
Proc. Indian Acad. Sci. (Math. Sci.), Vol. 106. No. 2, May 1996, pp. 105-125. 
�9 Printed in India 

Limit distributions of expanding translates of certain orbits on 
homogeneous spaces 

N I M I S H  A S H A H  
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, 
Bombay 400 005, India 
Email: nimish @ tifrvax.tifr.res.in 

MS received 21 May 1995; revised 9 November 1995 

Abstract. Let L be a Lie group and A a lattice in L. Suppose G is a non-compact simple Lie group 
realized as a Lie subgroup of L and G---A = L. Let a~G be such that Ada is semisimple and not 
contained in a compact subgroup of Aut (Lie(G)). Consider the expanding horospherical subgroup 
of G associated to a defined as U + = {g~ G:a-"ga"~ e as n ~ oo}. Let f2 be a non-empty open 
subset of U § and nf-* ~ be any sequence. It is showed that u~=~a"'DA = L. A stronger measure 
theoretic formulation of this result is also obtained. Among other applications of the above result, 
we describe G-equivariant topological factors of L/A x G/P, where the real rank of G is greater 
than 1, P is a parabolic subgroup of G and G acts diagonally. We also describe equivariant 
topological factors of unipotent flows on finite volume homogeneous spaces of Lie groups. 

Keywords. Limit distributions; unipotent flow; horospherical patches: symmetric subgroups; 
continuous equivariant factors. 

I. Introduction 

Let G be a connected semisimple Lie g roup  with no compact  factors and of  R-rank >t 2, 
P a parabolic subgroup  of  G, and F an irreducible lattice in G. It  was proved by 
Margulis I-M 1] that  if ~b: G/P ---, Y is a measure class preserving F-equivariant  factor  of 
G/P then there exist a parabolic  subgroup Q containing P and a measurable  isomor-  
phism ~:  Y ~ G / Q  such that  ~bo~ is the canonical  quotient  map.  The  topological  
analogue of  this result was obtained by Dan i  [D3] ,  who proved that,  in the above 
notat ion,  if ~b is cont inuous  then ~ can be chosen to be a homeomorphism.  On  the other 
hand  the result of  Margulis  was generalized by Zimmer  [Z 1] in the measure theoretical 
category. This result was later used in I-SZ] for describing faithful and properly ergodic 
finite measure preserving G-actions. It was suggested by Stuck [St]  that  the following 
question, which is a topological  analogue of  Zimmer 's  result, is of  impor tance  for 
s tudying locally free minimal G-actions. 

Question 1.1. Let G be a simple Lie g roup  of  R-rank/> 2. Suppose that  G acts 
minimally and locally freely on a compac t  Hausdorf f  space X. Suppose there are 

G-equivariant con t inuous  surjective maps  X • G/P~ '~ Y ~ X  such that  ~o~b is the 
projection onto  X, where G acts diagonally on X x G/P. Does there exist a parabolic 
subgroup Q containing P and a G-equivariant  homeomorph i sm p: Y ~ X x G/Q such 
that  p o~b is the canonical  quotient  map? 

The above ment ioned  result of Dani  says that  this question has the affirmative 
answer if X = G/F, F being a lattice in G. In  this paper  we consider the case when G is 
a Lie subgroup of  a Lie g roup  L acting on X = L/A by translations, A being a lattice in 
L. To analyze this case we follow the method  of  the p roof  of  Dani  [D3] .  To adapt  
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Dani's proof for the general case one needs the following theorem 1.1, which is 
a non-trivial generalization of its particular case of L = G (cf.[D3, Lemma 1.1]). Its 
proof involves, in an essential way, Ratner's theorem [Ral ]  on classification of finite 
ergodic invariant measures of unipotent flows on homogeneous spaces. 

For the results stated in the introduction, let L denote a connected Lie group, 
A a lattice in L, ~r:L-+ L/A the natural quotient map, and/~L the (unique) L-invariant 
probability measure on L/A. 

Theorem 1.1. Let G be a connected semisimple Lie group. Let a~G be a semi-simple 
element; that is, Ad(a) is a semi-simple endomorphism of the Lie algebra of G. Consider 
the expanding horospherical subgroup U + of G associated to a which is defined as 

U + = { u ~ G : a - " u a ' ~ e  as n ~ o o } .  

Assume that U § is not contained in any proper closed normal subgroup of G. Suppose that 

G is realized as a Lie subgroup of  L and that re(G) = L---~. Then 

~r(w.~=la"U +) = L/A. 

In particular, if P is any parabolic subgroup of  G and ~ = L/A,  then n(P) = L/A. 

In the case o fL  = G this result is well-known (see [DR, Prop. 1.5] ). Actually theorem 
1.1 is a straightforward consequence of a technically much stronger result stated later in 
the introduction as theorem. 1.4. 

Using the techniques of [D3] along with theorem 1.1 and the result of Ratner [Ra2] 
on closures of orbits of unipotent flows on finite volume homogeneous spaces, in the 
next result we provide an affirmative answer to Question 1.1 in case when X = L/A. In 
this case we are able to relax certain other conditions in the question as well. 

Theorem 1.2. Let G be a semisimple Lie group of R-rank >/ 2 and with finite center. 
Suppose that G is realized as a Lie subgroup of L such that the G-action is ergodic with 

respect to it L, and that Glx  = Gx for any x ~ L / A  and any closed normal connected 
subgroup G~ of G such that ff~-rank(G/Gx) <% 1. Let P be a parabolic subgroup of G and 
consider the diagonal action of G on L /A  • G/P. Let Y be a Hausdorff space with 
a continuous G-action and c~:L/A x G / P ~  Y a continuous G-equivariant map. Then 
there exist a parabolic subgroup Q ~ P, a locally compact Hausdorff space X with 
a continuous G-action, a continuous surjective G-equivariant map q b t : L / A ~ X ,  and 
a continuous G-equivariant map d/:X x G/Q ~ Y such that the following holds: 

1. I f  we define p:L/A x G/P ~ X x G/Q as p(x, gP)=((91(x), 9Q) for all x~L /A  and 
g ~ G, then 

~ = ~,op. 

2. There exists an open dense G-invariant set X o c L /A  such that if we put 
Z o = q~l(Xo) x G/Q and Yo = ~(Zo), then Z o = ~b-l(Yo) and ~blZo is injective. 

Furthermore if  Y is a locally compact second countable space and dp is surjective, then 
Yo is open and dense in Y and ~b [Zo is a homeomorphism onto Yo. 

In the next result we classify the G-equivariant factors of L/A, in particular we 
describe the factor ~bl :L/A --, X appearing in the statement of theorem 1.2. The proof of 
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this result uses the theorem of Ratner on orbit closures of unipotent flows and the main 
result of [MS]. 

DEFINITION 1.1 

Let A t be a closed subgroup of L. A homeomorphism z on L/A t is called an affine 
automorphism of L/A  t if there exists aeAut(L) such that z(gx)= a(O)Z(x) for all 
xe  L/A t . The group of all affine automorphisms of L/A t is denoted by Aft(L/A t). It is 
endowed with the compact-open topology; i.e. its open sub-base consists of sets of the 
form {reAff(L/At):r(C ) c U}, where C is a compact subset ofL/A t and U is an open 
subset of L/A t . 

Remark 1.1. (1) Aff(L/A 1) is a locally compact topological group acting continuously 
on L/A  t . (2) If aeAut(L) is such that a(A1) = A t and if geL,  then the map T on L/A t 
defined by z(hAt) = gtr(h)A t for all heL  is an affine automorphism. (3) Let A' 1 be the 
maximal closed normal subgroup of L contained in A t. Define L = L/A' 1 and At = 
A t/A' t . Then we have natural isomorphisms L/A  ~ L /A  1 and Aft(L/At) = Aft(L/A t). 

