MR1699355 (2000b:00011) 00B25 (22-06 28-06)

★ Lie groups and ergodic theory.

Proceedings of the International Colloquium held in Mumbai, January 4–12, 1996.
Edited by S. G. Dani.
Tata Institute of Fundamental Research Studies in Mathematics, 14.
Published for the Tata Institute of Fundamental Research, Bombay; by Narosa Publishing House, New Delhi, 1998. viii+386 pp. $32.00. ISBN 81-7319-235-9

Contents: Martine Babillot and François Ledrappier, Geodesic paths and horocycle flow on abelian covers (1–32); J. R. Choksi and M. G. Nadkarni, On the question of transformations with simple Lebesgue spectrum (33–57); S. G. Dani and C. R. E. Raja, Asymptotics of measures under group automorphisms and an application to factor sets (59–73); Alex Eskin and Benson Farb, Quasi-flats in $H^2 \times H^2$ (75–103); Hillel Furstenberg [Harry Furstenberg], Stiffness of group actions (105–117); Dmitry Y. Kleinbock, Bounded orbits conjecture and Diophantine approximation (119–130); Alexander Lubotzky and Robert J. Zimmer, A canonical arithmetic quotient for simple Lie group actions (131–142); Shahar Mozes, On the congruence subgroup problem for tree lattices (143–149); Hee Oh, Arithmetic properties of some Zariski dense discrete subgroups (151–165); Marina Ratner, On the p-adic and S-arithmetic generalizations of Raghunathan’s conjectures (167–202); Klaus Schmidt [Klaus Schmidt¹], On the cohomology of algebraic \mathbb{Z}^d-actions with values in compact Lie groups (203–228); Nimish A. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements (229–271); Yehuda Shalom, Random ergodic theorems, invariant means and unitary representation (273–314); G. A. Soifer, Structure of infinite index maximal subgroups of $SL_n(\mathbb{Z})$ (315–324); A. N. Starkov, Dynamics of non-unipotent homogeneous flows (325–343); William A. Veech, Geometric realizations of hyperelliptic curves. II (345–365); Dave Witte [David Riley Witte], Cocycle superrigidity for ergodic actions of non-semisimple Lie groups (367–386).

{The papers are being reviewed individually.}

© Copyright American Mathematical Society 2000, 2010