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Abstract

Let G and H ⊂ G be connected reductive real algebraic groups defined
over Q, and admitting no nontrivial Q-characters. Let Γ ⊂ G(Q) be an
arithmetic lattice in G, and π : G→ Γ\G be the natural quotient map. Let
µH denote the H-invariant probability measure on the closed orbit π(H).
Suppose that π(Z(H)) is compact, where Z(H) denotes the centralizer of
H in G. We prove that the set {µH · g : g ∈ G} of translated measures is
relatively compact in the space of all Borel probability measures on Γ\G,
where µH · g(E) = µH(Eg−1) for all Borel sets E ⊂ Γ\G.

1 Introduction

Let G = G(R)0 and H = H(R)0 for reductive algebraic groups G and
H ⊂ G defined over Q. Suppose that G and H do not admit nontrivial
characters defined over Q. Let Γ be an arithmetic subgroup of G with
respect to the Q-structure, i.e. Γ ⊂ G(Q) and Γ ∩ G(Z) is of finite index
in G(Z) as well as in Γ. By a theorem of Borel and Harish-Chandra [BH],
Γ and H ∩ Γ are a lattices in G and H, respectively. Let π : G → Γ\G
be the natural quotient map. Then the orbit π(H) ∼= (H ∩ Γ)\H admits a
(unique) H-invariant probability measure, say µH . Such a measure and its
‘translates’ are referred to as algebraic measures.

For a measure µ on Γ\G, its translate by g ∈ G is defined as

µ · g(E) = µ(Eg−1) , ∀ measurable E ⊂ Γ\G .

This also defines a continuous G-action on the space of Borel probability
measures on Γ\G endowed with the weak-∗ convergence. The measure µHg
is supported on π(H)g and it is invariant under g−1Hg.
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Israel Academy of Sciences



Vol. 7, 1997 NON-DIVERGENCE OF TRANSLATES OF ALGEBRAIC MEASURES 49

In [DuRuS] and [EMc], it was shown that if H is the connected compo-
nent of the identity of an affine symmetric subgroup (i.e. the set of fixed
points of an involutive automorphism of G) and G is Q-simple, then µHgi
converges to the Haar measure on Γ\G, provided the image of {gi} on H\G
has no convergent subsequence. Using this result they obtained asymptotic
estimates for the number of integral points with norm less than T (as
T → ∞) on rational affine symmetric varieties (i.e. isomorphic to H\G
over Q) contained in Rn. Their method of proof suggests that, in the gen-
eral case, if there is an appropriate ‘algebraic’ criterion for the sequences
{gi} ⊂ G such that µH · gi → µG as i→∞, then one can provide solutions
to the following general counting problem: Suppose that G is realized as a
Q subgroup of GLn(R) and there exists p ∈ Zn such that the orbit V = p·G
is closed. The problem is to estimate the cardinality of V ∩ Zn ∩ BT , as
T →∞, where BT is the ball of radius T around 0 in Rn. (Note that V is a
rational affine variety, H is the stabilizer of p in G, and V ∼= H\G over Q).

The above mentioned approach to the counting problem motivated us
to study the limiting distributions for the collection of measures {µH ·
g}g∈G. We study this question in two steps. First we would like to describe
the sequences {gi} ⊂ G for which the measures µH · gi have convergent
subsequences in the space of all probability measures on Γ\G. Then we
can describe the probability measures on Γ\G which arise as the limits of
such sequences, and obtain some algebraic condition on {gi} to ensure that
the limit measure is G-invariant. In this paper we address the first part
under some additional assumptions on H. The second part is answered in a
more general setup in [EMozSh], using the classification of ergodic invariant
measures for unipotent flows due to Ratner [R].

Consider the following: Since H is a reductive Q-subgroup, the same
holds for Z(H) (the centralizer of H in G). Therefore there exists a linear
representation of G defined over Q and a Q-vector v0 in the representation
space such that the stabilizer of v0 in G is Z(H) (see [B, Prop. 7.7]).
Hence the orbit v0 ·Γ is discrete (see [B, Prop. 7.13]). In particular, the set
Z(H) ·Γ is closed in G, and hence the orbit π(Z(H)) is closed in G/Γ. Now
if π(Z(H)) is not compact, then there exists a sequence {zi} ⊂ Z(H) such
that {π(zi)} has no convergent subsequence. Thus for any compact sets
K ⊂ Γ\G and C ⊂ π(H), we have Czi ∩K = ∅ for all but finitely many i.
Hence µHzi(K) → 0 as i → ∞. In other words, {µHzi} converges to the
unit mass on the point at infinity in the one-point compactification of Γ\G.
Thus if π(ZG(H)) is not compact, then certain sequences of translated
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measures ‘escape to infinity’.
The main goal of this article is to show that if π(ZG(H)) is compact,

then any sequence {µH · gi} has a convergent subsequence. In other words:

Theorem 1.1. Let the notation be as above. Suppose that π(Z(H)) is
compact. Then given ε > 0 there exists a compact set K ⊂ Γ\G such that

µHg(K) ≥ 1− ε , ∀ g ∈ G .

Remark 1.2. The condition that π(Z(H)) is compact, is equivalent to
saying that H is not contained in any proper Q-parabolic subgroup of G,
or that any Q-subgroup of G containing H is reductive (see Lemma 5.1 for
a proof).

In particular, if a reductive subgroup H is a proper maximal connected
Q-subgroup of G, then π(Z(H)) is compact, and hence the conclusion
of theorem 1.1 holds. Note that the symmetric subgroups considered in
[DuRuS] are proper maximal over Q.

