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Abstract. Let Lbea Lie group and A alattice in L. Suppose G is a non-compact simple Lie group

realized as a Lie subgroup of L and GA = L. Let aeG be such that Ada is semisimple and not
contained in a compact subgroup of Aut(Lie(G)). Consider the expanding horospherical subgroup
of G associated to a defined as U* = {geG:a™"ga"— e as n— 0}. Let Q be a non-empty open

subset of U™ and n,— oo be any sequence. It is showed that UZ , @ OA = L. A stronger measure
theoretic formulation of this result is also obtained. Among other applications of the above result,
we describe G-equivariant topological factors of L/A x G/P, where the real rank of G is greater
than 1, P is a parabolic subgroup of G and G acts diagonally. We also describe equivariant
topological factors of unipotent flows on finite volume homogeneous spaces of Lie groups.
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continuous equivariant factors.

1. Introduction

Let G be a connected semisimple Lie group with no compact factors and of R-rank > 2,
P a parabolic subgroup of G, and I" an irreducible lattice in G. It was proved by
Margulis [M1] that if ¢: G/P — Y is a measure class preserving ["-equivariant factor of
G/P then there exist a parabolic subgroup Q containing P and a measurable isomor-
phism : Y— G/Q such that iyo¢ is the canonical quotient map. The topological
analogue of this result was obtained by Dani [D3], who proved that, in the above
notation, if ¢ is continuous then  can be chosen to be a homeomorphism. On the other
hand the result of Margulis was generalized by Zimmer [Z1] in the measure theoretical
category. This result was later used in [SZ] for describing faithful and properly ergodic
finite measure preserving G-actions. It was suggested by Stuck [St] that the following
question, which is a topological analogue of Zimmer’s result, is of importance for
studying locally free minimal G-actions.

Question 1.1. Let G be a simple Lie group of R-rank > 2. Suppose that G acts
minimally and locally freely on a compact Hausdorff space X. Suppose there are

G-equivariant continuous surjective maps X x G/Pi Yi X such that yo¢ is the
projection onto X, where G acts diagonally on X x G/P. Does there exist a parabolic
subgroup Q containing P and a G-equivariant homeomorphism p: Y - X x G/Q such
that po¢ is the canonical quotient map?

The above mentioned result of Dani says that this question has the affirmative
answer if X = G/T', " being a lattice in G. In this paper we consider the case when G is
a Lie subgroup of a Lie group L acting on X = L/A by translations, A being a lattice in
L. To analyze this case we follow the method of the proof of Dani [D3]. To adapt
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Dani’s proof for the general case one needs the following theorem 1.1, which is
a non-trivial generalization of its particular case of L= G (cf.[D3, Lemma 1.1]). Its
proof involves, in an essential way, Ratner’s theorem [Ral] on classification of finite
ergodic invariant measures of unipotent flows on homogeneous spaces.

For the results stated in the introduction, let L denote a connected Lie group,
A alattice in L, n: L— L/A the natural quotient map, and y, the (unique) L-invariant
probability measure on L/A.

Theorem 1.1. Let G be a connected semisimple Lie group. Let acG be a semi-simple
element, that is, Ad(a) is a semi-simple endomorphism of the Lie algebra of G. Consider
the expanding horospherical subgroup U ™" of G associated to a which is defined as

*={ueG:a "ua"—>e as n—o0}.

Assumethat U™ is not contained in any proper closed normal subgroup of G. Suppose that
G is realized as a Lie subgroup of L and that n(G) = L/A. Then

m(u= ,a"U*)=L/A.
In particular, if P is any parabolic subgroup of G and n(G)= L/A, then n(P)= L/A.

In the case of L = G this result is well-known (see[DR, Prop. 1.5]). Actually theorem
1.1is a straightforward consequence of a technically much stronger result stated later in
the introduction as theorem. 1.4.

Using the techniques of [D3] along with theorem 1.1 and the result of Ratner [Ra2]
on closures of orbits of unipotent flows on finite volume homogeneous spaces, in the
next result we provide an affirmative answer to Question 1.1 in case when X = L/A. In
this case we are able to relax certain other conditions in the question as well.

Theorem 1.2. Let G be a semisimple Lie group of R-rank =2 and with finite center.
Suppose that G is realized as a Lie subgroup of L such that the G-action is ergodic with
respect to y,, and that G,x = Gx for any xeL/A and any closed normal connected
subgroup G, of G such that R-rank(G/G,) < 1. Let P be a parabolic subgroup of G and
consider the diagonal action of G on L/A x G/P. Let Y be a Hausdorff space with
a continuous G-action and ¢:L/A X G/P— Y a continuous G-equivariant map. Then
there exist a parabolic subgroup Q > P, a locally compact Hausdorff space X with
a continuous G-action, a continuous surjective G-equivariant map ¢,:L/A— X, and
a continuous G-equivariant map y:X x G/Q — Y such that the following holds:

1. If we define p:L/A x G/P—X x G/Q as p(x,gP)=(¢,(x), gQ) for all xeL/A and
geG, then
¢=yeop.
2. There exists an open dense G-invariant set X,< L/A such that if we put
Zo=0,(Xy) x G/Q and Y, =Y(Z,), then Z, =y ~1(Y,) and Y|, is injective.

Furthermore if Y is a locally compact second countable space and ¢ is surjective, then
Y, is open and dense in Y and |, is a homeomorphism onto Y,,.

In the next result we classify the G-equivariant factors of L/A, in particular we
describe the factor ¢, : L/A — X appearing in the statement of theorem 1.2. The proof of
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this result uses the theorem of Ratner on orbit closures of unipotent flows and the main
result of [MS].

DEFINITION 1.1

Let A, be a closed subgroup of L. A homeomorphism = on L/A, is called an affine
automorphism of L/A, if there exists oeAut(L) such that t(gx)=a(g)7(x) for all
xeL/A,. The group of all affine automorphisms of L/A, is denoted by Aff(L/A,). It is
endowed with the compact-open topology; i.e. its open sub-base consists of sets of the
form {re Aff(L/A,):1(C) = U}, where C is a compact subset of L/A, and U is an open
subset of L/A ;.

Remark 1.1. (1) Aff(L/A,) is a locally compact topological group acting continuously
on L/A,. (2) If ceAut(L) is such that ¢(A,) = A, and if ge L, then the map 7 on L/A,
defined by 7(hA,;) =ga(h)A | for all heL is an affine automorphism. (3) Let A be the
maximal closed normal subgroup of L contained in A,. Define L= L/A} and A, =
A,/A,. Then we have natural isomorphisms L/A = L/A, and Aff(L/A,) = Afi(L/A,).