Theorem 1.3. Let G be a subgroup of L which is generated by one-parameter unipotent 
subgroups of L contained in G. Suppose that G acts ergodically on L/A. Let X be 
a Hausdorfflocally compact space with a continuous G-action and 49: L /A  ~ X a continu- 
ous surjective G-equivariant map. Then there exists a closed subgroup A 1 containing 
A, a compact group K contained in the centralizer of the subgroup of translations 
by elements of G in Aff(L/A 0, and a G-equivariant continuous surjective map 
~ : K \ L / A  1 ~ X such that the following holds: 

1. I f  p: L/A ~ K \  L /A  1 is defined by p (gA) = K (gA x ), Vge L, then p is G-equivariant and 

49 = ~,o p. 

2. Given a neighbourhood fl  of e in ZL ( G ), there exists an open dense G-invariant subset 
X o of L /A  t such that for any x e X  o and y e L / A  t if ~b(K(x)) = ~k(K(y)) then yeK(f~x). 
In this situation, further if Gx = L/A t, then K(y) = K(x). 

The above description of topological factors of unipotent flows is also of independent 
interest. The measurable factors of unipotent flows were described by Witte [W]. 

The next result is an immediate consequence of theorems 1.2 and 1.3. 

COROLLARY 1.1 

Let L be a Lie group, A a lattice in L, and G a connected semisimple Lie group with finite 
center, realized as a closed subgroup of L. Suppose that the action of G t on L /A  is minimal 
for any closed normal subgroup G 1 of G such that •-rank(G/Gt) <% 1. Let Y be a locally 
compact Hausdorff space with a continuous G-action, P a parabolic subgroup of G, and 
49: L /A  x G/P ~ Y a continuous surjective G-equivariant map, where G acts diagonally on 
L/A x G/P. Then there exist a parabolic subgroup Q of G containing P, a closed subgroup 
A t of L containing A, and a compact group K contained in the centralizer of the image of 
G in Aft(L/A t), such that Y is G-equivariantly homeomorphic to (K\L/A 1 ) x (G/Q) and 
49 is the natural quotient map. 

In particular if, as in question 1.1, there exists a map ~O : Y ~ L /A  such that ~o49 is the 
projection on the first factor, then A 1 = A and K is trivial. Hence Y is G-equivariantly 
homeomorphic to L /A  • G/Q and 49 is the natural quotient map. 
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For  the purpose of other applications, we obtain a stronger measure of theoretic 
version of theorem 1.1. Before the statement, we recall some definitions. 

For  any Borel map T: X --* Y of Borel spaces and a Borel measure 2 on X, the Borel 
measure T,)~ defined by T, ,~(E)= 2(T-I(E)), for all Borel sets E c Y, is called the 
image of 2 under T. 

For  any Borel measure # on L/A and any geL,  the translated measure g ' p  on L/A is 
the image o f p  under the map x~--~gx on L/A. 

On a locally compact  space X, for a sequence {p~} of finite Borel measures and 
a finite Borel measure, we say that/~--* # as i ~ o0, if and only if for all bounded 

continuous function f on X, Sxfdl2i--*Sxfdl~ as i ~ oo. 

Notation 1.1. Let G be a connected semisimple real algebraic group. Let A be an R-split 
torus in G such that the set of real roots on A for the adjoint action on the Lie algebra of G 
forms a root system. Fix an order on this set of roots and let A be the corresponding system 
of simple roots. Let 4 + be the closure of the positive Weyl chamber in A. Let {ai}i~ ~ be a 
sequence in A-~ such that for any ~eA, either supie~ ct(a.:) < oo or ot(ai)--,, oo as i--* oo. Put 

U + = {geG:ai-lgai-~e as i ~ } .  

Theorem 1.4. Consider the notation 1.1. Assume that U + is not contained in any proper 
closed normal subgroup of G. Suppose that G is realized as a Lie subgroup of L and that 
n(G) is dense in L/A. Then for any probability measure 2 on U + which is absolutely 
continuous with respect to a Haar measure on U +, 

ai'lt,O.)--~l.tL, as i-~oo. 

In other words, for any bounded continuous function f on L/A, 
p r, 

lim t f(ai~(co))d2(~o)= j fdPL. 
i --* oo , j  U + L / A 

In particular, for any Borel set f~ of U + having strictly positive Haar measure, 

U ai'g(~) = L/A. 
i e t ~  

Using this theorem we obtain the following generalization of a result due to Duke, 
Rudnick and Sarnak [DRS]; their result corresponds to the case o fL  = G. First we need 
a definition. 

Let G be a semisimple Lie group. A subgroup S of G is said to be symmetric if there 
exists an involution a of G (i.e. a is a continuous automorphism and a 2 = 1) such that 
S = {g~G: a(g) = g}. For  example, any maximal compact subgroup of G is a symmetric 
subgroup, for it is the fixed point set of a Cartan involution of G. 

C O R O L L A R Y 1 . 2  

Let G be a connected real algebraic semisimple Lie group realized as a Lie subgroup of L, 
S the connected component of the identity of a symmetric subgroup of G, and {gi}i~ 
a sequence contained in G. Suppose that rt(S) is closed and admits an S-invariant 
probability measure, say #s. Also suppose that it(G1)is dense in L/A. for any closed 
normal subgroup G 1 of G such that the image of {gi} in G/(SGx) admits a convergent 
subsequence. Then the sequence of measures g~'t~s cont~ges to #L; that is, for every 
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bounded continuous function f on L/A, 

lira f (glx)d #s(X ) = 
i~o~ n(S) 

In the case o fL  = G, Eskin and McMullen [EM] gave a proof of this result using the 
mixing property of geodesic flows. The main technical observation in their proof is 
what they call 'a wave front lemma'. In the general case of L ~ G, our analogue of the 
wave front lemma is theorem 1.4. 

Using the arguments of the proof of corollary 1.2, one can also deduce the following 
result from theorem 1.4. 

COROLLARY 1.3 

Let G be a connected real algebraic semisimple group realized as a Lie subgroup of L. Let 
{ai} be a sequence in G. Suppose that n(G1) is dense in L/A for any closed normal 
subgroup G 1 of G such that the image of {gi} in G/G a admits a convergent subsequence. 
Then for any Borel probability measure 2 on G which is absolutely continuous with 
respect to a Haar measure on G, 

gin,(~,)---~#L as i ~ .  

In particular, for any Borel set f~ of G having strictly positive "Haar measure, 

U = L/A. 
i~l~ 

The main result of this paper is theorem 1.4 and other results (except theorem 1.3) are 
derived from it. The main steps of its proof are as follows. First suppose that the set of 
probability measures {ain,(2):ieN } is not relatively compact in the space of all 
probability measures on L/A. Using an extension of a result of Dani and Margulis 
[DM2],  in w 2 we see that there exist a nonempty open set f~ c U § a finite dimensional 
representation V of L, a discrete set {vi:ie~} c V, and a compact set K c V such that 
ai~" v~ c K for infinitely many i e N. Via some observations about representations of 
semisimple Lie groups, in w 5 we show that the conditions mentioned above lead to 
a contradiction when we restrict the representation to G. Now let a probability measure 
/~ be a limit distribution of the sequence {aFro,(2)}. We observe that # is U +-invariant. 
Using Ratner's [Ra l ]  description of finite measures on L/A which are ergodic and 
invariant under the action of a unipotent subgroup, in w 3 we conclude that either 
# = PL, or # is non-zero when restricted to the image under rc of some strictly lower 
dimensional 'algebraic subvariety' of L. Using techniques developed in [DMI,  Shl, 
DM3, MS], in w we see that in the later case the above type of condition on a finite 
dimensional representation of L must hold, and this again leads to a contradiction. 
Thus # =/~L and hence PL is the only limit distribution of {aF#n}. 

