgroups. Since Ad(G)/Ad(G0) is unipotent, we have that T ⊂
Ad(G0). Now since (G∩Ad−1(e))0 ⊂ Ũ , we haveF ⊂ ŨG0. By Proposition 4.3, we have
that T (U∩Ad(G0))0 is an epimorphic subgroup of Ad(G0) and Ad(G) = Ad(F )Ad(G0).
HenceG ⊂ FG0 = ŨG0. Note that G0 = [G0,G0].
By conjugation, without loss of generality we may assume that x = π(e). By Ratner’s

theorem, π(G) = π(H) for a closed subgroup H of L containingG such that H ∩! is a
lattice in H . Therefore without loss of generality, we may replace L by H and assume that
π(G) = L/!. Let µL denote the uniqueL-invariant probability measure on L/!. Now to
prove the theorem it is enough to show that for any subsequence {ai} ⊂ {an}n∈ , we have

aiλ→ µL as i →∞.

We will argue as in the proof of Theorem 1.4, and use the notations introduced there,
with Ũ as above andG0 in place ofG there. Let a ∈ (F ∩G0) such that Ad a ∈ T ++ \{e}.
Note that at any stage in the proof there is no loss of generality in passing to a

subsequence of {ai}.
By [S2, Corollary 1.2-3], the orbit Ũx is uniformly distributed with respect to λ in the

following sense: for any open set E ⊂ L/!, and ε > 0, there exists R > 0 such that for
any ball B in Rm = Lie(Ũ) about zero with radius≥ R,

∣∣∣∣λ(E)− 1
|B| |{t ∈ B : π(exp(t)) ∈ E}|

∣∣∣∣ < ε.

Using this remark and the argument as in the proof of Claim 3.1, we deduce that given
ε > 0, there exists a compact set K ⊂ L/! such that aiλ(K) > 1− ε for all i. Therefore,
by passing to a subsequence, we may assume that aiλ → µ in the space of probability
measures on L/!.
Since Ũ is normal in F and λ is Ũ -invariant, we have that µ is Ũ -invariant. This

observation replaces Claim 3.2, and we use Ũ in place ofW in the rest of the proof. Again
we let h ∈ H! be such that µ(π(N(H, Ũ))) > 0 and µ(π(S(H, Ũ))) = 0.
Using the same arguments as in the proof of Theorem 1.4 we get that G0 ⊂ N1

L(H),
µ is H -invariant and Ũ ⊂ H . Using Claim 3.3 we conclude that G0 ⊂ H . Thus
G = G0Ũ ⊂ H . Hence supp(µ) ⊂ π(F ) ⊂ π(H). Since µ is H -invariant, we have
supp(µ) = π(H), so π(H) is a closed orbit containing π(G). Thus H = L and µ = µL,
completing the proof of the theorem. !

6. Orbit-closures which are not almost homogeneous
We will need the following theorem from [Su] about the structure of observable subgroups.

THEOREM 6.1. [Su] Let L be a connected real algebraic group which is defined over Q
and is Q-split. Let G be a connected real algebraic subgroup. Then G is observable in L
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if and only if there exists a conjugateG′ of G in L and a connected Q-split real algebraic
subgroupH defined over Q with the following properties: G′ ⊂ H , H is observable in L,
and the unipotent radical ofG′ is contained in the unipotent radical of H .

Sukhanov’s theorem provides more information about the structure of H , and does
not state explicitly that H is a Q-split real algebraic subgroup defined over Q. However,
Theorem 6.1 can be verified by examining Sukhanov’s construction ofH .

Proof of Theorem 1.7. (1) ⇒ (2) Let x0 ∈ L and a lattice ! of L be given, and let
x = π(x0). By Theorem 1.1, Fx = Gx.
Since G has no R-rational characters, G = KG0, where G0 is the normal subgroup

of G generated by one-parameter unipotent subgroups of L contained in G and K is a
compact subgroup ofG. Since K is compact,Gx = KG0x, and by Ratner’s orbit closure
theorem,G0x = G1x is a finite-volume homogeneous set. Therefore Fx = KG1x.
(2)⇒ (1) Let us suppose thatG has non-trivial algebraic characters defined overR. We

will construct a lattice !, and x ∈ L/! such that Fx = Gx is not a finite-volume almost
homogeneous set.
Replacing G with a conjugate merely permutes the orbits, so we may conjugate G by

elements of L.
For a connected real algebraic group E we will write E = TESEUE , where UE is the

unipotent radical ofE, SE a maximal connected semisimple subgroup, and TE a connected
algebraic torus centralizing SE . Note that while UE is determined by E, we are free to
choose TE, SE as long as TE centralizes SE and TESE is a maximal connected reductive
real algebraic subgroup. If E is defined overQ then UE is defined overQ and TE, SE can
be chosen so they are defined over Q, and we will do so without further comment. For a
subgroupG of E, we will denote the centralizer ofG in E by ZE(G).
Since L is R-split, it is isomorphic as a real algebraic group to a Q-split real algebraic