Theorem 1.3. Let G be a subgroup of L which is generated by one-parameter unipotent
subgroups of L contained in G. Suppose that G acts ergodically on L/A. Let X be
a Hausdorff locally compact space with a continuous G-actionand ¢: L/A — X a continu-
ous surjective G-equivariant map. Then there exists a closed subgroup A, containing
A, a compact group K contained in the centralizer of the subgroup of translations
by elements of G in Aff(L/A,), and a G-equivariant continuous surjective map
W:K\L/A, > X such that the following holds:

1. If p: L/A - K\ L/A|is defined by p(gA) = K(gA, ), Yge L, then p is G-equivariant and
P=yeop.
2. Given a neighbourhood Q of e in Z,(G), there exists an open dense G-invariant subset

X, of L/A, suchthat for any xe X, and ye L/A if Y(K(x)) = y(K(y)) then ye K(Qx).
In this situation, further if Gx = L/A,, then K(y)= K(x).

The above description of topological factors of unipotent flows is also of independent
interest. The measurable factors of unipotent flows were described by Witte [W1].
The next result is an immediate consequence of theorems 1.2 and 1.3.

COROLLARY 1.1

Let L be a Lie group, A a lattice in L, and G a connected semisimple Lie group with finite
center,realized as a closed subgroup of L. Suppose that the action of G, on L/A is minimal
for any closed normal subgroup G, of G such that R-rank(G/G,) < 1. Let Y be a locally
compact Hausdorff space with a continuous G-action, P a parabolic subgroup of G, and
¢:L/A x G/P — Y a continuous surjective G-equivariant map, where G acts diagonally on
L/A x G/P. Then there exist a parabolic subgroup Q of G containing P, a closed subgroup
A, of L containing A, and a compact group K contained in the centralizer of the image of
G in Afi(L/A, ), such that Y is G-equivariantly homeomorphic to (K\L/A ) x (G/Q) and
¢ is the natural quotient map.

In particular if, as in question 1.1, there exists amap : Y — L/A such that o ¢ is the
projection on the first factor, then A, = A and K is trivial. Hence Y is G-equivariantly
homeomorphic to L/A x G/Q and ¢ is the natural quotient map.



108 Nimish A Shah

For the purpose of other applications, we obtain a stronger measure of theoretic
version of theorem 1.1. Before the statement, we recall some definitions.

For any Borel map T:X — Y of Borel spaces and a Borel measure 4 on X, the Borel
measure T, A defined by T, A(E)= (T~ '(E)), for all Borel sets E < Y, is called the
image of 4 under T.

For any Borel measure u on L/A and any ge L, the translated measure g-uon L/A is
the image of y under the map x+—gx on L/A.

On a locally compact space X, for a sequence {g;} of finite Borel measures and
¢ a finite Borel measure, we say that y,— p as i— oo, if and only if for all bounded
continuous function f on X, |, fdy, a.fxfdy as i— oo.

Notation 1.1. Let G be a connected semisimple real algebraic group. Let 4 be an R-split
torus in G such that the set of real roots on A for the adjoint action on the Lie algebra of G
forms a root system. Fix an order on this set of roots and let A be the corresponding system
of simple roots. Let A™ be the closure of the positive Weyl chamber in A. Let {a,},., be a
sequence in A such that for any a€A, either sup,_, a(a,) < o0 or a(a;)~ oo as i— oo. Put

U" ={geG:o] 'ga,—>e as i— w0}

Theorem 1.4. Consider the notation 1.1. Assume that U™ is not contained in any proper
closed normal subgroup of G. Suppose that G is realized as a Lie subgroup of L and that
n(G) is dense in L/A. Then for any probability measure A on U™ which is absolutely
continuous with respect to a Haar measure on U™,

arm, (A)—p, as i—oo.

In other words, for any bounded continuous function f on L/A,
r

lim wa(a,.n(w))d)l(w): J fdu,.

i— o L/A

In particular, for any Borel set Q of U™ having strictly positive Haar measure,

U a;m(Q) = L/A.
ieN

Using this theorem we obtain the following generalization of a result due to Duke,
Rudnick and Sarnak [DRS]; their result corresponds to the case of L = G. First we need
a definition.

Let G be a semisimple Lie group. A subgroup S of G is said to be symmetric if there
exists an involution ¢ of G (i.e. ¢ is a continuous automorphism and 62 = 1) such that
S= {gé G:a(g) = g}. For example, any maximal compact subgroup of G is a symmetric
subgroup, for it is the fixed point set of a Cartan involution of G.

COROLLARY 1.2

Let G be a connected real algebraic semisimple Lie group realized as a Lie subgroup of L,
S the connected component of the identity of a symmetric subgroup of G, and {g.},_,
a sequence contained in G. Suppose that n(S) is closed and admits an S-invariant
probability measure, say ug. Also suppose that 7(G,) is dense in L/A. for any closed
normal subgroup G, of G such that the image of {g:} in G/(SG,) admits a convergent
subsequence. Then the sequence of measures g, ug converges to p,; that is, for every
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bourded continuous function f on L/A,

lim | f(g0)dps(x) = f fduy.
i—=>w J n(S) LIA

In the case of L= G, Eskin and McMullen [EM] gave a proof of this result using the
mixing property of geodesic flows. The main technical observation in their proof is
what they call ‘a wave front lemma’. In the general case of L = G, our analogue of the
wave front lemma is theorem 1.4,

Using the arguments of the proof of corollary 1.2, one can also deduce the following
result from theorem 1.4.

COROLLARY 13

Let G be a connected real algebraic semisimple group realized as a Lie subgroup of L. Let
{g;} be a sequence in G. Suppose that n(G,) is dense in L/A for any closed normal
subgroup G of G such that the image of {g,} in G/G, admits a convergent subsequence.
Then for any Borel probability measure A on G which is absolutely continuous with
respect to a Haar measure on G,

gin, (A)—p, as i—oco.
In particular, for any Borel set Q of G having strictly positive Haar measure,

U g:m(Q) = L/A.

ieN

The main result of this paper is theorem 1.4 and other results (except theorem 1.3) are

derived from it. The main steps of its proof are as follows. First suppose that the set of
probability measures {a;7,(4):ieN} is not relatively compact in the space of all
probability measures on L/A. Using an extension of a result of Dani and Margulis
[DM2],in § 2 we see that there exist a nonempty open set Q < U ™, a finite dimensional
representation V of L, a discrete set {v,:ieN}  V, and a compact set K = V such that
a,Q-v;c K for infinitely many ieN. Via some observations about representations of
semisimple Lie groups, in §5 we show that the conditions mentioned above lead to
a contradiction when we restrict the representation to G. Now let a probability measure
1 be a limit distribution of the sequence {a; 7, (4)}. We observe that pis U *-invariant.
Using Ratner’s [Ral] description of finite measures on L/A which are ergodic and
invariant under the action of a unipotent subgroup, in §3 we conclude that either
U=y, or y is non-zero when restricted to the image under n of some strictly lower
dimensional ‘algebraic subvariety’ of L. Using techniques developed in [DM1, Shl,
DM3, MS], in §4 we see that in the later case the above type of condition on a finite
dimensional representation of L must hold, and this again leads to a contradiction.
Thus u = p,; and hence g, is the only limit distribution of {a;" u, }.