2. A condition for returning to compact sets 

In [DM2] Dani and Margulis proved that large compact sets in finite volume 
homogeneous spaces have relative measures close to 1 on the trajectories of unipotent 
flows starting from a fixed compact set. This result was generalized in [EMS1] to 
a larger class of higher dimensional trajectories. In these results one considered only the 
case of arithmetic lattices in algebraic semisimple Lie groups defined over Q. Here we 
modify them to include the case of any lattice in any Lie group. 
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Notation 2.1. Let G be a Lie group and g the Lie algebra associated to G. For d, meN, 
let ~d.m(G) denote the set of continuous maps o : ~ m ~  G such that for all e, a ~ R '~ and 
Xeg, the map 

t~ R~--}AdoO(te + a)(X)eg 

is a polynomial of degree at most d in each co-ordinate of g (with respect to any basis). 
We shall write ~d(G) for the set ~d,l(G). 

Theorem 2.1 (Dani, Margulis). Let G be a Lie group, F a lattice in G, and n: G ---} G /F  the 
natural quotient map. Then given a compact set C ~ G/F, an ~ > O, and a de N, there exists 
a compact subset K ~ G/F with the following property: For any Oe~d,m(G) and any 
bounded open convex set B ~ R m, one of the following conditions hold: 

1. (1/v(B))v( {t~B:;z(O(t))eK} ) >1 1 - 5 ,  where v denotes the Lebesoue measure on R m. 
2. ~(O(B))nC = O. 

Proof. See [Sh2, Theorem 3.1]. [] 

The usefulness of the above result is enhanced by the following theorem which provides 
an algebraic condition in place of the geometric condition n(O(B))c~ C = r 

Notation 2.2. Let G be a connected Lie group and g denote the Lie algebra associated 
to G. Let V6 = @~i~ A kg, the direct sum of exterior powers of g, and consider the linear 
G-action on V6 via the representation ~ g  A ~ Ad, the direct sum of exterior powers of 
the adjoint representation of G on g. 

Fix any Euclidean norm on g and let ~ = {et . . . . .  edim~ } denote an orthonormal basis of 
g. There is a unique Euclidean norm II" 11 on VG such that the associated basis of V~ given by 

{et, A ... A el,:l ~<l 1 < .-. < l, ~d img,  r =  1 . . . . .  dimg} 

is orthonormal. This norm is independent of the choice of ~ .  
To any Lie subgroup W of G and the associated Lie subalgebra to of g we associate 

a unit-norm vector pwE Adim~toe V~. 

Theorem 2.2 (Cf. [DM2]). Let G be a connected Lie group, F a lattice in G, and 
n: G ~ G/F the natural quotient map. Let M be the smallest closed normal subgroup of  
G such that G = G/M is a semisimple group with trivial center and without nontrivial 
compact normal subgroups. Let q: G ~ Cr be the quotient homomorphism. 7hen there exist 
finitely many closed subgroups W 1 . . . . .  W, of G such that each W i is of the form q-  1 (U i) 
with U i the unipotent radical of  a maximal parabolic subgroup of  G, n( W i) is compact and 
the following holds: Given d, me N and reals ~t, ~ > O, there exists a compact set C c G/F 
such that for any 0 e ~i~d,m( G), and a bounded open convex set B c R m, one of the following 
conditions is satisfied: 

1. There exist 7eF and ie{1 . . . . .  r} such that 

sup II O(07-pw, II < ~. 
teB 

2. rc(O(B)) ra C # O, and hence condition (1) of  theorem 2.1 holds. 

Proof. Let R be the radical of G, C the maxdmal conneet~lcompact normal subgroup 
of G/R, S=( G/R) /C  and Z the center orS .  Not~ that  S i s  a semisimple Lie group 
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without nontrivial compact connected normal subgroups. Clearly S/Z ~- G/M. There- 
fore M is the inverse image of Z in G. 

Let H = RT ~ Then HF  is closed and H n F is a lattice in H (see [R, Lemma 1.7]). By 
Auslander's theorem [R, Theorem 8.24] H is solvable, and so is its image in S. By 
Borel's density theorem [R, Lemma 5.4, Corollary 5.16] the image is a normal 
subgroup of S and therefore it has to be trivial. Hence H c M ~ and since R c H, M~ 
is compact. Since H is solvable, by Mostow's theorem [R, Theorem 3.1] H/(HnF) is 
compact. Therefore M~ n F is compact. So M~ is compact and M ~  is closed. 

Therefore the image A of F in S is discrete, and hence a lattice in S. Therefore by Borel's 
density theorem [R, Corollary 5.18] ZA is discrete. Hence A is of finite index in ZA and 
hence M~ is of finite index in MF. Hence MF/F is compact, i.e. n(M) is compact. 

Thus F = q(F) is a lattice in (7 and the fibers of the map ~I:G/F --* G/F are compact 
M-orbits. Therefore without loss of generality, we may assume that G = G. 

Then there are finitely many normal connected subgroups G 1 . . . . .  G, of G such that 
G = G1 x ... x G, and each F i = G i n F is an irreducible lattice in Gi (see I-R, Sect. 5.22]). 
In proving the theorem without loss of generality we may replace F by its finite-index 
subgroup F~ • .-- x F,. In order to prove the theorem for G, it is enought to prove it for 
each G~ separately. Thus without loss of generality we may assume that F is an 
irreducible lattice. 

The result in the case of B-rank(G)= 1 can be deduced from the arguments in 
[D2, (2.4)]. 

Next suppose that B-rank(G) >/2. Then by the arithmeticity theorem of Margulis 
[M2], F is an arithmetic lattice. Therefore there exist a semisimple algebraic group 
G defined over Q and a surjective homomorphism p:G(~) ~ ~ G with compact kernel 
such that, for A = G(2~)c~ G(R) ~ the subgroup F c~ p(A) is a subgroup of finite index in 
both F and p(A). Again without loss of generality we may replace G by G(R) ~ and F by 
A. In this case the result follows from [EMS1, Thm. 3.6]. 

3. Description of measures invariant under a unipotent flow 

In this and the next section, let G denote a Lie group, F a lattice in G, and n: G ~ G/F the 
natural quotient map. 

A subgroup U of G is called unipotent if Adu is a unipotent endomorphism of the Lie 
algebra of G for every ueU. 

Let ~ r  denote the collection of all closed connected subgroup H of G such that (1) 
H ~ F, (2) H/H n F admits a finite H-invariant measure, and (3) the subgroup generated 
by all one-parameter unipotent subgroups of H acts ergodically on H/H~ F with 
respect to the H-invariant probability measure. In particular, the Zariski closure of 
Ad(H n F) contains Ad(H) (see [Shl, Theorem 2.3]). 

Theorem 3.1 ( [Ral ,  Theorem 1.1]). The collection Ji~r is countable. 

Let W be a subgroup of G which is generated by one-parameter unipotent sub- 
groups of G contained in W. For any He~t~r define 

N (H, W) = {oeC: W oHo- 

Sa(H, W)= U No(W , w). 
H'~dFr,H" ~ H 

d i m H '  < d i r a H  
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Note that (see [MS, Lemma 2.43), 

u(N~(H, W)\S6(H, W)) = n(N~(H, W))\~t(SG(H, W)). (1) 

We reformulate Ratner's classification IRa 1] of finite measures which are invariant 
and ergodic under unipotent flows on homogeneous spaces of Lie groups, using the 
above definitions (see [MS, Theorem 2.2]). 