group defined over Q [O, Proposition 1.4.2]. So let us assume L is Q-split and defined
overQ, and define ! = L . Since L is semisimple, ! is a lattice.
By our assumption,G is a real algebraic subgroup of L with R-rational characters, and

is observable in L. By Theorem 6.1, after conjugation there exists an observable Q-split
subgroupH of L defined overQ, containingG such that UG ⊂ UH .
Let T be a maximal R-split torus in TG. Since H is Q-split, there exists a Q-split

torus T1 in H defined over Q which is also a maximal R-split torus in H . Therefore there
exists h ∈ H such that hT h−1 ⊂ T1. Hence replacing G by hGh−1 we may assume
that T ⊂ T1. In particular, T is a Q-split Q-torus. Let G1 = ZTH SH (T )UH , so G1 is a
subgroup of H defined over Q containing G. Since ZTH SH (T ) is reductive, UG1 = UH

and therefore, by Theorem 6.1, G1 is observable in H and hence in L. Also, G ⊂ G1. By
[W1, Proposition 1], this implies thatG1π(e) is closed, and containsGπ(e).
Let χ be a non-trivial R-character on G. Then χ restricted to T is a non-trivial

Q-character on T . Since T is a Q-split Q-torus contained in the centre of G1, there
exists a Q-character χ1 on G1 whose restriction to T is χ . Since χ1 is a Q-character,
G1 ∩ ! ⊂ ker(χ1), and so the function φ(g1(G1 ∩ !)) = χ1(g1) is well defined on
G1/(G1 ∩!) ∼= G1π(e) and continuous.



On actions of epimorphic subgroups 587

Suppose that Gπ(e) is a finite-volume almost homogeneous set. Then Gπ(e) =
KG2π(g), where g−1G2g ∩ ! is a lattice in g−1G2g and K is compact. Therefore
φ(g−1G2gπ(e)) ⊂ {1,−1}, and hence φ(KG2π(g)) is compact. This contradicts the
fact that φ(Gπ(e)) = χ1(G) is non-compact. Hence Gπ(e) is not a finite-volume almost
homogeneous set. As noted before, this completes the proof. !

Question. In the above proof, the orbit-closure we construct may just be a closed orbit of
a subgroup admitting an infinite measure invariant under the action of the subgroup; i.e.,
a ‘homogeneous set of infinite volume’. It would be interesting to know whether one can
construct, for subgroups F whose observable envelopes have R-rational characters, the
orbit-closures with non-integer Hausdorff dimensions.

7. Finite invariant measures
In this section we will prove Theorem 1.8.

LEMMA 7.1. Let L be a connected Lie group. Let G be a subgroup of L generated by
Ad-unipotent one-parameter subgroups. Let F be a connected subgroup ofG such that for
any connected Lie subgroupH of L,

F ⊂ N1
L(H) 8⇒ G ⊂ NL(H). (7.29)

Then for any closed connected normal subgroup V of G, if V contains all Ad-unipotent
one-parameter subgroups of F then [G,G] ⊂ FV . In particular, if V = {e} then
[G,G] ⊂ F .

Proof. Let U denote the subgroup generated by all Ad-unipotent one-parameter subgroups
of F . LetR denote the solvable radical of F . Then [R,R] ⊂ U ⊂ V . Therefore the radical
of FV/V is abelian. Therefore FV/V is unimodular, or in other words, the conjugation
by elements of F on FV/V has determinant one on the Lie algebra (note that FV is a
connected Lie subgroup of L). Also F ⊂ G ⊂ N1

L(V ). Therefore, F ⊂ N1
L(FV ). Hence,

by (7.29), we have that FV is a normal subgroup ofG. Therefore FV is generated by Ad-
unipotent one-parameter subgroups. Now by condition (7.29) we get that every connected
one-dimensional subgroup of G/FV is normal. Therefore G/FV is abelian, and hence
[G,G] ⊂ FV . !

Theorem 1.8 will be deduced from the following:

THEOREM 7.2. Let L be a connected Lie group and ! be a discrete subgroup of L. Let
G be a connected Lie subgroup of L such that Ad(G) is generated by one-parameter
unipotent subgroups. Let F be a subgroup of G, and let F1 be the smallest connected
normal cocompact real algebraic subgroup of the Zariski closure of Ad(F ). Suppose that
for any Lie subalgebra H of L,

F1 · H = H, det(F1| ) = 1⇒ Ad(G)H = H. (7.30)

Then any F -invariant finite Borel measure on L/! is F [G,G]-invariant. In particular,
any finite F -invariant F -ergodic Borel measure on L/! is a homogeneous measure.
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Proof. Let µ be a Borel probability measure on L/! which is F -invariant. Using ergodic
decomposition, it is enough to show that finite ergodicF -invariant Borel measures on L/!