2. A condition for returning to compact sets

In [DM2] Dani and Margulis proved that large compact sets in finite volume
homogeneous spaces have relative measures close to 1 on the trajectories of unipotent
flows starting from a fixed compact set. This result was generalized in [EMSI1] to
alarger class of higher dimensional trajectories. In these results one considered only the
case of arithmetic lattices in algebraic semisimple Lie groups defined over Q. Here we
modify them to include the case of any lattice in any Lie group.
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Notation 2.1. Let G be a Lie group and g the Lie algebra associated to G. For d, meN,
let 2, ,,(G) denote the set of continuous maps ®:R™ — G such that for all c,acR™ and
Xeg, the map

teR—Ad-BO(tc + a)(X)eg

is a polynomial of degree at most 4 in each co-ordinate of g (with respect to any basis).
We shall write 2,(G) for the set 2, ,(G).

Theorem 2.1 (Dani, Margulis). Let G be a Lie group, I a lattice in G, and n:G — G/T the
natural quotient map. Then given a compact set C = G/T',an¢ > 0,and adeN, there exists
a compact subset K < G/I" with the following property: For any ®e2, (G) and any
bounded open convex set B <= R™, one of the following conditions hold:

1. (1/v(B))v({teB:n(®(t))eK}) > 1 — ¢, where v denotes the Lebesgue measure on R™.
2. 1(@(B)nC=0.

Proof. See [Sh2, Theorem 3.1]. O

The usefulness of the above result is enhanced by the following theorem which provides
an algebraic condition in place of the geometric condition n(@(B))n C = .

Notation2.2. Let G be a connected Lie group and g denote the Lie algebra associated
t0 G. Let V; = @im8 A*g, the direct sum of exterior powers of g, and consider the linear
G-action on ¥V, via the representation @;“:’"19 A! Ad, the direct sum of exterior powers of
the adjoint representation of G on g.

Fix any Euclidean norm on g and let # = {e, ,..., €4, } denote an orthonormal basis of
g. Thereis a unique Euclidean norm |- | on ¥; such that the associated basis of V; given by

{e, Ao Neil<l <. <l <dimg, r=1,...,dimg}

is orthonormal. This norm is independent of the choice of 4.
To any Lie subgroup W of G and the associated Lie subalgebra w of g we associate
a unit-norm vector py e A*™*weV,.

Theorem 2.2 (Cf. [DM2]). Let G be a connected Lie group, I' a lattice in G, and
7:G — G/T" the natural quotient map. Let M be the smallest closed normal subgroup of
G such that G = G/M is a semisimple group with trivial center and without nontrivial
compact normal subgroups. Let q: G — G be the quotient homomorphism. Then there exist
finitely many closed subgroups W,, ..., W, of G such that each W, is of the formq~'(U,)
with U, the unipotent radical of a maximal parabolic subgroup of G, n(W,) is compact and
the following holds: Given d, meN and reals o, ¢ > 0, there exists a compact set C = G/’
suchthat for any @€, (G), and a bounded open convex set B = R™, one of the following
conditions is satisfied:

1. There exist yeI and ie{l,...,r} such that

sup | @)y -pw. | <o
teB

2. m(®(B))nC # @, and hence condition (1) of theorem 2.1 holds.

Proof. Let R be the radical of G, C the maximal connected compact normal subgroup
of G/R, S =(G/R)/C and Z the center of S. Note that S'is a semisimple Lie group
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without nontrivial compact connected normal subgroups. Clearly S/Z =~ G/M. There-
fore M is the inverse image of Z in G.

Let H = RT°. Then HT is closed and H N T is a lattice in H (see [R, Lemma 1.7]). By
Auslander’s theorem [R, Theorem 8.24] H is solvable, and so is its image in S. By
Borel’s density theorem [R, Lemma 5.4, Corollary 5.16] the image is a normal
subgroup of S and therefore it has to be trivial. Hence H = M°, and since R < H, M°/H
is compact. Since H is solvable, by Mostow’s theorem [R, Theorem 3.1] H{HNT)is
compact. Therefore M°/H N T is compact. So M°T/T" is compact and M°T is closed.

Therefore the image A of " in § is discrete, and hence a lattice in S. Therefore by Borel’s
density theorem [R, Corollary 5.18] ZA is discrete. Hence A is of finite index in ZA and
hence M°T is of finite index in MT". Hence MI'/T is compact, i.e. n(M) is compact.

Thus I = g(I) is a lattice in G and the fibers of the map §:G/I" — G/T are compact
M-orbits. Therefore without loss of generality, we may assume that G = G.

Then there are finitely many normal connected subgroups G,, ..., G, of G such that
G=G, x--- x G,and each T, = G;nT is anirreducible lattice in G, (see [R, Sect. 5.22]).
In proving the theorem without loss of generality we may replace I' by its finite-index
subgroupI'; x --- x I',. In order to prove the theorem for G, it is enought to prove it for
each G, separately. Thus without loss of generality we may assume that T" is an
irreducible lattice.

The result in the case of R-rank(G)=1 can be deduced from the arguments in
[D2,(2.4)].

Next suppose that R-rank(G) > 2. Then by the arithmeticity theorem of Margulis
[M2], T is an arithmetic lattice. Therefore there exist a semisimple algebraic group
G defined over Q and a surjective homomorphism p:G(R)° — G with compact kernel
such that, for A = G(Z)nG(R)°, the subgroup I n p(A) is a subgroup of finite index in
both I" and p(A). Again without loss of generality we may replace G by G(R)° and T by
A. In this case the result follows from [EMS1, Thm. 3.6].

3. Description of measures invariant under a unipotent flow

In this and the next section, let G denote a Lie group, I' a lattice in G, and n: G — G/I the
natural quotient map.

A subgroup U of G is called unipotent if Adu is a unipotent endomorphism of the Lie
algebra of G for every ueU.

Let 5 denote the collection of all closed connected subgroup H of G such that (1)
H>oT,(2)H/H nT admitsa finite H-invariant measure, and (3) the subgroup generated
by all one-parameter unipotent subgroups of H acts ergodically on H/HNT with
respect to the H-invariant probability measure. In particular, the Zariski closure of
Ad(H nT) contains Ad(H) (see [Shl, Theorem 2.3]).

Theorem 3.1 ([Ral, Theorem 1.1]). The collection # is countable.
Let W be a subgroup of G which is generated by one-parameter unipotent sub-
groups of G contained in W. For any He 5 define
Ng(H,W)={geG:W cgHg™ '},
Ss(H, W)= |) NgH, W)

He¥t HcH
dim# <dimH
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Note that (sce [MS, Lemma 2.4]),
n(Ng(H, W\Sg(H, W)) = n(Ng(H, W)\n(Ss(H, W)). (1

We reformulate Ratner’s classification [Ral] of finite measures which are invariant
and ergodic under unipotent flows on homogeneous spaces of Lie groups, using the
above definitions (see [MS, Theorem 2.2]).