Theorem 3.2. Let W be a subgroup as above and 12 a W-invariant probability measure on 
G/F. For every H e J g  r, let #n denote the restriction of lt on 7t(N~(H, W)\S~(H, W)). 
Then the following holds. 

1. The measure 12n is W-invariant, and any W-ergodic component of #n is of the form 9"2, 
where geNt (H ,  W)\So(H, W) and 2 is a H-invariant measure on HF/F. 

2. For any Borel measurable set A ~ G/F, 

#(A)= ~ 12n(A), 
H ~ g  r 

where ~ c J f  r is a countable set consisting of one representative from each F- 
conjugacy class of elements in ~ r .  

In particular, if 12(zr(S(G, W) ) = 0 then # is the unique G-invariant probability measure 
on G/F. 

4. Linear presentation of G-actions near singular sets 

Let C ~ ~(N~(H, W)\S~(H, W)) be any compact set. It turns out that on certain 
neighborhoods of C in G/F, the G-action is equivariant with the linear G-action on 
certain neighbourhoods of a compact subset of a linear subspace in a finite dimensional 
linear G-space. We study unipotent trajectories in those thin neighbourhoods of C via 
this linearization. This type of technique is developed in ([DM 1, Shl, DM3, Sh2, MS, 
EMS2]). 

Let V o be the representation of G as described in notation 2.2. For He;,~ r, let 
tin: G---, V o be the map defined by tin(g)= gPn = (A dAdg)pn for all geG. Let No(H ) 
denote the normalizer of H in G. Define 

N~(H) = ti;/l(pn)= {geU~(H):det(Adgl~)= 1}. 

PROPOSITION 4.1 ([DM3, Theorem 3.4]) 

The orbit F. Pn is closed, and hence discrete. In particular, the orbit N~ (/-/) F/F is closed in 
G/r. 

Let W be a subgroup which is generated by one-parameter unipotent subgroups of 
G contained in W. 

PROPOSITION 4.2 ([DM3, Prop. 3.2]) 

Let VG(H , I41) denote the linear span of ti(No(H, W)) in V o. Then 

ti~ '(Va(H, VII)) = No(H, W). 

Theorem 4.1. Let e > O, d, meN,  and a compact set C c u(Nc(H, W)\SG(H, W)) be 
given. Then there exists a compact set D ~ V6(H, W) such that given any neighbourhood 
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of D in V a, there exists a neighbourhood ~P of C in G/Fsuch that for any  Oe~o~a,m(G), 
and a bounded open convex set B c R m, one of  the following conditions is satisfied: 

1. O(B)7"pn c ~ for some )'eF. 
2. 

1 
v(B) v( { teB:O( t )F/F e~g} ) < e. 

Proof The result is easily deduced from [Sh2, Prop. 5.4]. See also the proof of [Sh2, 
Thm. 5.2]. [] 

Some related results on unipotent .flows 

We recall a theorem of Ratner IRa2] on closures of individual orbits of unipotent flows. 

Theorem 4.2 (Ratner). Let G, F and W be as above. Then for any xeG/F,  there exists 
a closed subgroup F of  G containing W such that Wx  = Fx and the orbit Fx admits 
a unique F-invariant probability measure, say #v. Also PF is W-ergodic. 

Next we recall a version of the main result of [MS]. 

Theorem 4.3 ( [MS]) .  Let xeG/F,  and sequences {Fi} of closed subgroups of G and 
gi ~ e  in G be such that each of the orbits Fi(gix ) is closed, and admits an Fi-invariant 
probability measure, say Pi. Suppose that the subgroup generated by all unipotent 
one-parameter subgroups of G contained in F i acts ergodically with respect to #i, Vie N. 
Then there exists a closed subgroup F of G such that the orbit Fx  is closed, and admits 
a F-invariant probability measure, say #, and a subsequence of {#i} converges to #. 
Moreover if #i -~ # as i ~ oo, then g f  1 Fig i c F for all large ie N. 

5. Some results on linear representations 

In view of proposit ion 4.1, in order to obtain further consequences when either 
condition 1 of theorem 2.2 or condition 1 of theorem 4.1 holds for a sequence 
{Oi} c ~d,m(G), the following observation is very useful. 

Linear actions of  unipotent subgroups 

Lemma 5.1. Let V be a finite dimensional real vector space equipped with a Euclidean 
norm. Let n be a nilpotent Lie subalgebra of End (V). Let N be the associated unipotent 
subgroup of Aut (V). Let { b 1 . . . . .  h,, } be a basis of  n. Consider the map | ~m ~ N defined 
as 

|  1 . . . . .  t,,) = exp(t,,bm)-., exp(t I h 1 ), V(t 1 . . . . .  tm)E ~m. 

For p > 0, define 

Bp -- {O(t 1 . . . .  , tm)eN:O <~ t k < p, k = 1 . . . . .  m}. 
Put 

W = {ve V':n'v = v,u 

Let pr w denote the orthogonal projection on W. Then for any p > 0, there exists c > 0 
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such that for  every w V, 

Ilv I1 ~< c" sup IIprw(O(t).v ) II. 

Proof. F o r  k = 1 . . . .  ,m, let nk~M be such that  b~,' = 0. Le t  

J = ( I  = (i t . . . . .  ira):0 ~< i k <~ n k - 1, k = 1 . . . .  ,m}. 

F o r  t = ( t t , . . . ,  t ,~) �9  and  1 = ( i l , . . . ,  im)eJ ,  define 

i .  i l  
t i _ t ~ -  ti~ and  b I =  bin''" bl  
- - o,~ . . . .  t ira!.., il !. 

Then  for  all v � 9  V and t � 9  ", we have 

O( t ) 'v  = ~ t"(bZv). 

W e  define a t rans format ion  T: V ~  @t~,  W by  

(2) 

T(v) = (prw(bl-v))l~j ,  Vv�9 V. (3) 

We  cla im that  T is injective. T o  see this, suppose  there exists ve  V\{0} such tha t  
T(v) = 0. Then  N-v  c W • the o r thogona l  complemen t  of  W. Hence W j- contains  
a non-tr ivial  N- invar ian t  subspace.  Then  by L i e - K o l c h i n  theorem,  W l conta ins  
a non-ze ro  vector  fixed by N. Then  W n  W • # {0}, which is a contradict ion.  

We  consider  @i~ ,  V equipped  with a box norm;  tha t  is 

II(vx)~jl[ =supllvzl l ,  where vreV,  V I � 9  

Since T is injective, there exists a cons tant  c 1 > 0 such that  

/{v/I ~< ct" 1[ T(v)II, V v � 9  V. 

F o r  all k = l  . . . . .  m, and  j k = l , . . . , n k ,  fiX O<tk.  l < . . ' < t k , n , <  p and pu t  
M - it i* k -- ~ k.S~O <~ U <~.,- t, t ~< S' ~<"~ for k = 1 . . . . .  m. Then det M k is a Vande rmonde  determi-  
nan t  and  hence M k is invertible. 

Let  

= {d = ( J l  . . . . .  Jm) :1 <~Jk <~ nk, k = 1 . . . . .  m}. 

F o r  J = (Jl . . . .  , j m ) � 9  put  

t j = ( t l ,  s . . . . . .  tm.~. ) and  M=(t~)~1 ,s ) , , .  t .  

T a k e  v �9 V. Put  

X j = T ( v )  and Y~=(p rv ( |  t .  

Then by  (2) and  (3), 

M . X j =  Y~. 