The above theorem is related to the results due to Dani and Margulis
[DM2] on recurrence properties of individual unipotent trajectories on finite
volume homogeneous spaces (see also [M],[D1,2]). We first generalize their
result to higher-dimensional trajectories of a more general type. The gen-
eralized result provides an algebraic condition to determine when a given
compact subset of Γ\G has positive relative measure with respect to a given
trajectory in Γ\G. The major component of the proof of Theorem 1.1 is
to show that the algebraic condition, which is given in terms of certain
linear representation of G, is satisfied for the sequence of trajectories un-
der consideration; namely for {π(Ω)gi}, where Ω is a relatively compact
neighbourhood of identity in H.

Thanks to Theorem 1.1, given any sequence {gi} ⊂ G, there exists a
subsequence {gik} ⊂ {gi} such that the sequence {µH · gik} converges to a
probability measure µ on Γ\G as ik →∞. In [EMozSh] we show that any
such limit measure is ‘algebraic’; i.e. for any c ∈ π−1(supp(µ)) there exists
a connected real algebraic Q-subgroup L of G containing H such that µ
is supported on π(L)c and it is c−1Lc-invariant. These results are then
applied to obtain some new results on estimating the number of integral
points on certain closed rational orbits of linear actions of G. For instance,
one may determine the asymptotics of the number of integral matrices A
in a large ball in Mn(R), whose characteristic polynomial det(I − λA) is a
fixed monic irreducible polynomial p(λ).

Theorem 1.1 can be reformulated as follows:
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Theorem 1.3. Let the notation be as before. Suppose that π(Z(H)) is
compact. Then given a Borel set H ⊂ H of positive Haar measure, there
exists a compact set C ⊂ G such that G = HΓC.

As an application of the above formulation we have the following.

Corollary 1.4. Let H be a connected reductive real algebraic subgroup
of SLn(R) defined over Q and acting irreducibly over Q on Rn. Let W be
a linear subspace of Rn defined over Q. Then for any linear subspace V of
Rn, there exists h ∈ H such that

dim(W · h ∩ V ) ≤ 1
n dim(W ) dim(V ) .

Note that the set of h satisfying the above condition is Zariski open in H.
We are not aware of any direct proof of this result. We note that John

Stalker obtained a nice direct proof for the analogous assertion over R, in
place of Q.

The paper is organized as follows: In section 2 we introduce certain
spaces of functions (denoted by E(n,m,Λ)) and describe some of their
basic properties. These functions arise as matrix coefficients of finite di-
mensional linear representations. Section 3 provides a generalization of the
theorem of Dani and Margulis [DM2] for E(m,n,Λ) type of trajectories.
The main part of the paper, which is section 5, is to show that the condi-
tions of the generalized Dani-Margulis theorem hold under the hypothesis
of Theorem 1.1. Some results about linear representations of G which are
required in section 5 are proved in section 4. The Corollary 1.4 is deduced
at the end of section 5.

For the proof of Theorem 1.1 in section 5, we shall only need the state-
ment of Theorem 3.9 out of sections 2 and 3. The reader may find it
convenient to first assume the statement of Theorem 3.9, and then start
from section 4.

We would like to thank S.G. Dani and John Stalker for helpful dis-
cussions and suggestions. We would like to thank the referee for helpful
suggestions.

2 Certain Growth Properties for a Class of Functions

Certain growth properties of polynomials of bounded degrees observed in
[M] have played an important role in the study of limit distributions of
orbits of unipotent flows on homogeneous spaces of Lie groups (cf. [DM3]).
We show that the same properties, interpreted appropriately, hold for a
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much larger class of functions. This generalization is useful in studying
the limit distribution of translates of algebraic measures in homogeneous
spaces.

Functions of one variable

Definition 2.1. Let n ∈ N and Λ ≥ 0 be given. Let E(n,Λ) be the set
of functions f : R→ C of the form

f(t) =
n∑
i=1

n−1∑
l=0

ai,lt
leλit (∀ t ∈ R) ,(1)

where ai,l ∈ C, and λi ∈ C with |λi| ≤ Λ.
The spaces E(n,Λ) arise naturally as follows.

Lemma 2.2. Let n ∈ N and X ∈ Mn(C). Then for any v,w ∈ Cm, the
map f : R→ C defined by

f(t) = 〈w · exp(tX),v〉 , ∀ t ∈ R ,

is in E(n,Λ) for some Λ ≥ 0; in fact the λi’s appearing in equation (1) for
f are precisely the eigenvalues of X.

Proof. Use Jordan decomposition. �
Observe the following.

Lemma 2.3. If f ∈ E(n,Λ), t0 ∈ R, and η > 0, the map f1 : R → R
defined as f1(t) = f(ηt+ t0), ∀ t ∈ R, is in E(n, ηΛ). �

The main tool for studying these spaces is provided by the following
lemma.

Lemma 2.4. Let n ∈ N, ~λ = (λ1, . . . , λn) ∈ Cn, and ~t = (t1, . . . , tn2) ∈
Rn2

. Let D(~t,~λ) be the determinant of the n2 × n2 matrix whose entries
are tlke

λitk , where 0 ≤ l ≤ n− 1, 1 ≤ i ≤ n, and 1 ≤ k ≤ n2. Then

D(~t,~λ) =
∏
j<k

(tk − tj)
∏
i<p

(λi − λp)mi,pF (~t,~λ) ,

where mi,p∈N and F is an entire function on Cn2×Cn such that F (0, ~λ)6= 0.