Theorem 3.2. Let W be a subgroup as above and y a W-invariant probability measure on
G/T. For every HeH |, let pu, denote the restriction of u on n(N g (H, WN\Sg(H, W)).
Then the following holds.

1. The measure py is W-invariant, and any W-ergodic component of py, is of the formg- 2,
where geN ;(H, W\Sg;(H, W) and 4 is a H-invariant measure on HT'/T'.
2. For any Borel measurable set A = G/T,

wA)= 3 ),
Hesxt'

where H' ¥ < H#°. is a countable set consisting of one representative from each I'-
conjugacy class of elements in # .

In particular, if u(n(S(G, W)) = 0 then u is the unique G-invariant probability measure
on G/T".

4. Linear presentation of G-actions near singular sets

Let C < n(Ng4(H, W\S;(H, W)) be any compact set. It turns out that on certain
neighborhoods of C in G/T, the G-action is equivariant with the linear G-action on
certain neighbourhoods of a compact subset of a linear subspace in a finite dimensional
linear G-space. We study unipotent trajectories in those thin neighbourhoods of C via
this linearization. This type of technique is developed in ([DM1, Shi, DM3, Sh2, MS,
EMS2)).

Let V,; be the representation of G as described in notation 2.2. For He # ., let
nu:G— V,; be the map defined by 5,(g) = gp, = (A?Adg)py for all geG. Let N (H)
denote the normalizer of H in G. Define

NG(H)=ny " (py) = {geNs(H):det(Adgl,) = 1}.

PROPOSITION 4.1 ([DM3, Theorem 3.4])

The orbit T. py is closed, and hence discrete. In particular, the orbit Ng(H)T /T is closed in
G/T.

Let W be a subgroup which is generated by one-parameter unipotent subgroups of
G contained in W.

PROPOSITION 4.2 ([DM3, Prop. 3.2])
Let V(H, W) denote the linear span of n(Ng(H, W))in V,;. Then
g (Vo(H, W)) = No(H. W).

Theorem 4.1. Let ¢ >0, d, meN, and a compact set C < n(Ng(H, WN\S;(H, W)) be
given. Then there exists a compact set D < V(H, W) such that given any neighbourhood



Limit distributions of translates of orbits 113

® of D in Vy;, there exists a neighbourhood ¥ of C in G/Tsuch that for any @2, ,(G),
and a bounded open convex set B < R™, one of the following conditions is satisfied:

1. @B)y ' py =@ for some yel.
2.

%v({teB:@(t)F/Fe‘P}) <&

Proof. The result is easily deduced from [Sh2, Prop. 5.4]. See also the proof of [Sh2,
Thm. 5.2]. O

Some related results on unipotent flows

Werecall a theorem of Ratner [Ra2] on closures of individual orbits of unipotent flows.

Theorem 4.2 (Ratner). Let G, T" and W be as above. Then for any xe G/T, there exists
a closed subgroup F of G containing W such that Wx = Fx and the orbit Fx admits
a unique F-invariant probability measure, say ug. Also up is W-ergodic.

Next we recall a version of the main result of [MS].

Theorem 4.3 ([MS]). Let xeG/T, and sequences {F,} of closed subgroups of G and
g;—e in G be such that each of the orbits F,(g,x) is closed, and admits an F-invariant
probability measure, say u;. Suppose that the subgroup generated by all unipotent
one-parameter subgroups of G contained in F; acts ergodically with respect to p,, VieN.
Then there exists a closed subgroup F of G such that the orbit Fx is closed, and admits
a F-invariant probability measure, say u, and a subsequence of {i;} converges io .
Moreover if y;— pas i— oo, then g ! F g, F for all large ieN.

5. Some results on linear representations

In view of proposition 4.1, in order to obtain further consequences when either
condition 1 of theorem 2.2 or condition 1 of theorem 4.1 holds for a sequence
{©,} < 2, .(G), the following observation is very useful.

Linear actions of unipotent subgroups
Lemma 5.1. Let V be a finite dimensional real vector space equipped with a Euclidean
norm. Let n be a nilpotent Lie subalgebra of End (V). Let N be the associated unipotent

subgroup of Aut(V). Let {b,,..., b, } be a basis of n. Consider the map ®:R™ — N defined
as

O(ty,...,t,)=exp(t,b,)---exp(t;b,), V(,,...,t,)eR™
For p >0, define

B,={O(t,,...,t,)eN:O<t <pk=1,. ,m}
Put
W ={veV':n-v=v,VneN}.

Let pry, denote the orthogonal projection on W. Then for any p >0, there exists ¢ >0
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such that for every veV,

IVl < csup [pry(O@®)-v)|.

teB,

Proof. Fork=1,...,m,let n,eN be such that b}* = 0. Let
F={I=(i,...,i)0<i<n—1Lk=1,...,m}.
Fort={(t,,...,t,)eR™and I =(i,,...,i,)E#, define

o bi... b
t'=dn 6% and b =L

[

Then for all ve V and te R™, we have

o) v= )Y t'-(b'v). 2
Ies
We define a transformation T:V — @, , W by
TW) =(pry(d’v),, YveV. (3)

We claim that T is injective. To see this, suppose there exists ve V'\{0} such that
T(v)=0. Then N-v< W+, the orthogonal complement of W. Hence W* contains
a non-trivial N-invariant subspace. Then by Lie-Kolchin theorem, W+ contains
a non-zero vector fixed by N. Then Wn W+ s {0}, which is a contradiction.

We consider @,V equipped with a box norm; that is

)1y | =supliv,ll, where v,eV,VIes.
Ies

Since T is injective, there exists a constant ¢, > 0 such that
vl<ec, ITMI, VveV.

For all k=1,...,m, and j,=1,...,n, fix 0<y, ;<--<t,,<p and put

M, = (8 \Jo<icm—1.1<j<m 10T k=1,...,m. Then det M, is a Vandermonde determi-

nant and hence M, is invertible.
Let
F={U=0 im)1<j<n,k=1,...,m}.
For J =(j,,-.-,jn)€2, put
=ty joeensty ;) a0d M=())y e 4
Take ve V. Put
X,=T() and Y,=(@r,@(t,)v),.,.
Then by (2) and (3),
M-X,=Y,.
SinceM =M ® :-- ®M,, and each M, is invertible, we have that M is invertible. Hence
X, =M1 Y,.
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Putc,=|M~'| and ¢ =¢,c,. Then

vl e ITMI = ¢y [ X )l Scyez | Yyl = csup [[pry (O(t,)v].
Je g

This completes the proof. O

Linear actions of semisimple groups

We fix the following setup for the rest of this section.