Since M = M t | . . .  |  m and each M k is invertible, we have  that  M is invertible. Hence  

X j , =  M - t .  I1,. 



Limit distributions of translates of orbits 115 

Put c2 = 11M71 [1 and c = clc 2. Then 

Ilvfl ~< cl II T(v)II = cl IIX~, II ~< Cx e2 II )'t  II = e" sup Ilprw(| 
J e J  

This completes the proof. [] 

Linear actions of semisimple groups 

We fix the following setup for the rest of this section. 

Notation 5.1. Consider the notation 1.1. Put  

O = { ~ e A : ~ ( a / ) - - , ~  as i ~ } .  

Let P + be the standard parabolic subgroup associated to the set of roots A\O. Then 
U + = {geG:aTXgai- ,e  as i ~  ~ }  is the unipotent radical of P+. Let P -  denote the 
standard opposite parabolic subgroup for P+ and let U -  be the unipotent radical of 
P - .  Note  that 

P -  = {ge G:{aiga 7 l : ie  N } is compact}. (4) 

Also put Z = P -  n P +. Then P -  = U -  Z. Let g, u - ,  8, and u + denote the Lie algebras 
associated to G, U - ,  Z, and U +, respectively. Then 

= u -  ~9 8 ~ u  +. (5) 

Lemma 5.2. Consider a continuous nontrivial irreducible representation of  G on a finite 
dimensional normed vector space V. Let W = { w  V: W'v = v}. Let {v,} c W be a se- 
quence such that infi~ N IIv i II > O. Then 

Ilai.vill --* oo a s i ~ o o .  

Proof Since A is R-split, there is a finite set A of real characters on A such that for each 
2eA, if we define 

V a = {re V:a.v = )L(a)v, VaeA}, 

then V = ~) a~,~ Va. After passing to an appropriate  subsequence, if we define 

A+ = {2eA:2(a i )~  ~ as i-* oo} 

A_ = { 2 e A : 2 ( a i ) ~ 0  as i ~  ~} ,  and 

A o = {2eA:2 (a i )~c  for some c > 0 as i ~  ~} ,  

then A = A+ u A o w A _ .  
Since U + is normalized by A, we have that W is invariant under the action of A. 

Therefore 

W =  @2~A(WC~ V~). 

Suppose that there exists we Wc~ V~\{O} for some 2cA o u A_.  For  any g e P - ,  we 
have aiga( t _, go for some g o e P - .  Therefore as i ~  oc, 

ai(gw ) = aiga~ i(aiw)---~C(go w) for some c/> 0. 
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Hence P - w  = (~).,1.EAouA_ ][/~." Now U+w = w and by notation 5.1 P -  U + is open in G. 
Therefore G.w = @~Ao.A- V~. Since V is irreducible, A = A o u A .  Now since G is 
semisimple, det 0 = i for all gEG and hence A = 0. Thus A = A o. 

Now for any relatively compact neighbourhood f~ of U + and any v~ V~, there exists 
a compact ball B ~ V such that for all i ~ ,  

B ~ ai~)'v = (aif~a 71)ai'v = 2(ai)(aif~a i- 1)v. 

Since 2 (a~) ~ c for some c > 0 and u i~ N ai f~a~- 1 = U +, we have U § v = c-  1B. Since U + 
acts on V by unipotent linear transformations, we obtain that U + -v = v. Thus U + acts 
trivially on V. Since the kernel of G action on V is a normal subgroup of G containing 
U +, it is equal to G by our assumption. This contradicts our hypothesis in the lemma 
that the action of G is non-trivial. This proves that W cz_ EZRA+ V~, and the conclusion of 
the lemma follows. []  

COROLLARY 5.1 

Consider a continuous representation of G on a finite dimensional vector space V with 
a Euclidean norm. Let L = {re V: G'v = v}. Let {v~} be a discrete subset of V contained in 
VkL. Then for any non-empty open set ~ ~ U § 

supllaiog'vill~oo as i ~ .  (6) 
co~L'~ 

Proof Let L' be the sum of all G-invariant irreducible subspaces of dim 1> 2. After 
passing to a subsequence, one of the following holds: 

(A) IlprL(Vi)ll--~, or (B) inf IlprL,(VJll >0 .  

If (A) holds then (6) is obvious. If (B) holds, then there exists an irreducible G-subspace 
V 1 c L' such that infi~ II Prv,(Vi)II > 0. Therefore, without loss of generality, by replac- 
ing {v~} by {Prv,(V~) } and V by V 1 we may assume that G acts non-trivially and 
irreducibly on V and infi~ N II v~ II > 0. 

Let tOoef~. Then infi, N II~ooV , II > 0. Therefore replacing {v~} by {~OoV,} and t) by 
f~o ~ 1, we may assume that e ~ .  

Let W = {v~ V: U § -v = v}. By lemma 5.1, there exists c > 0 such that for all i~ ~, 

sup Ilprw(~O.vi)II ~ c IIv~ II ~ c. inf  Ilvj [I. 
to~ l'l j~N 

Since infj~ N ti vj Ii > 0, by lemma 5.2, 

sup Ilai'~ovill ~ sup Ila~'prw(~'vi)ll~ as i---,~. [] 

6. Proofs of the main results 

Translates of horospherical patches 

Proof of theorem 1.4. Since U § istr-compact, wi thout lossofgeneral i tywemayassume 
that supp(2) is compact. Let u § denote the Lie algebra of U § We identify u + with •" 
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(m = dim u + ). Let B be a ball in u + around the origin such that supp(2) = exp(B). Let 
v be the restriction of the Lebesgue measure on B. By our hypothesis, 2 is absolutely 
continuous with respect to exp,(v), denoted by 2 << exp,(v). 

For  each ie,~, define | R " ~  G ~ L as | a~exp(t), u  _---u +. Since u + is 
a nilpotent Lie algebra, there exists de ~ such that |  'qieN. 

Claim 6.1. Given 6 > 0 there exists a compact  set K ~ L /A  such that 

(ain , (2))(K)> 1 - 6, VteN. 

Suppose that the claim fails to hold. Since 2 << exp,  (v), there exists an e > 0 such that 
for any compact  set K ~ L/A, 

1 
v(B)(|  < 1 - e, for i in a subsequence. 

We apply theorems 2.1 and 2.2 for the Lie group L, the lattice A, and the polynomial 
maps O~eNa.,,(L), Vie N. Then by passing to a subsequence, there exists a continuous 
representation of L on a finite dimensional vector space V with a Euclidean norm and 
a non-zero vector pe  V such that the following holds: (1) the orbit F ' p  is discrete (see 
proposition 4.1), and (2) for each ieN there exists v~eF'p such that 

sup llaiog'vil]~O as i ~ o o .  (7) 
o~exp(B) 

After passing to a subsequence, we may assume that G.v i # v i, Vie ~ .  Then corollary 
5.1 contradicts (7). This proves the claim. 

By claim 6.1, after passing to a subsequence, we may assume that the sequence 
ai �9 re, (2 )~ / t  as i ~  ~ ,  where/~ is a probabili ty measure on L/A. 