Proof. See [Ha]. �

Note 2.5. In view of Lemma 2.4, given n ∈ N and Λ ≥ 0, there exist
δ0(n,Λ) > 0 and c0 > 0 such that |F (~t,~λ)| ≥ c0 for all ~t = (t1, . . . , tn2)
with |tk| ≤ δ0(n,Λ) for each k = 1, . . . , n, and for all ~λ = (λ1, . . . , λn) with
|λi| ≤ Λ for each i = 1, . . . , n.

We fix n,Λ, and δ0 = δ0(n,Λ) for this section.
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Lemma 2.6. Let 0 ≤ t1 < . . . < tn2 ≤ δ0 be given. Then there exist entire
functions Gj : C×Cn → C for j = 1, . . . , n2 such that for any f ∈ E(n,Λ)
expressed as in equation (1), and s ∈ R, we have that

f(s) = 1
F (~t,~λ)

n2∑
j=1

Gj(s,~λ) ·
( ∏
k>j

tk−s
tk−tj

)
f(tj) ,(2)

where ~t = (t1, . . . , tn2) and ~λ = (λ1, . . . , λn).

Proof. For s ∈ C and j = 1, . . . , n2, put

~vj(s) = (t1, . . . , tj−1, s, tj+1, . . . , tn2) .

Then by Lagrange’s interpolation formula,

f(s) =
n2∑
j=1

D( ~vj(s),~λ)
D(~t,~λ)

f(tj) .

Using Lemma 2.4 we obtain that

D( ~vj(s),~λ)
D(~t,~λ)

= F ( ~vj(s),~λ)
F (~t,~λ)

∏
k>j

tk−s
tk−tj .

Put Gj(s,~λ) = F (~vj(s), ~λ) for all s ∈ C and ~λ ∈ Cn. Then Gj : C×Cn → C
is an entire function and equation (2) holds. �

Corollary 2.7. Given δ ∈ (0, δ0], there exists an Mδ > 0 such that for
any f ∈ E(n,Λ), we have

sup
t∈[0,δ0]

∣∣∣dfdt (t)∣∣∣ ≤Mδ · sup
t∈[0,δ]

|f(t)| .(3)

Further,

sup
t∈[0,δ]

∣∣∣dfdt (t)∣∣∣ ≤ (δ0/δ)Mδ0 · sup
t∈[0,δ]

|f(t)| .(4)

Proof. Fix 0 ≤ t1 < . . . < tn2 ≤ δ. Express f as in equation (2). Since
Gj(s,~λ) and ∂Gj

∂s (s,~λ) are entire functions on C × Cn, and since s and ~λ
vary over compact sets, the absolute values of these functions are bounded
above. Also by our choice of δ0, we have that 1/|F (~t,~λ)| is bounded above
by 1/c0. Therefore there exists Mδ > 0 such that∣∣∣ dfds(s)∣∣∣ ≤Mδ · sup

1≤k≤n2
|f(tk)| , ∀ s ∈ [0, δ0] .

This proves equation (3).
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To obtain equation (4) define g(t) = f((δ/δ0)t). Then g ∈ E(n, (δ/δ0)Λ)
⊂ E(n,Λ). Now apply equation (3) for g, δ0, and δ2

0/δ in place of f, δ, and
δ0, respectively.

Corollary 2.8. Given η > 0 there exists Mη ≥ 1 such that for any
δ ∈ (0, δ0] and any subinterval I of length at least ηδ in [0, δ], and any
f ∈ E(n,Λ),

sup
t∈[0,δ]

|f(t)| ≤Mη · sup
t∈I
|f(t)| .

Proof. In view of Lemma 2.3, it is enough to prove the result for δ = δ0
and I = [0, ηδ0]. Fix 0 ≤ t1 < . . . < tn2 ≤ ηδ0 and express f as in
equation (2). Since each Gj(s,~λ) is entire, and s and ~λ vary over compact
sets, the value of Gj(s,~λ) is bounded. Also 1/|F (~t,~λ)| is bounded above
by 1/c0. Therefore there exists Mη ≥ 1 such that

|f(s)| ≤Mη · sup
k=1,...,n2

|f(tk)| , ∀ s ∈ [0, δ0] .

This completes the proof. �

Corollary 2.9. Any nonzero function E(n,Λ) admits at most n2 − 1
distinct zeroes in [0, δ0].

Proof. Let f ∈ E(n,Λ). If there are n2 distinct zeroes of f in [0, δ0], we
choose 0 ≤ t1 < . . . < tn2 ≤ δ0 to be zeroes of f . But then from the
expression of f as in Lemma 2.6, we obtain that f is identically zero. �

We are now ready to prove the main growth properties of functions in
E(n, λ).

Corollary 2.10. (cf. [M, DM2]) Given ε > 0, there exists M > 0 such
that for any f ∈ E(n,Λ) and any interval I of length at most δ0,∣∣{t ∈ I : |f(t)| < (1/M) sup

t∈I
|f(t)|

}∣∣ ≤ ε · |I| .
Proof. Without loss of generality we may assume that f 6= 0 and I ⊂ [0, δ0].
For any a > 0 put

I(a) = {t ∈ I : −a < f(t) < a} .