Notation 5.1. Consider the notation 1.1. Put
O ={acA:a(a;)>00 as i—o0}.

Let P* be the standard parabolic subgroup associated to the set of roots A\®. Then
U™ ={geG:a; 'ga,—e as i— oo} is the unipotent radical of P*. Let P~ denote the
standard opposite parabolic subgroup for P* and let U~ be the unipotent radical of
P~. Note that

P~ ={geG:{a,ga; :ieN} is compact}. 4

Alsoput Z=P nP*.Then P~ =U~Z.Letg,u", 3 and u™ denote the Lie algebras
associated to G, U™, Z, and U™, respectively. Then

g=u @3@u’. )
Lemma 5.2. Consider a continuous nontrivial irreducible representation of G on a finite

dimensional normed vector space V. Let W = {ve V: W-v=v}. Let {v,} = W be a se-
quence such that inf,_y ||v,|| > 0. Then

la;v;| >0 asi— co.
Proof. Since A is R-split, there is a finite set A of real characters on A such that for each
AeA, if we define

V,={ve V:a-v=_A(a)v,Yac A},
then V=@®,_, V,. After passing to an appropriate subsequence, if we define

A, ={ieA:A(a;)—> o0 asi— o0}

A_={leA:i(a;)>0asi—>c0}, and

Ao = {AeA:A(a;))— c for some ¢ >0asi— w0},

then A=A, UA UA_.
Since U* is normalized by A4, we have that W is invariant under the action of A.
Therefore

W=@,,(WnV)).

Suppose that there exists we Wn V,\{0} for some lecAjUA_. For any geP~, we
have a,ga; ! - g, for some g,eP~. Therefore as i — oo,

a,(gw) = a;ga; *(a;w)—>c(g,w) for some c >0.
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Hence P~w< @;.4,,4.V;- Now U™ w=w and by notation 5.1 P~ U™ is open in G.
Therefore G-wc @, 4. V- Since V is irreducible, A= A,UA_. Now since G is
semisimple, detg = 1 for all ge G and hence A_ =@. Thus A = A,,.

Now for any relatively compact neighbourhood Q of U™* and any ve V,, there exists
a compact ball B < V such that for all ieN,

Boa,Qv=(aQa; )a;v=A@a)a,Qa ")v.

Since A(a;) — cforsomec¢>0and U, a,Qa; ' =U"*,wehave U*-ve ¢ !B.Since U*
acts on V by unipotent linear transformations, we obtain that U*-v=v. Thus U* acts
trivially on V. Since the kernel of G action on V is a normal subgroup of G containing
U™, it is equal to G by our assumption. This contradicts our hypothesis in the lemma
that the action of G is non-trivial. This proves that W < XZ,_, V,, and the conclusion of
the lemma follows. O

COROLLARY 5.1

Consider a continuous representation of G on a finite dimensional vector space V with
a Euclidean norm. Let L= {veV:G-v =v}. Let {v;} be a discrete subset of V contained in
V\L. Then for any non-empty open set Q<= U™,

supllg;w-v;| >0 as i— 0. 6)

weQ

Proof. Let L' be the sum of all G-invariant irreducible subspaces of dim > 2. After
passing to a subsequence, one of the following holds:

(A) lpr (v}l >0, or (B) inf|pr.(v){>0.
ieN

If (A) holds then (6) is obvious. If (B) holds, then there exists an irreducible G-subspace
V, < L’ such thatinf,_g || pr, (v;)| > 0. Therefore, without loss of generality, by replac-
ing {v;} by {pr, (v;)} and V by ¥V, we may assume that G acts non-trivially and
irreducibly on V and inf,_ || v, || > 0.

Let w,eQ. Then inf, llw,v;| > 0. Therefore replacing {v;} by {w,v;} and Q by
Qu; ', we may assume that ecQ.

Let W= {veV:U"-v=v}. By lemma 5.1, there exists ¢ > 0 such that for all ieN,

sup [[pry (@ v))l Zc|v;ll = c-inf |lv;].
we} JjeN

Since inf;_y || v;[| >0, by lemma 5.2,

sup [la; v, | = sup fla; pry(w-v)|—>co as i— 0. O
weld wel}

6. Proofs of the main results

Translates of horospherical patches

Proof of theorem 1.4. Since U™ is -compact, without loss of generality we may assume
that supp(4) is compact. Let u* denote the Lie algebra of U*. We identify u* with R™
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(m=dimu™). Let B be a ball in u™ around the origin such that supp(4) = exp(B). Let
v be the restriction of the Lebesgue measure on B. By our hypothesis, 4 is absolutely
continuous with respect to exp, (v), denoted by i < exp,(v).

For each ieN, define ®,:R™ > G < L as O,(t) = a;exp(t), VteR™ = u™*. Since u* is
a nilpotent Lie algebra, there exists deN such that ®,e2, (L), VieN.

Claim 6.1. Given ¢ > 0 there exists a compact set K < L/A such that
(g7 (AIK)>1-9, VieN.

Suppose that the claim fails to hold. Since 1 « exp, (v), there exists an ¢ > 0 such that
for any compact set K = L/A,
1

—(0,),(V(K)<1—¢, foriina subsequence.

v(B)
We apply theorems 2.1 and 2.2 for the Lie group L, the lattice A, and the polynomial
maps ©,e2, (L), VieN. Then by passing to a subsequence, there exists a continuous
representation of L on a finite dimensional vector space V with a Euclidean norm and
a non-zero vector pe ¥V such that the following holds: (1) the orbit IT"-p is discrete (see
proposition 4.1), and (2) for each ieN there exists v,eI":p such that

sup Ja,ov;,[| -0 as i—oo. 0]
weexp(B)

After passing to a subsequence, we may assume that G-v; # v;, VieN. Then corollary
5.1 contradicts (7). This proves the claim.

By claim 6.1, after passing to a subsequence, we may assume that the sequence
a; 7w, (A)— p as i — oo, where p is a probability measure on L/A.

Claim 6.2. The measure u is U*-invariant.
To prove the claim, let ueU*. Then for all ieN,
“(ai”*(/l)) = ai(“in*('{)) = ain*(ui)')7 ®)

where u; = a; 'ua,eU ™. Note that u; ~ e as i — c0.
Let n be a Haar measure on U™. Since 4«7, there exists he L' (U,7) such that
di = hdn. Now for any bounded continuous function f on L/A,

|§ fdla;m, (w;A)] = [ fdla;m, (D]
= |ju+f(ai7r(uico))d/1(cu) — jv* f{a;n(w)dA{w)]
=|fy- f (@m0 hw)dn(w) — [y f(a;n(w)) h(w)dn(w)|
= {p- f(@;{(0))h(u; ' @)dn(w) — [y f(a;m(0))h(w)dn(w)]
< suplfl-fy-1h(u; ' o) — h(w)|dn(w) >0 as i— oo, ©

because the left regular representation of U* on L'(U™, ) is continuous.