are [G,G]-invariant. Hence we assume that µ is F -ergodic. Also, since µ is a probability
measure it is invariant under F .
Let U be the subgroup of F generated by all Ad-unipotent one-parameter subgroups of

F . Equation (7.30) implies (7.29), and therefore Lemma 7.1 applies. Thus if U = {e} then
F ⊃ [G,G], and the result is trivial.
IfU is non-trivial, then by Ratner’s description of finiteU -ergodicU -invariantmeasures

and Theorem 2.10, there exists a closed connected subgroupH ∈ H! such that

µ(π(N(H,U))) > 0 and µ(π(S(H,U))) = 0. (7.31)

Since F ⊂ NL(U), by equations (2.9) and (2.10), π(N∗(H,U)) is F -invariant. By
ergodicity, µ is concentrated on π(N∗(H,U)). By Lemma 2.9, the map

N∗(H,U)/N!(H) → π(N∗(H,U))

is injective, where N!(H) = NL(H) ∩ !. Therefore we can lift µ to an F -invariant
measure on N∗(H,U)/N!(H), say µ̃.
Let L1 be the Zariski closure of Ad(L) in GL(L). Let H denote the Lie algebra of H ,

and

N1 = {b ∈ L1 : b · H = H, det(b| )2 = 1}. (7.32)

ThenN1 is a real algebraic subgroup of L1. Since Vol(π(H)) < ∞, if g ∈ NL(H) is such
that gπ(H) = π(H), then det((Ad g)| ) = ±1. Therefore

Ad(N!(H)) ⊂ N1.

Let µ̄ be the image of µ̃ on L1/N1 under the map gN!(H) 4→ Ad(g)N1, ∀g ∈ N∗(H,U).
Let

T = {b ∈ L1 : bµ̄ = µ̄}
S = {b ∈ L1 : bx = x, ∀x ∈ supp(µ̄)}.

Then by a theorem due to Dani [D2, Corollary 2.6], T is real algebraic, S is a real algebraic
normal subgroup of T , and T/S is compact. Note that Ad(F ) ⊂ T . Since T is algebraic,
Zcl(Ad(F )) ⊂ T . Since T/S is a compact algebraic group, by the definition of F1, we
have

F1 ⊂ S. (7.33)

Since µ is F -ergodic, by (7.31), there exists g ∈ N∗(H,U) such that supp(µ) =
Fπ(g). Then Ad(g)N1 ∈ supp(µ̄). Put H ′ = gHg−1 and H′ = Ad(g)H. Then U ⊂ H ′.
By (7.33), we get F1(Ad(g)N1) = Ad(g)N1. Therefore by (7.32), F1 · H′ = H′ and
det(F1| ′) = 1. Now by (7.30),G ⊂ N1

L(H ′). In particular, F ⊂ N1
L(H ′).

By Theorem 2.11 π(N1
L(H)) is closed. ThereforeN1

L(H ′)π(g) is closed. Hence

supp(µ) = Fπ(g) ⊂ N1
L(H ′)π(g) = π(gN1

L(H)).
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Therefore by Theorem 2.10 and (7.31), almost every U -ergodic component of µ is
concentrated on ghπ(H) for some h ∈ N1

L(H), and is H ′ = ghH(gh)−1-invariant. Thus
µ is H ′-invariant.
Note that (G ∩ H ′)0 is a closed normal subgroup of G containing U . Also (7.30)

implies (7.29). Therefore by Lemma 7.1, [G,G] ⊂ F(G ∩H ′)0 ⊂ FH ′. Since µ is FH ′-
invariant, we have that µ is FH ′-invariant. Therefore µ is [G,G]-invariant. This proves
the theorem. !

Proof of Theorem 1.8. Clearly Zcl(Ad(F )) <epi Ad(G). Let F1 be the smallest connected
normal cocompact real algebraic subgroup of Zcl(Ad(F )). Then F1 <epi Ad(G) [W1,
Proposition 6]. Therefore condition (7.30) in the statement of Theorem 7.2 is satisfied, and
hence any finite F -invariant Borel measure on L/! is F [G,G]-invariant.
Since the image of Ad(F ) in Ad(G)/Ad(F [G,G]) is epimorphic, we deduce that

Ad(G) = Ad(F [G,G]). This completes the proof of the theorem. !

The following example shows that if we relax a condition on Ad(G) in Theorem 1.8,
allowing it to be any real algebraic group (say having non-trivial real characters, or non-
trivial algebraic compact factors), then the conclusion of the theorem does not hold in
general if Ad(F ) is non-algebraic.