Since f(t)−a and f(t) +a are in E(n+ 1,Λ), due to Corollary 2.9, f(t)±a
has at most (n+ 1)2−1 distinct zeros in [0, δ0]. Therefore I(a) has at most
(n+1)2 connected components. Let η = ε/(n+1)2. By Corollary 2.8, there
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exists M ≥ 1 depending only on n and Λ, such that for any subinterval J
of I with |J | ≥ η · |I|,

sup
t∈I
|f(t)| ≤ (M/2) sup

t∈J
|f(t)| .

Putting a = (1/M) supt∈I |f(t)|, we obtain that |J | ≤ η · |I| for every
connected component J of I(a). Hence

|I(a)| ≤ (n+ 1)2η · |I| = ε · |I| .
This completes the proof. �

Corollary 2.11. (cf. [M],[DM2]) Let δ ∈ [0, δ0] and σ > 1 be given
and let δ′ = σ−2n2

δ. Then there exist constants 0 < β1 ≤ β2 such that the
following holds: For any f ∈ E(n,Λ) such that supt∈[0,δ′] |f(t)| = 1, there
exists k ∈ {1, . . . , n2} such that

β1 ≤ |f(t)| ≤ β2 , ∀ t ∈ [σ2k−1δ′, σ2kδ′] .(5)

Proof. By Lemma 2.6 there exists β2 ≥ 1 such that for all f ∈ E(n,Λ),

sup
t∈[0,δ]

|f(t)| ≤ β2 · sup
t∈[0,δ′]

|f(t)| .

For any choice of tk ∈ [σ2k−1δ′, σ2kδ′], k = 1, . . . , n2, one has

tk+1 − tk ≥ (σ2k+1 − σ2k)δ′ .

Hence applying Lemma 2.6 as in the proof of Corollary 2.8, there exists a
constant M ≥ 1 such that for any choice of tk as above we have

sup
t∈[0,δ]

|f(t)| ≤M · sup
k=1,...,n2

|f(tk)| .

Now if we choose β1 = 1/(2M), then for some k ∈ {1, . . . , n2},
inf

t∈[σ2k−1δ′,σ2kδ′]
|f(t)| ≥ β1 .

This completes the proof. �

Functions of several variables. Now we generalize some of the above
results for functions of several variables.

Definition 2.12. For m ∈ N, n ∈ N, and Λ ≥ 0 let E(m,n,Λ) be the set
of functions f : Rm → C of the form

f(t1, . . . , tm) =
n∑

i1,...,im=1

n−1∑
l1,...,lm=0

a~i,~l ·
m∏
k=1

tlkk e
λk,ik tk ,(6)
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where ~i = (i1, . . . , im) and ~l = (l1, . . . , lm), a~i,~l ∈ C, and λk,j ∈ C with
|λk,j | ≤ Λ.

Our interest in considering this space comes from the following obser-
vations.

Lemma 2.13. Let m ∈ N, n ∈ N, and X1, . . . ,Xm ∈ Mn(C). For any
v,w ∈ Cn, define f : Rm → C as

f(t) = 〈v · exp(t1X1) · · · exp(tmXm),w〉 , ∀ t = (t1, . . . , tm) ∈ Rm .

Then f ∈ E(m,n,Λ), where Λ is the maximum of the absolute values of all
the eigenvalues of all the Xk’s.

Proof. It is straightforward to verify this using Lemma 2.2. �
From the definition we obtain the following two consequences.

Lemma 2.14. For m ∈ N, n ∈ N, Λ ≥ 0, f ∈ E(m,n,Λ), v ∈ Rm with
‖v‖ = 1, and t0 ∈ Rm, define a function φ : R→ C as

φ(t) = f(tv + t0) , ∀ t ∈ R .

Then φ ∈ E(mn,
√
mΛ). �

Lemma 2.15. Let P be a complex polynomial in k variables and with
total degree d. For f1, . . . , fk ∈ E(m,n,Λ), define

g(t) = P (f1(t), . . . , fk(t)) , ∀ t ∈ Rm .

Then g ∈ E(m,nd, d · Λ). �

Note 2.16. Fix m ∈ N, n ∈ N, and Λ ≥ 0. We define δ0 = δ0(mn,
√
mΛ)

as in Note 2.5.

Corollary 2.17. Given η > 0, there exists M ≥ 1 such that for any
δ ∈ (0, δ0], any ball B of diameter δ in Rm, any ball D of diameter at least
ηδ contained in B, and any f ∈ E(m,n,Λ),

sup
t∈B
|f(t)| ≤M · sup

t∈D
|f(t)| .(7)

Proof. Let t0 be the center of D. Let S be the unit sphere in Rm centered
at 0. Take any v ∈ S, and consider the function φv : R → C defined as
φv(t) = f(tv + t0), ∀ t ∈ R. Then φv ∈ E(mn,

√
mΛ).