Since a;n, (1) — p as i — oo, by (9), we get a;m, (u;A)—> p as i— 0. Therefore by (8),
up = p. This completes the proof of the claim.

In view of claim 6.2, we apply theorem 3.2 to W= U". Then there exists a closed
subgroup H of L in the collection J£,, such that

urS(H,U")=0 and u(m(N.(H,U"))>0.
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Let a compact set Ccn(N (H,U")\n(S.(H,U*)) be such that u(C)> 0. Since
A < exp, (v), there exists £ > 0 such that for any Borel measurableset Ec U™,

ﬁexp*(v)(E) <e=A(E) < p(C)/2. (10)

Let the finite dimensional vector space V, and the unit vector py€V; be as described
innotation 2.2, for Lin place of G there. We apply theorem 4.1 for ¢ > 0,deN and meN
chosen as above, and the compact set C = n(N,(H, U ))\n(S.(H,U*))asabove. Then
there exists a relatively compact set ® < V; and an open neighbourhood W of C in L/A
such that for each ie N, applying the theorem to ®, in place of @, one of the following
conditions holds:

1. There exists v, A-py such that

aexp(B)v,c .

1

v(B)v({teB:n(aiexp(t))e‘P}) <&

Since a;m, (1) —» pasi— co and ¥ is a neighbourhood of C, there exists i,e N such that
Mr~ a7 *¥)nU™) > u(C)/2 for all i > i,. Therefore by (10) condition 1 must hold for
alli > i,. Now by passing to a subsequence, there exists v,e A-py for each ie N such that

aexp(B)v,c ®. (11)

By proposition 4.1, the sequence {v,} is discrete. By corollary 5.1 and (11), there exists
i,eN such that G-v, =v, . Let yeA such that v, = yp,. Then

Gy'Pg=7Pg-
Thus G = yN}(H)y™'. But n(N;(H)) s closed in L/A by proposition 4.1, and n(G) is dense
in L/A. Therefore we conclude that H is a normal subgroup of L. Since N, (H,U*)> C #0,
this implies in particular that U™ is contained in H. Thus U* < GA H and G H is normal
in G. Therefore by our hypothesis G H = G, or in other words G = H. Again since 7(G) is

dense in L/A, we have H = L. Therefore u(n(S(L, U™))) = 0. Hence by theorem 3.2, we
have that p is L-invariant. This completes the proof of the theorem. |

Translates of orbits of symmetric subgroups

First we make some observations. For the results stated below, let (U, v,) and (V,v,) be
locally compact second countable spaces with Borel measures.

PROPOSITION 6.1

Let A be a Borel probability measure on U x V which is absolutely continuous with
respect to v, X v,, denoted by A<« v, x v,. Then there exists a probability measure
Ay« v,onU,and for almost allue(U, 4,), there exists a probability measure A, <, X v,
on {u} x V, where &, is the point mass at {u}, such that the following holds: For any
bounded continuous function'f on U x V, the map ur | wyxv S 4, is A,-measurable, and

f fd/l=f (J fdl,,)dll(u).
Uxv U fuy xv
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Proof. Let h=dA/d(v; x v,) =0 be the Radon-Nikodym derivative. For any ueU,
put o(u) = [, h(u,v)dv,(v). Let C = {ueU:a(u) > 0}. Let 4, be the restriction of v, to C.-
For almost any ue(U,4,), let A, be the Borel measure on {u} x V such that
dA,/d[d, x v,] = h(u,")/a(u). Now the conclusion of the proposition follows from
Fubini’s theorem. O

For the propositions stated below, let G be a locally compact topological group
acting continuously on a locally compact space X. Let {a;} be a sequence in G and
it a Borel probability measure on X.

PROPOSITION 6.2
Let A be a probability measure on X such that a;A— u as i— 0. Let beG such that
{a;ba; *:ieN} is compact. If p is G-invariant, then a,(bA)— p as i .
Proof. First observe that there is no loss of generality in passing to a subsequence.
Therefore we may assume that a,ba;” ! — g for some geG. Now

a;,(bd) =(a;ba; ')(a;)>gpn as i—co.
Since gu = p, the proof is complete. O

For the next two propositions, assume that G contains the spaces U and V. Fix x,e X,
and let p: U x V' — X be the map given by p(u, v) = uvx,y, Y(u,v)eU x V.
PROPOSITION 6.3
Let the notation be as in proposition 6.1. Suppose that for almost all ue(U, 4,), we have

a;p,(4,)—>pasi—oo. Thena,p,(4)—>pasi— oo.

Proof. Let f be a bounded continuous function on X. Then
fxfdla;p, (D] = fyv flap(@)dA(w)
= jvd'l1 (u)'j{u) «vJf(a;p(w))di,(w)
=fydA, () [xfdla;p,(4,)]
> [, dA (uyfyfdu asi—oo
=fxfdu O

By similar arguments we obtain the following result.

PROPOSITION 6.4

1

Suppose that a;ua; ' > e asi— o for allueU. Thenasi— oo,

4Py (v2) = p<>a;p, (v X v;) = pu.

Proof of corollary 1.2. Using the results in [S, § 7.1] there exist an R-split torus 4 < G
and a maximal compact subgroup K of G such that the following bolds: (1) a(a) =a~*,
Yae A, (2) the set of real roots of 4 for the adjoint action on the Lie algebra of G forms
a root system, and (3) G admits a decomposition G = KA™ S, were A* denotes the

closure of the positive Weyl chamber with respect to a system A of simple roots on A.
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Using this decomposition and by passing to a subsequence, without loss of generality
we may assume the following: (1) g; = a;e A* for all ieN; (2) {a;},., has no convergent
subsequence, (because otherwise G, = {e} and n(e) cannot be dense in L/A); and (3) for
any a€A, either sup,_a(a;) < oo or a(a;) > o as i — o0.

For the rest of the proof, consider the notation 5.1.

Let G, be the smallest closed normal subgroup of G containing U*. Then it is
straightforward to verify that the projection of {a;} on G/G, is relatively compact.
Therefore by our hypothesis, 7(G,) = L/A.

Take any g,€S and define p(h) = n(hg,) for all heL. Since any closed connected
normal subgroup of G, is also normal is G, we can apply theorem 1.4 to G, in place of
G and p in place of 7. Then for any probability measure v on U* which is absolutely
continuous with respect to a Haar measure on U™, we have

0,0, () >y, asi—> 0. (12)

Since 6(a) = a”!(VacA), for any Xeu™*, we have g(X)eu™ and X + g(X)es. Also
o(3)=3. Now by (5),

U @s=u" @(sn3)Du’. (13)

Then by implicit function theorem, there exist relatively compact neighbourhoods Q ™,
Q% Q" and®ofeinU™,(ZnSJU~, U™ and §, respectively, such that for any open set
¥ of @, we have that Q™ ¥ is an open subset of Q°Q*. Also we may assume that under
the multiplication map Q™ x ®=Q " ® and Q° x Q* xQ°Q*.