Example 7.1. Let L = SL(2, R) × SL(2, R), let ! = SL(2, Z) × SL(2, Z), let G =
{(u(t), a(s)) : t, s ∈ R} and F = {(u(t), a(t)) : t ∈ R}, where {u(t)} is a non-trivial
one-parameter unipotent subgroup and {a(t)} is a non-trivial one-parameter semisimple
(i.e. diagonalizable or compact) subgroup such that (u(1), a(1)) ∈ !. ThenG is algebraic
and F is Zariski dense in G, and therefore F <epi G. On the other hand the compact orbit
Fπ(e) supports an F -invariant measure which is notG-invariant.

8. Locally finite invariant measures
In this section we obtain the proof of Theorem 1.9.

Proof of Theorem 1.9. Note that since µ is locally finite, by the dominated convergence
theorem, µ is F -invariant. Thus without loss of generality we may assume that F is a
closed connected subgroup of L.
Due to ergodic decomposition, it is enough to prove the main part of the theorem under

the additional assumption that µ is F -ergodic. Without loss of generality we may assume
that Ad(F ) is an R-split solvable epimorphic subgroup of Ad(G) [BB].
First we will assume that

F ⊃ (G ∩ Ad−1(e))0. (8.34)

Let Ũ be the maximal connected Ad-unipotent subgroup of F . Because µ is locally
finite, by a result due to Dani [D1, Theorem 4.3], there exists a measurable Ũ -invariant
subset X1 of L/! such that 0 < µ(X1) < ∞. Let µ1 denote the restriction of µ to
X1. Clearly, µ1 is Ũ -invariant. Consider the integral decomposition of µ1 into Ũ -ergodic
components, and apply Theorem 5.1 to each of them. Then there exists a ∈ F and a finite
G-invariant measure σ on L/! such that anµ1 → σ as n →∞.
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Since µ is F -invariant, for any measurable set E ⊂ L/! and n ∈ N,

anµ1(E) = µ1(a
−nE) ≤ µ(a−nE) = anµ(E) = µ(E);

and since anµ1 → σ and µ is locally finite, we have σ (E) ≤ µ(E). Therefore there
exists a function f ∈ L1(L/!, µ) such that dσ = f dµ and f (x) ≤ 1 for µ-almost every
x ∈ L/!. Since σ is G-invariant, and µ is F -ergodic, we have that f is constant almost
everywhere. Thus σ = µ, and hence µ is finite andG-invariant.
For the general case (i.e. without assuming (8.34)), we will argue by induction on the

dimension of L. Since µ is F -ergodic, there exists x ∈ supp(µ) such that Fx = supp(µ).
By conjugation, without loss of generality we may assume that x = π(e). Let L′ be the
smallest closed connected subgroup of L containingG such that π(L′) is closed andL′∩!
is a lattice in L′. If the dimension of L′ is strictly less than the dimension of L then we
are done by the induction hypothesis. Thus L′ = L0. Without loss of generality we may
assume that L = L0 = L′. Now Ad(L ∩ !) is Zariski dense in Ad(L) [S1, Section 2].
Then Zy is compact for all y ∈ L/! [S4, Lemma 2.3], where Z denotes the centre of L.
Consider the quotient homomorphism ψ : L → L/Z. Then ψ(!) is a lattice in ψ(L),
and the L-equivariant projection q : L/! → ψ(L)/ψ(!) is a proper map. In particular,
the pushforward of µ, denoted by q∗(µ), on ψ(L)/ψ(!) is a locally finite ψ(F )-ergodic
ψ(F )-invariant Borel measure.
Suppose dim(Z) = 0. Then (8.34) holds, and the theorem is proved above.
Now we may assume that dim(L/Z) < dim(L), in which case by the induction

hypothesis, q∗(µ) is finite. Therefore µ is a finite F -invariant measure. Now we apply
Theorem 1.8 to conclude that µ is F [G,G]-invariant.
Note that since Ad(F [G,G]) is normal in Ad(G) and Ad(G) is generated by unipotent

elements, Ad(F [G,G]) is also generated by unipotent elements. Therefore Ratner’s
theorem is applicable for Ad(F [G,G]).
The rest of the conclusions follow from [M2, Theorem 15]. !

The following example shows that Theorem 1.9 is not valid in general without the
assumption that Ad(F ) is real algebraic.

Example 8.1. Let L = G = SL(2, R) × SL(2, R), ! = SL(2, Z) × SL(2, Z). Let U be
the two-dimensional upper triangular unipotent subgroup ofG. Let

T =
{([

a

a−1

]
,

[
a−α

aα

])
: a > 0

}
,

where α > 0 an irrational number. Let A =
{[ a

a−1
]

: a > 0
}
. Then T is Zariski dense

in D = A× A. Since DU is epimorphic in G, we have that F = T U is epimorphic in G.
Observe that π(F ) is closed, and there exists an infinite locally finite F -invariant measure
on π(F ).
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