By Corollary 2.8, there exists Mη > 0 such that for any ψ ∈
E(mn,

√
mΛ), any interval I of length at most δ, and any interval J ⊂ I

of length at least ηδ,

sup
t∈I
|ψ(t)| ≤Mη · sup

t∈J
|ψ(t)| .(8)
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Now for each v ∈ S, by putting ψ = φv, I = {t ∈ R : tv + t0 ∈ B}, and
J = {t ∈ R : tv + t0 ∈ D} in equation (8), we conclude that equation (7)
holds. �

Corollary 2.18. Given M > 1 there exists η > 0 such that for any
f ∈ E(m,n,Λ), any δ ∈ (0, δ0], and a closed ball B in Rm of diameter δ
there exists a closed ball D ⊂ B of diameter ηδ such that

sup
t∈B
|f(t)| ≤M · inf

t∈D
|f(t)| .(9)

Proof. Let t0 ∈ B be such that supt∈B |f(t)| = |f(t0)|. For every v ∈ S,
define φv(t) = f(tv+t0), ∀ t ∈ R. Then φv ∈ E(mn,

√
mΛ). Let Iv = {t ≥

0 : tv + t0 ∈ B}. Since supt∈Iv |φv(t)| ≤ |f(t0)|, by Corollary 2.7 there
exists M0 > 0 such that

sup
t∈Iv

∣∣∣dφv
dt (t)

∣∣∣ ≤ (M0/|Iv|)|f(t0)| , ∀v ∈ S .(10)

Put η = (1/M0)(1−1/M). Then due to equation (10), for any 0 ≤ t ≤ η|Iv|,
we get

|φv(t)| =
∣∣φv(0) + t · dφv

dt (t1)
∣∣ , for some t1 ∈ [0, t]

≥ (1−M0η)|f(t0)|
≥ (1/M)|f(t0)| .

Clearly
D =

⋃
v∈S

[0, η|Iv|] · v + t0

is a ball of diameter ηδ contained in B, and equation (9) holds. �

3 An Algebraic Condition for Returning to
Compact Sets

In this section we extend an important result due to Dani and Margulis
[DM2] about large compact sets in finite volume homogeneous spaces hav-
ing relative measures close to 1 on trajectories of unipotent flows. The
generalization is made for the following class of trajectories in a Lie group
G in place of unipotent one-parameter subgroups.

Definition 3.1. Let G be a Lie group and g be its Lie algebra equipped
with a positive definite inner product. For m ∈ N, n ∈ N, and Λ ≥ 0,
let EG(m,n,Λ) be the set of all functions f : Rm → G such that for any
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v,w ∈ g, the map

t 7→ 〈v ·Ad(f(t)),w〉 , ∀ t ∈ Rm

is in E(m,n,Λ). Denote by EG(n,Λ) the set EG(1, n,Λ).

Corollary 3.2. Let G be a Lie group and g its Lie algebra. For
X1, . . . ,Xm ∈ g, define a map φ : Rm → G as

φ(t) = exp(t1X1) · · · exp(tmXm) , ∀ t = (t1, . . . , tm) ∈ Rm .

Then φ ∈ EG(m,n,Λ), where n = dimG and Λ is the maximum of the
absolute values of the eigenvalues of all the adXi’s.

Proof. It is a direct consequence of Lemma 2.13. �

Geometric condition for return in measure. In order to derive some
of the results for higher-dimensional trajectories from the one-dimensional
case, we make an elementary observation.

Lemma 3.3. Let B be a bounded open convex subset of Rm. Let S be
the unit sphere in Rm centered at the origin. Fix x0 ∈ B. For every v ∈ S,
and a Borel measurable subset E of B, define

Ev = {t ≥ 0 : x0 + tv ∈ E} .
Then

|E|/|B| ≤ m · sup
v∈S
|Ev|/|Bv| ,

where |A| denotes the standard Lebesgue measure of a measurable subset
A ⊂ Rm.

Proof. Let σ denote the rotation invariant probability measure on S such
that the volume of a unit ball in Rm is σ(S)/m. Using polar decomposition
of B at the pole t0, we have

|E| =
∫

v∈S
dσ(v) ·

∫ |Bv|

0
χEv(t)tm−1 dt

≤
∫

v∈S
dσ(v) · |Ev| · |Bv|m−1

≤ m
(

sup
v∈S
|Ev|/|Bv|

) ∫
v∈S
|Bv|m/mdσ(v)

= m
(

sup
v∈S
|Ev|/|Bv|

)
|B| . �

Theorem 3.4. Let G be a Lie group, Γ be a lattice in G, and π : G→ Γ\G
be the natural quotient map. Given m,n ∈ N, Λ > 0, a compact set
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C ⊂ Γ\G, T > 0 and an ε > 0, there exists a larger compact set C ′ ⊂ Γ\G
such that for any φ ∈ EG(m,n,Λ) and a ball B of diameter at most T in
Rm, one of the following holds:

1. π(φ(B)) ∩ C = ∅.
2. |{t ∈ B : π(φ(t)) ∈ C ′}| ≥ (1− ε)|B|.

Proof. In [DM3, Theorem 6.1] the result is stated for an Ad-unipotent
one-parameter subgroup u : R→ G, in place of φ as above.

We observe that the only property of the map u : R → G used in that
proof is that u ∈ EG(n1, 0) for some n1 ∈ N depending only on G. Specifi-
cally the relevant properties of E(n, 0) are Corollary 2.8, Corollary 2.9, and
Corollary 2.11.

Hence using the above mentioned corollaries, the same proof works to
give the result for all φ ∈ EG(n,Λ).

Now choose a compact set C ′ ⊂ Γ\G such that the conclusion of the
theorem is valid for ε/m in place of ε, and all ψ ∈ EG(mn,

√
mΛ) in place

of φ, and δ0 > 0 as in the Note 2.5 depending only on G,m,n, and Λ.
First assume that T ≤ δ0. Let φ ∈ EG(m,n,Λ). Suppose that condi-

tion 1 above does not hold. Then there exists t0 ∈ B such that π(φ(t0)) ∈
C. Define

E = {t ∈ B : π(φ(t)) 6∈ C ′} .
Let the notation be same as in Lemma 3.3. Take v ∈ S. Define a map

ψ(t) = φ(tv + t0), ∀ t ∈ R. By Lemma 2.14 ψ ∈ EG(mn,
√
mΛ). Therefore

by the above hypothesis,

|Ev| = |{t ∈ Bv : π(ψ(t)) 6∈ C ′}| ≤ (ε/m)|Bv| .