Let v_ and v’ be probability measures obtained by restricting Haar measures of U~
and S to Q™ and ¥, respectively. Then A = v_ x v'is a smooth measure on Q~ x V. By
choosing ¥ small enough, we can ensure that p_(v') is a multiple of ug restricted to
p(P). Since g,€S chosen in the definition of p is arbitrary and since there is enough
flexibility in the choices of @ and P, to prove that a, ug — i, it is enough to show that
4, (V') = py a5 i - o0,

By proposition 6.4, as i —» oo, a;p,(v') -y, if and only if a,p, (1) - u, . Therefore to
complete the proof of the corollary, it is enough to show the following.

Claim 6.3. Asi— o0, a;p,(A)— uy.

Since Q™ ¥ = Q°Q™, 1 can be treated as a measure on Q° x Q. Let v, and v, be the
probability measures obtained by restricting the Haar measureson(ZnS)U ™ and U*
to Q° and QY, respectively. Since A is a smooth measure, A« v, x v, (see (13)).
Decompose A as in proposition 6.1. Then for almost all we(Q°, 4,), we have 4, < wv,.
Putv,=w " '4,. Then v, «v,. Hence by (4), (12) and proposition 6.2,

4;04(4o) = ai(wp,(v,)) > py  asi—co.
Now by proposition 6.3, a;7n, (4) =y, as i — co. This completes the proof of the claim,
and also the proof of the corollary. 0
Continuous G-equivariant factors of G/P x L/A
First we recall the following result from [D3, § 2].

PROPOSITION 6.5 (Dani)

Let G be a semisimple group with finite center and R-rank(G) = 2. Let P be a parabolic
subgroup of G. Then given geG\P, there exist keN (k < R-rank(G)), elements
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d1,.--»gx+1 in G, and one-parameter unipotent subgroups {u,(t)},...,{u(?)} of G con-
tained in P such that the following holds:

1. 9,=9,9:¢P,and g, , , =e.
2. Foreachi=1,...,k,

ut)g;P—>g,,,Pin G/P ast — o0.

3. There exists a semisimple element a of G in g,Pg; * P such that if U* is the
associated horospherical subgroup then U* < g, Pg;* AP, and if G, denotes the
smallest normal subgroup of G containing U™, then R-rank(G/G;) < 1.

Proof. Apply [D3, Corollary 2.3] iteratively. Also use the proofs of [D3, Corollary 2.6
and Lemma 2.7]. O

Now we obtain the analogue of [D3, Lemma 1.4] by using theorem 1.1 in place of
[D3, Lemma 1.1]. Also we use the recurrence conclusion of theorem 4.2 of Ratner in
place of [D3, Lemma 1.6].

PROPOSITION 6.6

Let the notation and assumptions be as in theorem 1.2. Let x,yeL/A and geG\P. If
&(x,gP) = ¢(y, P), there exists a parabolic subgroup Q containing {g} U P such that
¢(z, P) = ¢(z,qP) for all zeGx and qeQ. Moreover, ¢(y,qP)= ¢(y, P) for all qeQ.

Proof. Let keN, elements g,,...,4,,, in G, the one-parameter unipotent subgroups
{u,(t)} contained in P, and a semisimple element @ and G and the associated expanding
horospherical subgroup U™ be as in proposition 6.5. Foreach i = 1,.. ., k, by Ratner’s
theorem 4.2 applied to the diagonal action of {,(t)} on L/A x L/A, there exists
a sequence t, — oo such that (u;(t,)x, u;(t,,)y) = (x, y) asn - co. Now for any ie{1,..., k},

®(x,9:Py= ¢(y, P)= d(u;(t,)x, u;(t,)g; P) = $(u;(t,)y, P), VneN.

In the limit as n — o0, we get ¢(x, g, , P) = ¢(y, P). Since g, = g, by induction on i, we
get that ¢(x,g;P)=¢(y,P)forall 1<i<k+1.
In particular, since g, , , = ¢,

¢(x,gxP)= ¢(, P) = d(x, P).
Since F = {a":neN}-U* < g, Pg, ' n P, we have that

¢(fx’ ng) = ¢(fx7 P): VfEF'
Let G, be the smallest closed normal subgroup of G containing U *. Then by the
choice of a as in Propositon 6.5, R-rank(G/G,) < 1. Therefore by the hypothesis in

theorem 1.2, G, x = Gx. By theorem 4.2, Gx is an orbit of a closed subgroup, say L', of
L containing G, and the stabilizer of x in L', say A’, is a lattice in L'. Applying theorem

1.1to L’ and A’ in place of L and A, respectively, we conclude that Fx = Gx. Thus

(2.0, P) = $(z,P), V26G,x=Gx,
Put L
Q= {heG:¢(z,fhP)=d(z,fP), VzeGx and VfeG}. (14)
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Then Q is a closed subgroup of G containing Pu {g, }. Since g,¢P,
Q#P. (15)

Now if g¢Q, then replacing P by Q and L/A by Gx, we repeat the above argument.
Note that by definition the new set given by (14) still turns out to be same as Q. This fact
contradicts the new equation (15). This completes the proof. O

Proof of theorem 1.2. Define the equivalence relation
R={(x,y)e L/A x L/A:¢(x,gP)= ¢(y,gP) for some geG}

on L/A. Clearly R is a closed subset of L/A x L/A invariant under the diagonal action
of G. Let X be the space of equivalence classes of R and let ¢,: L/A — X be the map
taking any element of L/A to its equivalence class. Equip X with the quotient topology.
Then X is a locally compact Hausdorff space.

For any xe L/A, put

2(x) = {heG: p(x,gP) = $(x,ghP),YgeG}.

Observe that 2(x) is a closed subgroup of G containing P and for any ye Gx, we have
. 2(y)  2(x). Let x,e L/A such that Gx, = L/A and put Q@ = 2(x,). Then 2(y) o Q for all
yeL/A. Since Q is a parabolic subgroup of G, there are only finitely many closed
subgroups of G containing Q. Therefore theset X j:= {xe L/A: 2(x) = Q}isopenin L/A.
Also X, is non-empty and G-invariant. Now since G acts ergodically on L/A, the set
L/A\X is closed and nowhere dense.

Note that for any x, ye L/A, if ¢,(x) = ¢, (y) then by proposition 6.6, we have that
2(x)=2(y). Let p:L/A x G/P— X x G/Q be the (G-equivariant) map defined by
p(x,gP) =(¢,(x),g9Q)for all xe L/A and geG. Then there exists a uniquely defined map
Y:X x G/Q — Y such that ¢ =y op. It is straightforward to verify that y is continuous
and G-equivariant.

Take any xeX,, yeL/A, and g,heG such that ¢(x,ghP)=¢(y,gP). Then
¢,(y)=¢,(x), and hence he2(y)=2(x)=Q. This proves that y restricted to
#1(Xo) x G/Q is injective and ye X ;.