Claim 6.2. The measure # is U +-invariant. 
To prove the claim, let ue U +. Then for all ie N, 

u(ain,(2)) = ai(uin,(2))= airc,(ui2), (8) 

where u~ = a i t u a i e U  +. Note that u ~ e  as i ~  oo. 
Let q be a Haa r  measure on U +. Since 2 << q, there exists he LI(U,q)  such that 

d,~ = hdr/. Now for any bounded continuous function f on L/A,  

1~ f d [a i rr , (u i 2))] - ~ f d  [a izr , (2)] ] 

= [~v § f(airc(u~r - ~v~ f(a~rc(oo))d)~(og)i 

= [~v+f(ai~z(ulog)hlco)drl(~) -- ~v+f(ai~(og))h(og)drl(o9)[ 

= [~v+f(ain(og))h(u[l~ - ~w f(ain(@)h(og)drl(~ 

<<.sup[fl.~v+[h(u~log)-h(~o)ldt/(to)~O as i ~  0% (9) 

because the left regular representation of U + on L ~ (U +, r/) is continuous. 
Since ain,0.)  ~ p. as i-~ ~ ,  by (9), we get a in , (u i2 )~  # as i ~  oo. Therefore by (8), 

u# = #. This completes the proof  of the claim. 
In view of claim 6.2, we apply theorem 3.2 to W = U +. Then there exists a closed 

subgroup H of L in the collection 3r h, such that 

#(n(SL(H,U+))=O and p(n(NL(H,U+)))>O.  
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Let a compact set C~r~(NL(H,U+))\zt(SL(H,U+)) be such that /~(C)>0. Since 
2 << exp.(v), there exists e > 0 such that for any Borel measurable set E c U § 

1 
v(B)exp.(v)(E) < e=~2(E) < #(C)/2. (10) 

Let the finite dimensional vector space V L and the unit vector Pne VL be as described 
in notation 2.2, for L in place of G there. We apply theorem 4.1 for e > 0, de ~ and me 
chosen as above, and the compact set C = rC(NL(H, U + ))\TZ(SL(H, U + )) as above. Then 
there exists a relatively compact set �9 = VL and an open neighbourhood W of C in L/A 
such that for each ie ~, applying the theorem to | in place of O, one of the following 
conditions holds: 

1. There exists VleA'PH such that 

a~exp(B).v i ~ ~. 
. 

v(B) V({teB:lr(aiexp(t))e })<e ,  

Since a in .  (2)--, # as i ---, oo and W is a neighbourhood of C, there exists i0e M such that 
2(rr- l(a/- 1W)c~ U § ) > #(C)/2 for all i >t io. Therefore by (10) condition 1 must hold for 
all i/> i o. Now by passing to a subsequence, there exists vieA'pn for each ie ~ such that 

aiexp(B)-v i c ~. (11) 

By proposition 4.1, the sequence {vi} is discrete. By corollary 5.1 and (11), there exists 
ioeN such that G-rio = vi0. Let ~eA such that V~o = 7Pn. Then 

G'~'PH = ~'Pn. 

Thus G c ?N[(H)~- 1. But 7t(N[(H)) is closed in L/A by proposition 4.1, and n(G) is dense 
in L/A. Therefore we conclude that H is a normal subgroup of L. Since NL(H , U + ) ~ C =/= O, 

this implies in particular that U § is contained in H. Thus U § c Gc~ H and G c~ H is normal 
in G. Therefore by our hypothesis G n H = G, or in other words G c H. Again since re(G) is 
dense in L/A, we have H = L. Therefore i~Ot(S(L, U § ))) = 0. Hence by theorem 3.2, we 
have that # is L-invariant. This completes the proof of the theorem. []  

Translates of orbits of symmetric suboroups 

First we make some observations. For  the results stated below, let (U, v 1) and (V, v2) be 
locally compact second countable spaces with Borel measures. 

P R O P O S I T I O N  6.1 

Let 2 be a Borel probability measure on U • V which is absolutely continuous with 
respect to v 1 • v 2, denoted by 2<<v 1 • v 2. Then there exists a probability measure 
21 << v 1 on U, and for almost all ue(U, 21 ), there exists a probability measure 2. << 6. • v 2 
on {u} • V, where 6. is the point mass at {u}, such that the following holds: For any 
bounded continuous function f on U • V, the map u~--~S{,} • v f d 2 .  is )h-measurable, and 
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Proof  Let h = d2/d(v 1 x Vz)/> 0 be the Radon-Nikodym derivative. For  any ueU,  
put ~t(u) = Svh(u, v)dv2(v). Let C = {ue U:~(u) > 0}. Let 21 be the restriction of v 1 to C .  
For  almost any ue(U,21), let 2. be the Borel measure on {u} x V such that 
d2 . /d[6 ,  x v2] =h(u,')/~(u). Now the conclusion of the proposition follows from 
Fubini's theorem. [] 

For  the propositions stated below, let G be a locally compact topological group 
acting continuously on a locally compact space X. Let {ai} be a sequence in G and 
# a Borel probability measure on X. 

P R O P O S I T I O N  6.2 

Let  2 be a probability measure on X such that ai2 ~ # as i ~ oo. Let  b e g  such that 
{aiba71 :ie [~ ) is compact. I f  It is G-invariant, then ai(b2 )-~ It as i ~ oo. 

Proof. First observe that there is no loss of generality in passing to a subsequence. 
Therefore we may assume that aiba i- 1 ~ g  for some g~G. Now 

ai(b2 ) = (aiba [1)(ai2 )~g I t  as i ~  0o. 

Since g# = #, the proof  is complete. [] 

For  the next two propositions, assume that G contains the spaces U and V. Fix x o eX, 
and let p:U x V ~ X be the map given by p(u,v) = uvx o, V(u ,v)eU x V. 

PROPOSITION'6 .3  

Let  the notation be as in proposition 6.1. Suppose that for almost all ue(U,  21), we have 
aiP, (2 , ) -*/ t  as i ~ oo. Then aip,(2)--*# as i ~ oo. 

Proof. Let f be a bounded continuous function on X. Then 

S x f  d [a ip ,  (2)] = Sv• vf(aip(~ 

= ~vd21 (u)'~{u} • v f (a ip( t~  u(co) 

= ~vd21 (u) '~x fd  [a ip , (2 . ) ]  

- -  j v d 2 1 ( u ) ' j x f  d#  as i-~c~ 

= ~xfd i t .  [] 

By similar arguments we obtain the following result. 

P R O P O S I T I O N  6.4 

Suppose that a iua71-4 e as i ~ oo for all u~U.  Then as i-~ 0% 

aip,(v2)--~ i t ~ a i p , ( v  1 X Y2)--~it. 

Proof  of  corollary 1.2. Using the results in [S, w 7.1] there exist an E-split t0rus A c G 
and a maximal compact subgroup K of G such that the following holds: (1) a(a) = a -  1, 
YaeA ,  (2) the set of real roots of A for the adjoint action on the Lie algebra of G forms 
a root system, and (3) G admits a decomposition G = K,4 + S, were ,4+ denotes the 
closure of the positive Weyl chamber with respect to a system A of simple roots on A. 
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Using this decomposition and by passing to a subsequence, without loss of generality 
we may assume the following: (1) gi = ai e~+ for all ie ~; (2) {ai}i~ ~ has no convergent 
subsequence, (because otherwise G 1 = (e) and n(e) cannot be dense in L/A); and (3) for 
any seA, either supi~N~(ai) < go or ~(ai)~ go as i ~  oo. 

For  the rest of the proof, consider the notation 5.1. 
Let G 1 be the smallest closed normal subgroup of G containing U § Then it is 

straightforward to verify that the projection of {a~} on GIG1 is relatively compact. 