Therefore by Lemma 3.3,
|E| ≤ ε · |B| .

For the general case, observe that there exists a natural number N
depending only on m, T , and δ0 such that the following holds: In Rm, any
ball B of diameter at most T can be covered by a sequence {Bi}Ni=1 of balls
of diameters at most δ0 such that

|Bi ∩Bi+1| > (1/4) sup{|Bi|, |Bi+1|} , i = 1, . . . , N − 1 .

Applying the theorem for T = δ0, ε = 1/4, and the given C, we obtain
a sequence {Cj}Nj=1 of compact sets in Γ\G such that C1 = C, Cj ⊂ Cj+1,
and the conclusion of the theorem holds for C = Cj and C ′ = Cj+1, where
j = 1, . . . , N − 1.
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Again apply the theorem for δ0, ε/N , and ∪Nj=1Cj in place of T, ε, and
C, respectively, and obtain a compact set C ′ such that the conclusion of
the theorem holds.

Now let B be any ball of diameter at most T in Rm and suppose that
φ(B) ∩ C 6= ∅. Cover B by a sequence of balls {Bi}Ni=1 as above. Then by
the choice of {Cj}, we have φ(Bi) ∪

⋃N
j=1Cj 6= ∅. Hence by the choice of

C ′,
|{t ∈ Bi : φ(t) 6∈ C ′}| < (ε/N)|Bi| , i = 1, . . . , N .

Hence |{t ∈ B : φ(t) ∈ C ′}| > (1− ε)|B|. �

Algebraic formulation of the geometric condition for returning to
compact sets. The usefulness of the previous theorem is enhanced by
the next result which provides an algebraic condition, in terms of certain
representations of G, equivalent to the geometric condition π(φ(B))∩C = ∅.
For simplicity we consider only the case of arithmetic lattices. In order to
formulate the result, we need some notation.

Let G a connected semisimple real algebraic group defined over Q. Let
Γ ⊂ G be an arithmetic lattice with respect to the Q-structure on G and
π : G→ Γ\G be the natural quotient map. Let r be the Q-rank of G. We
can assume that r ≥ 1; if r = 0, then by Godement’s compactness criterion
(see [B, Theorem 8.4]), Γ\G is cocompact and the results of this section
are trivial in this case.

Let P be a minimal Q-parabolic subgroup of G. Then by [B, Theo-
rem 15.6], there exists a finite set F ⊂ G(Q) such that

G(Q) = Γ · F · P (Q) .(11)

Let S be a maximal Q-split torus of G contained in P . Let Π be the set
of Q-roots with respect to S. The roots whose corresponding root spaces
are contained in the Lie subalgebra of g associated to P form a system of
positive roots. Let ∆ = {α1, . . . , αr} denote the corresponding system of
simple roots.

Take i ∈ {1, . . . , r}. Let Pi denote the standard maximal parabolic
subgroup associated to the set of simple roots ∆ \ {αi}. Let Ui be the
unipotent radical of Pi. For each i construct a representation of G on a
finite dimensional vector space Vi as follows: Let ui be the Lie subalgebra
of g associated to Ui. Put li = dimUi. Let Vi = ∧lig, the li-th exterior
power, and consider the ∧li Ad-action of G on Vi. Fix any Euclidean norm
on g and let {e1, . . . , en} be an orthonormal basis of g. Define a Euclidean
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norm on Vi such that the basis

{ei1 ∧ · · · ∧ eili ∈ Vi : 1 ≤ i1 < · · · < ili ≤ n}
is orthonormal in Vi.

Note that since G is defined over Q, its Lie algebra g inherits a Q-
structure. Now Vi also has a natural Q-structure and ∧liui is a rational
one-dimensional subspace of Vi. Now take pi ∈ ∧liui(Q) \ {0}. Then for
any g ∈ Pi(R), we have

pi · g = det(Ad g|ui) · pi .(12)

Define a function di : G→ R∗ as

di(g) = ‖pi · g‖2 ∀ g ∈ G .

Theorem 3.5. Let m ∈ N, n ∈ N, Λ > 0, T > 0, and α > 0 be given.
Then there exists a compact set C ⊂ Γ\G such that for any ball B ⊂ Rm
of diameter at most T and any φ ∈ EG(m,n,Λ), one of the following
conditions is satisfied:

1. There exists i ∈ {1, . . . , r} and λ ∈ ΓF such that

di(λ−1φ(t)) = ‖pi · λ−1φ(t)‖2 < α , ∀ t ∈ B .

2. π(φ(B)) ∩ C 6= ∅.
This theorem is proved in [DM2] for unipotent one parameter subgroups;

i.e. for φ ∈ EG(1, n, 0). The organization of that proof crucially uses the
one-dimensionality of the trajectory. Here we modify their proof to take
care of the higher dimensional cases.

Algebraic description of compact sets in Γ\GΓ\GΓ\G. First we recall a
result in [DM2] which gives an algebraic description of relatively compact
open connected subsets of Γ\G using the reduction theory.