Now if Y is a locally compact second countable space and ¢ is surjective, then using
Baire’s category theorem for Hausdorff locally compact second countable spaces, one
can show that ¢ is an open map. This completes the proof of the theorem. O

Continuous G-equivariant factors of L/A

Proof of theorem 1.3. Define A, = {he L:¢(ghA) = ¢(gA), VgeL}. Then A, is a closed
subgroup of L containing A. Since G-acts ergodically on L/A, Ad(A)is Zariski dense in
Ad(L) (see [Sh1, Theorem 2.3]). Therefore A? is a normal subgroup of L. Let A} be the
largest subgroup of A| whichis normalin L. In view of 1.1 (3), replacing Lby L/A|, A by
A;/A}, and G by its image in L/A], without loss of generality we may assume that
Aj={e}and A, =A.

Define the equivalence relation

R={(xyeL/A x L/A:$(x) = $()}

on L/A. Then R is closed and A(G)-invariant, where A: L— L x L denotes the diagonal
embedding of Lin L x L.
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Let

K = {teAff(L/A):(z, 7(2))eR and t(gz) = gt(z),Vze L/A,Vge G}
and
X, ={xeL/A:Gx=L/A}.

Note that X, # @, since G acts ergodically on L/A.

Claim 6.4. Let (x,y)eR. If xe X, then ye X, and there exists te K such that y = 7(x).

The claim is proved as follows. Since A(G) is generated by one-parameter unipotent-
subgroups of L x L, by Ratner’s theorem 4.2 there exists a closed subgroup F of L x L
containing A(G) such that

A(G)(x,y) = F:(x,y)

and F+(x,y) admits an F-invariant probability measure, say A.

Let p;:L x L— L denote the projection on the i-th coordinate, where i = 1,2. Then
(mop,),(4)isa p, (F)-invariant probability measure on p, (F)x. Hence the orbit p, (F)x is
closed (see [R, theorem 1.13]). Since G < p, (F) and Gx = L/A, we have that p,(F) = L.
Let N, =p,(Fnker(p,)). Then N, is a normal subgroup of p, (F) = Land (N, z,w)= R
for all (z,w)eF-(x,y). Therefore N, = A} = {e}. Thus Fnker(p,)= N, x {e} = {e}.
Now since p,(F) = L and p, |, is injective, dim(p,(F)) = dim(L). Since L is connected,
p,(F)= L. Thus p,| is an isomorphism.

Now Gy o p,(F)y = L/A. Hence ye X , . Now interchanging the roles of x and y in the
above argument, we conclude that p, | is an isomorphism. Let ¢ = p,o(p,|¢) " *. Then
oeAut(L) and

F={(g,0(9))eL x L:geL}.

Thus (gx,o(g)y)eR for all ge L. Now for any deL, if dx = x, then (gx, a(g)a(d)y)eR
for all geL. Let he L such that y = hA. Then ¢(a(g)hA) = ¢(a(g)a(d)hA) for all geL.
Since a(L)h = L, we conclude that h~!g(6)heA,. Now since A, = A, we have that
o(8)y = y. Therefore the mapt:L/A — L/A, given by 1(gx) = ¢(g)y for all geL, is well
defined and te Aff(L/A).

Therefore

F+(x,y) = {(z,7(2)):ze L/A}.

Since A(G) < F, we have that g(g) = g and hence 1(gz) = gz, for all ge G. Thus e K, and
the proof of the claim is complete.

Claim 6.5. The group K is compact.

We prove the claim as follows. Clearly, K is a closed subset of Aff(L/A), and henceit is
locally compact. Let y; denote the L-invariant probability measure on L/A. Then
U (X,)=1.Forany xe X, if yeK-x then (x, y)eR, and by claim 6.4 there exists teK
such that y = t(x). Thus K-x is closed for all xeX,. Therefore by Hedlund’s Lemma
and the ergodic decomposition of y; with respect to the action of K on L /A, we have
that almost all K-ergodic components are supported on closed K-orbits. Thus for
almost all xe L/A, the orbit K- x supports a K-invariant probability measure.

Forany xeL/A, put K = {reK:1(x) = x}. Let £:K/K, — L/A be the map defined by
¢(K,) = 1(x) for all Te K. Since Aff(L/A) acts continuously on L/A, we have that ¢ is
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a continuous injective K-equivariant map. Let xe X; be such that K-x supports a
K-invariant probability measure. Since ¢ is injective, the measure can be lifted to
a K-invariant probability measure on K/K_. Let te K,. Then for any geG, we have
7(gx) = gt(x) = gx. Now since Gx = L/A, we have that t(y) = y for all ye L/A. Hence K
is the trivial subgroup of Aff(L/A). Thus K admits a finite Haar measure. Hence K is
a compact group, and the claim is proved.

Let © be any neighbourhood of e in Z; (G). Put

R ={(x,y)eR:y¢ K-Qx}.

Let X, be the closure of the projection of R" on the first factor of L/A x L/A. Put
Xo=(L/A\X,.

Claim 6.6. X, c X,

Suppose the claim does not hold. Then there exists a sequence {(x;,y;)} <R’
converging to (x, y)eR with xe X ,. By claim 6.4, there exists €K such that y = t(x).
Therefore, after passing to a subsequence, there exists a sequence g; — e in L such that
y;=1(g;x;) for all ieN. By the definition of R’,g,¢Q < Z,(G) for all ieN. Also
(x;,9:x;)eR for all ieN. By Ratner’s theorem 4.2, there exists a A(G)-invariant A(G)-
ergodic probability measure g, on (L/A) x (L/A)such that A(G)(x;, g;x;) = supp(y;). Let
h;— e be a sequence in L such that x; = h;x for all ieN, By theorem 4.3, after passing to
a subsequence, there exists a probability measure y on L/A x L/A such that y,— p as
i— oo, and the following holds: supp(u) = F+(x, x), where F is a closed subgroup of
Lx L, and

(b7, b7 197 YA(G)(h;, g;h) = F, VieN. (16)

In particular, F-(x,x) = R and A(G) = F. Since x€X,, we have that F > A(L). By an
argument as in the proof of claim 6.4, we conclude that F nker(p;) = {e} for i=1,2.
Therefore F = A(L). Hence from (16) we conclude that g, Z, (G), which is a contradic-
tion. This completes the proof of the claim, and the proof of the theorem. O
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Note added in proof

Equidistribution of translates of measures is also considered in a recent preprint
“Upper bounds and asymptotics in a quantitative version of the Oppenheim conjec-
ture” of A Eskin, G A Margulis and S Mozes. In the context of the preprint it seems
worthwhile to remark that the method in the present paper can be used to obtain
‘uniform versions’ of theorem 1.4 and corollary 1.2, as done in the above mentioned
paper, for certain results.