Therefore by our hypothesis, n(G1) = L/A. 
Take any goeS and define p(h) = n(hgo) for all heL. Since any closed connected 

normal subgroup of G 1 is also normal is G, we can apply theorem 1.4 to G 1 in place of 
G and p in place of re. Then for any probability measure v on U § which is absolutely 
continuous with respect to a Haar  measure on U § we have 

aip,(v)--*#L, as i ~ o o .  (12) 

Since a (a )=  a-l(VaeA), for any Xet t  +, we have t r (X)eu-  and X +  a(X)e~. Also 
a(3) = 3- Now by (5), 

u -  @~ = u-  O ( ~ 3 ) G u  +. (13) 

Then by implicit function theorem, there exist relatively compact neighbourhoods f2-, 
fig, f U  and (I) ofe  in U-, (ZnS)  U-,  U § and S, respectively, such that for any open set 
~P of O, we have that ~ -  W is an open subset of f~~ f2 § Also we may assume that under 
the multiplication map ~ -  x ~ ~ ~ -  (I) and fl ~ x f~+ ~ ~ofl+.  

Let v_ and v' be probability measures obtained by restricting Haar measures of U -  
and S to f~- and qJ, respectively. Then 2 = v_ x v' is a smooth measure on t~- x W. By 
choosing W small enough, we can ensure that p,(v') is a multiple of #s restricted to 
p(~P). Since go~S chosen in the definition of p is arbitrary and since there is enough 
flexibility in the choices of �9 and W, to prove that a~#s ~ PL, it is enough to show that 
aip,(v')-+#L as i ~  oo. 

By proposition 6.4, as i ~  ~ ,  aip,(v' ) ~ #L if and only if aip,(2 ) ~/~L. Therefore to 
complete the proof of the corollary, it is enough to show the following. 

Claim 6.3. As i ~  ~ ,  aip,(2)-~/~ L. 
Since t ) -  tp c f~o f~ +, 2 can be treated as a measure on fl ~ x f2 +. Let vl and v 2 be the 

probability measures obtained by restricting the Haar  measures on (Z n S) U -  and U + 
to f~o and f2 +, respectively. Since 2 is a smooth measure, 2<<v 1 x v 2 (see (13)). 
Decompose 2 as in proposition 6.1. Then for almost all 09 e(fl~ 2x), we have 20, << coy 2. 
Put  v0, = ~o- 120,. Then v0, << v 2. Hence by (4), (12) and proposition 6.2, 

alp,(2o) = ai(o~p,(v~,))~l~ ~ as i ~  ~ .  

Now by proposition 6.3, ain , ( 2 ) ~ / ~  as i ~  o~. This completes the proof of the claim, 
and also the proof of the corollary. [ ]  

Continuous G-equivariant factors of G/P x L/A 

First we recall the following result from [D3, w 2]. 

P R O P O S I T I O N  6.5 (Dani) 

Let G be a semisimple group with finite center and ~-rank(G) >i 2. Let P be a parabolic 
subgroup of G. Then given geG\P, there exist k e n  (k <~-rank(G)), elements 
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g, . . . . .  gk+ l in G, and one-parameter unipotent subgroups {ul(t)} . . . . .  {uk(t)} of G con- 
tained in P such that the following holds: 

1. gl =g, gk~ P, andgk+t =e. 
2. For each i = 1 . . . . .  k, 

ui(t)giP ~gi+ iP  in G/P as t ~oo.  

3. There exists a semisimple element a of G in gkPg~l c~P such that if U + is the 
associated horospherical subgroup then U+ c gkPgZ1 c~P, and if G 1 denotes the 
smallest normal subgroup of G containing U +, then ~-rank(G/G1) <~ 1. 

Proof Apply [D3, Corollary 2.3] iteratively. Also use the proofs of [D3, Corollary 2.6 
and Lemma 2.7]. [] 

Now we obtain the analogue of [D3, Lemma 1.4] by using theorem 1.1 in place of 
[D3, Lemma 1.1]. Also we use the recurrence conclusion of theorem 4.2 of Ratner in 
place of [D3, Lemma 1.6]. 

P R O P O S I T I O N  6.6 

Let the notation and assumptions be as in theorem 1.2. Let x, y6L/A  and geG\P.  I f  
~b(x, g P) = c~(y, P), there exists a parabolic subgroup Q containing {g} u P  such that 

4) (z, P) = c~(z, qP) for all z e G----x and q e Q. Moreover, cp(y, qP) = dp (y, P) for all q e Q. 

Proof Let k e t~, elements g l . . . . .  gk + 1 in G, the one-parameter unipotent subgroups 
{ui(t ) } contained in P, and a semisimple element a and G and the associated expanding 
horospherical subgroup U § be as in proposition 6.5. For  each i = 1 . . . . .  k, by Ratner's 
theorem 4.2 applied to the diagonal action of {ui(t)} on L/A x L/A, there exists 
a sequence t~ ~ go such that (u i (t.)x, ui(t.)y ) ~ (x, y) as n ~ oo. Now for any i t  { 1, . . . ,  k}, 

~b(x, gi P) = ~b (y, P)=> e~(ui(t.)x, ui(t .)giP) = dp(ui(t~)y, P), Vn~ ~. 

In the limit as n -* o% we get ~b(x, gi + 1 P) = ~b (y, P). Since g l = g, by induction on i, we 
get that r giP) = ~b(y, P) for all 1 ~< i ~< k + 1. 

In particular, since gk + ~ = e, 

~b(x, gkP) = ~b(y, P) = ~b(x, P). 

Since F = {a~:n~t~} �9 U + c gkPg[ 1 c~P, we have that 

~p(fx, gkP )= •(fx, P), V f e F .  

Let G~ be the smallest closed normal subgroup of G containing U +. Then by the 
choice of a as in Propositon 6.5, R-rank(G/G~) ~< 1. Therefore by the hypothesis in 

theorem 1.2, G~ x = Gx. By theorem 4.2, Gx is an orbit of a closed subgroup, say L', of 
L containing G, and the stabilizer of x in L', say A', is a lattice in L'. Applying theorem 

1.1 to L' and A' in place of L and A, respectively, we conclude that Fx = Gx. Thus 

O(Z, gkP ) = dp(z,P), VzeGxx = Gx. 
Put 

Q = {h~G:q~(z, f h e )  = r fP),  VzeGx and Vf~G}. (14) 
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Then Q is a closed subgroup of G containing P u {gk }" Since gk~P, 

Q ~ P. (15) 

Now if 9r then replacing P by Q and L/A by Gx, we repeat the above argument. 
Note that by definition the new set given by (14) still turns out to be same as Q. This fact 
contradicts the new equation (15). This completes the proof. [] 

Proof of theorem 1.2. Define the equivalence relation 

R = {(x,y)e L/A x L/A:r gP) = r gP) for some geG} 

on L/A. Clearly R is a closed subset of L/A x L/A invariant under the diagonal action 
of G. Let X be the space of equivalence classes of R and let r L/A---*X be the map 
taking any element of L/A to its equivalence class. Equip X with the quotient topology. 
Then X is a locally compact Hausdorff space. 

For any xe L/A, put 

.~(x) = {heG:r gP) = r ghP), VgeG}. 

Observe that .~(x) is a closed subgroup of G containing P and for any yeGx, we have 

.~(y) ~ ~(x). Let xoeL/A such that T o = L/A and put Q = .~(Xo). Then .~(y) D Q for all 
yeL/A. Since Q is a parabolic subgroup of G, there are only finitely many closed 
subgroups of G containing Q. Therefore the set XQ := {x e L/A:.~ (x) = Q} is open in L/A. 
Also XQ is non-empty and G-invariant. Now since G acts ergodically on L/A, the set 
L/A\XQ is closed and nowhere dense. 

Note that for any x, yeL/A, if ~bl(x)= r then by proposition 6.6, we have that 
~(x)=.~(y). Let p:L/A x G/P--*X x G/Q be the (G-equivariant) map defined by 
p(x, gP) = (r (x), gQ) for all xeL/A and geG. Then there exists a uniquely defined map 
~b:X x G/Q ~ Y such that r = ~bop. It is straightforward to verify that ~b is continuous 
and G-equivariant. 