Let I ⊂ {1, . . . , r}, and put J = {1, . . . , r} \ I. Define

PI =
⋂
i∈I

Pi

QI = {g ∈ PI : di(g) = 1 , ∀ i ∈ I} .
Note that each QI is a Q-algebraic group with no nontrivial characters

defined over Q, and P ∩ QI is a minimal Q-parabolic subgroup of QI .
Therefore by [B, Theorem 15.6], there exists a finite set FI ⊂ QI(Q) such
that

QI(Q) = (Γ ∩QI)FI(P ∩QI)(Q) .(13)

We define Λ(I) = FI
−1(Γ∩QI). Note that P∅ = Q∅ = G and Λ(∅) = F−1Γ.
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Lemma 3.6. Let j ∈ {1, . . . , r}, I ⊂ {1, . . . , r} \ {j}, and I ′ = I ∪ {j}.
Then there exists a finite set E ⊂ P (Q) such that

Λ(I ′)Λ(I) ⊂ E · Λ(I) .

Proof. By definition

Λ(I ′)Λ(I) = FI′
−1(QI′ ∩ Γ) · FI−1(QI ∩ Γ) .

Note that any g ∈ G(Q), gΓg−1∩Γ is a subgroup of finite index in Γ (see [B,
Corollary 7.13]). Therefore there exists a finite set L ⊂ QI(Q) such that

(QI′ ∩ Γ) · FI−1 ⊂ (QI ∩ Γ)FI−1 ⊂ L(QI ∩ Γ) .

Now by equation (13), there exists a finite set E1 ⊂ (P ∩QI)(Q) such that

(FI′−1L)−1 ⊂ (Γ ∩QI)FIE1 .

Hence

Λ(I ′)Λ(I) ⊂ (FI′−1L)(QI ∩ Γ)
⊂ E1

−1FI
−1(QI ∩ Γ)

= E · Λ(I) ,

where E = E1
−1FI

−1 ⊂ P (Q). �

Notation. Let I be the collection of all ordered p-tuples, where 0 ≤ p ≤ r;
by a 0-tuple we mean the empty set. Let I = (i1, . . . , ip) ∈ I. Then there
exists a finite set L(I) ⊂ G(Q) such that

Λ({i1, . . . , ip−1}) · · ·Λ({i1})Λ(∅) = L(I)Γ .

We define L(∅) = {e}.
For positive reals 0 < a < b and α > 0, and any λ ∈ L(I)Γ, define

Wα,a,b(I, λ) =
{
g ∈ G : dj(θλg) > α, ∀ j ∈ {1, . . . , r} \ I and ∀ θ ∈ Λ(I) ,

and a ≤ di(λg) ≤ b, ∀ i ∈ I
}
.

Note that for any γ ∈ Γ,

Wα,a,b(I, λγ) = γ−1Wα,a,b(I, λ) .

Define the following subsets of Γ\G:

Wα,a,b(I) =
⋃

λ∈L(I)

π(W (I, λ)) =
⋃

λ∈L(I)Γ

π(W (I, λ)) .

The following result is obtained in [DM2, Prop. 1.8].
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Proposition 3.7. The set Wα,a,b(I) is compact.

In order to prove Theorem 3.5, we need to find constants 0 < a < b and
β > 0 (which are independent of φ and B) such that if condition 1 fails to
hold, then π(φ(t)) ∈Wβ,a,b(I) for some t ∈ B and I ∈ I.

Basic proposition. The following proposition is a main technical tool
for finding a, b, and β. It is based on some ideas from [DM1, Appendix].

By Lemma 2.15, there exists n1 ∈ N and Λ1 > 0 such that for any
φ ∈ EG(m,n,Λ), any g ∈ G, and any i ∈ {1, . . . , r}, the map f : Rm → R
defined by f(t) = di(gφ(t)) is in E(m,n1,Λ1). Let δ0 = δ0(m,n1,Λ1) be
as in Note 2.16.

Proposition 3.8. Let α > 0 andD ⊂ Rm be a ball of diameter at most δ0.
Suppose a family F ⊂ E(m,n1,Λ1) satisfies the following conditions:

1. For any t ∈ D and any β > 0,

#{f ∈ F : |f(t)| < β} <∞ .

2. For every f ∈ F ,
sup
t∈D
|f(t)| > α .

Then at least one of the following conditions is satisfied:

(a) There exists a t0 ∈ D such that |f(t0)| > α for all f ∈ F .
(b) There exist a ball D1 ⊂ D and f0 ∈ F such that:

(i) f0(D1) ⊂ (α/2, α);
(ii) there exists M ≥ 1 (depending only on m, n1, and Λ1) such that

for all f ∈ F ,
sup
t∈D1

|f(t)| > α/M .

Proof. Let t0 be the center of D. If (a) does not hold then due to con-
dition 1, there exists a finite set F1 ⊂ F such that |f(t0)| ≥ α for all
f ∈ F\F1. Now let E be the ball centered at t0 of some diameter 0 < δ < δ0
such that

1) supt∈E |f(t)| ≥ α, ∀ f ∈ F1, and
2) there exists f0 ∈ F1 such that supt∈E |f0(t)| = α.

By Corollary 2.18, there exist a constant η > 0 (depending only on
m,n1, and Λ1) and a ball D1 of diameter ηδ contained in E such that

inf
t∈D1

|f0(t)| ≥ α/2 .
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Now by Corollary 2.17, there exists a constant M ≥ 1 (depending only on
η,m, n1, and Λ1) such that for any f ∈ F we have

sup
t∈D1

|f(t)| ≥ α/M .