Take any xeXQ, yeL/A, and g, heG such that r ghP)=r gP). Then 
r162 and hence he.~(y)=.~(x)=Q. This proves that r restricted to 
r (XQ) x G/Q is injective and yeXQ. 

Now if Y is a locally compact second countable space and q~ is surjective, then using 
Baire's category theorem for Hausdorff locally compact second countable spaces, one 
can show that r is an open map. This completes the proof of the theorem. [] 

Continuous G-equivariant factors of L/A 

Proof of theorem 1.3. Define A 1 = {heL:r = ~p(gA), VoeL }. Then A x is a closed 
subgroup of L containing A. Since G-acts ergodically on L/A, Ad (A) is Zariski dense in 
Ad(L) (see [Shl, Theorem 2.3]). Therefore A ~ is a normal subgroup of L. Let A' 1 be the 
largest subgroup of Aa which is normal in L. In view of 1.1 (3), replacing L by L/A'~, A by 
A1/A' ~, and G by its image in L/A' 1, without loss of generality we may assume that 
A'I = {e} and A 1 = A. 

Define the equivalence relation 

R = {(x,y)eL/A • L/A:dp(x) = r 

on L/A. Then R is closed and A(G)-invariant, where A: L--* L x L denotes the diagonal 
embedding of L in L x L. 
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Let 

K = {zeAff(L/A):(z, z(z))eR and z(gz) = gz(z), Vze L/A, VgeG} 
and 

X t = {xeL /A:Gx  = L/A}. 

Note that X1 ~ O, since G acts ergodically on L/A. 

Claim 6.4. Let (x,y)eR.  If x e X l ,  then y e X  1 and there exists z e K  such that y = z(x). 
The claim is proved as follows. Since A(G) is generated by one-parameter unipotent- 

subgroups of L x L, by Ratner's theorem 4.2 there exists a closed subgroup F of L x L 
containing A(G) such that 

A(G).(x, y) = F.(x, y) 

and F.(x, y) admits an F-invariant probability measure, say 2. 
Let pi:L • L ~ L  denote the projection on the i-th coordinate, where i = 1,2. Then 

(n opl) .  (2) is a pl(F)-invariant probability measure on Pl (F)x. Hence the orbit Pl (F)x is 

closed (see [R, theorem 1.13]). Since G c pl(F) and ~ = L/A, we have that pl(F) = L. 
Let N 1 = Pl (F c~ ker(p 2)). Then N1 is a normal subgroup ofp~ (F) = L and (N 1 z, w) c R 
for all (z,w)eF.(x,y).  Therefore N 1 c A~ = {e}. Thus Fc~ker(p2 ) = N 1 • {e} = {e}. 
Now since P x (F) = L and P2 ]r is injective, dim(p2 (F)) = dim(L). Since L is connected, 
P2 (F) = L. Thus P21e is an isomorphism. 

Now Gy D P2 (F)y = L/A. Hence yeX~.  Now interchanging the roles o fx  and y in the 
above argument, we conclude that Pl Ir is an isomorphism. Let a = P2 ~ It)- 1. Then 
aeAut(L) and 

F = {(g, a(g))eL x L:geL}. 

Thus (gx, a(g)y)eR for all geL. Now for any geL,  if fix = x, then (gx, a(g)a(f)y)eR 
for all geL. Let h e L  such that y = hA. Then ~(a(g)hA) = dp(a(g)a(f)hA) for all geL. 
Since a(L)h = L, we conclude that h-~a( f )heA1  . Now since A~ = A, we have that 
a( f )y  = y. Therefore the map z:L/A ~ L/A, given by z(gx) = a(g)y for all geL, is well 
defined and zeAff(L/A).  

Therefore 

F'(x, y) = {(z, z(z)):zeL/A}. 

Since A(G) c F, we have that a(g) = g and hence z(gz) = gz, for all geG. Thus ~eK, and 
the proof of the claim is complete. 

Claim 6.5. The group K is compact. 
We prove the claim as follows. Clearly, K is a closed subset of Aft(L/A), and hence it is 

locally compact. Let /~L denote the L-invariant probability measure on L/A. Then 

#L(Xx) = 1. For  any x e X 1 ,  if y e K : x  then (x,y)eR,  and by claim 6.4 there exists xeK 
such that y = x(x). Thus K . x  is closed for all x e X  1 . Therefore by Hedlund's Lemma 
and the ergodic decomposition of #L with respect to the action of K on L/A,  we have 
that almost all K-ergodic components are supported on closed K-orbits. Thus for 
almost all x eLlA,  the orbit K .x  supports a K-invariant probability measure. 

For  any xeL/A ,  put Kx = {zeK:x(x) = x}. Let ~:K/Kx ~ L/A be the map defined by 
~(TKx) = z(x) for all ~eK. Since Aft(L/A) acts continuously on L/A, we have that r is 
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a continuous injective K-equivariant  map. Let x e X  a be such that K . x  supports a 
K-invariant  probability measure. Since ~ is injective, the measure can be lifted to 
a K-invariant  probability measure on K/K~. Let z e K  x. Then for any geG, we have 

z(gx) = gz(x) = gx. Now since Gx = L/A, we have that z(y) = y for all yeL/A.  Hence K ,  
is the trivial subgroup of Aft(L/A). Thus K admits a finite Haar  measure. Hence K is 
a compact  group, and the claim is proved. 

Let ~ be any neighbourhood of e in ZL(G ). Put 

R' = { (x, y)~R: yq~ K'f~x}. 

Let X c be the closure of the projection of R' on the first factor of L/A x L/A. Put 
X o = (L/A) \X c. 

Claim 6.6. X 1 c X o. 
Suppose the claim does not hold. Then there exists a sequence {(xl, yi) } c R' 

converging to (x,y)eR with x e X  1. By claim 6.4, there exists z e K  such that  y = v(x). 
Therefore, after passing to a subsequence, there exists a sequence gi ~ e in L such that 
yi=z(gixi)  for all ieN. By the definition of R ' , g i r  for all i e ~ .  Also 
(x i, gixi)eR for all iet~. By Ratner 's theorem 4.2, there exists a A(G)-invariant A(G)- 

ergodic probability measure #i on (L/A) x (L/A) such that  A(G)(x i, gixi) = supp(#i). Let 
h i ~ e be a sequence in L such that x i = h,x for all ie M. By theorem 4.3, after passing to 
a subsequence, there exists a probabili ty measure # on L/A x L/A such that/t~ ~ # as 
i ~  ~ ,  and the following holds: supp(#)=  F.(x, x), where F is a closed subgroup of 
L • L, and 

(hi- 1, hi- l g/- 1)A(G)(h~, gihi) = F, Vie ~. (16) 

In particular, F'(x, x) c R and A(G) c F. Since xeX1 ,  we have that F = A(L). By an 
argument  as in the proof  of claim 6.4, we conclude that  Fr~ker(pi) = {e} for i = 1, 2. 
Therefore F = A(L). Hence from (16) we conclude that gieZL(G), which is a contradic- 
tion. This completes the proof  of the claim, and the proof  of the theorem. [ ]  
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Note added in proof 

Equidistribution of translates of measures is also considered in a recent preprint 
"Upper bounds and asymptotics in a quantitative version of the Oppenheim conjec- 
ture" of A Eskin, G A Margulis and S Mozes. In the context of the preprint it seems 
worthwhile to remark that the method in the present paper can be used to obtain 
'uniform versions' of theorem 1.4 and corollary 1.2, as done in the above mentioned 
paper, for certain results. 