This completes the proof. �

Proof of Theorem 3.5. Let α > 0 be given. Let B ⊂ Rm be a ball of
diameter at most δ0, and let φ ∈ EG(m,n,Λ). Suppose that condition 1 of
the theorem fails to hold.

By a stepwise construction we shall obtain I ∈ I, λ ∈ LIΓ, and con-
stants 0 < aI < bI and αI > 0 depending only on I and α such that

π(φ(B)) ∩ π(WαI ,aI ,bI (I, λ)) 6= ∅ .
In view of Proposition 3.7 this will imply that the second condition of the
theorem holds.

Consider the following procedure: Suppose I ∈ I, λ ∈ LIΓ, a ball
D ⊂ Rm of diameter at most δ0, and constants 0 < aI < bI are such that

(A) di(λφ(B)) ⊂ (aI , bI) , ∀ i ∈ I .
Let F(I, λ) denote the family of all functions f : Rm → R>0 of the form

f(t) = dj(θλφ(t)) for all t ∈ Rm, where θ ∈ Λ(I) and j ∈ J = {1, . . . , r}\I.
Suppose further that for some αI > 0, we have

(B) sup
t∈D
|f(t)| ≥ αI , ∀ f ∈ F(I, λ) .

Observe that condition 1 of Proposition 3.8 is satisfied for the family
F(I, λ), because the set pj · Λ(I)LI · Γ is discrete in Vj for every j ∈
J . Condition 2 of Proposition 3.8 follows from condition (B) as above.
Therefore due to the proposition, one of the following holds:

(a) There exists t0 ∈ D such that dj(θλφ(t0)) ≥ αI for all θ ∈ Λ(I) and
all j ∈ J .
In this case by condition (A) we have Γφ(t0) ∈ WαI ,aI ,bI (I). We fix
this I ∈ I, t0 ∈ B, and constants 0 < aI < bI and αI > 0 and stop
the procedure.

(b) There exist j0 ∈ J , θ0 ∈ Λ(I), and a ball D1 ⊂ D such that the
following holds:

(i) dj0(θ0λφ(D1)) ⊂ (αI/2, αI).
(ii) For all θ ∈ Λ(I) and j ∈ J ,

sup
t∈D1

dj(θλφ(t)) ≥ αI/M .
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In this case, let I1 = I ∪ j0, and λ1 = θ0λ. We will now show that
conditions (A) and (B) are satisfied for D1, I1 and λ1, with suitable
constants aI1 , bI1 , and αI1 .
Since di(θ0g) = di(g), ∀ i ∈ I and ∀ g ∈ G, condition (A) is satisfied
with aI1 = αI/2 and bI1 = αI .
By Lemma 3.6, there exists a finite set E ⊂ P(Q) (depending only
on I and j0) such that for any θ ∈ Λ(I ∪ {j0}), there exists θ′ ∈ Λ(I)
and x ∈ E such that θθ0 = xθ′. Hence for every j ∈ J \ {j0},

sup
t∈D1

dj(θλ1φ(t)) = sup dj(θθ0λφ(t))

= sup dj(xθ′λφ(t))
= sup dj(x) · dj(θ′λφ(t))
≥ β · αI/M ,

where β = minx∈E dj(x) > 0 depends only on I and j0. Therefore
condition (B) is also satisfied for the family F(I1, λ1) and αI1 =
βαI/M > 0.
This completes the description of our procedure.

To prove the theorem, we start with I = ∅, λ = e, and D = B. Then
condition (A) is vacuously satisfied. We can assume that condition 1 in the
statement of the theorem does not hold. Then condition (B) is satisfied for
F(∅, e).

We can repeatedly apply the above procedure till we get I, λ ∈ LIΓ,
and constants 0 < aI < bI and αI > 0 such that di(θλφ(B)) > αI for all
θ ∈ Λ(I); at which step we are through. Since the cardinality of I increases
each time we apply the procedure, it must stop after at most r steps. This
completes the proof for T ≤ δ0.

For the general case, cover the ball B with finitely many balls of radius
δ0 such that for any two intersecting balls the measure of their intersection
is at least 1/4 of the measure of each. The number of balls required for
this purpose depends only on m,T , and δ0. Suppose condition 2 fails to
hold. Then condition 1 holds for any one of the smaller balls. Now apply
Corollary 2.17 successively for η = 1/4. Condition 1 holds for the full ball
B, with α replaced by a bounded multiple of it. Since the multiple depends
only on m,n1,Λ1 and the number of smaller balls, the theorem follows. �

Combining Theorem 3.4 and Theorem 3.5 we obtain the following
stronger version.

(For the notation used in the statement of the following theorem, we
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refer the reader to Corollary 3.2 and the definitions and notation stated
just before the statement of Theorem 3.5.)

Theorem 3.9. Given m ∈ N, n ∈ N, Λ ≥ 0, α > 0, ε > 0, and T > 0 there
exists a compact set C ⊂ Γ\G such that for any ball B ⊂ Rm of diameter
at most T and any φ ∈ EG(m,n,Λ), one of the following conditions is
satisfied:

1. There exists i ∈ {1, . . . , r} and λ ∈ ΓF such that

di(λ−1φ(B)) = ‖pi · λ−1φ(B)‖2 < α .

2. |{t ∈ B : π(φ(t)) ∈ C}| ≥ (1− ε)|B|.

Remark 3.10. Condition 1 in Theorem 3.9 can be reformulated as:
1′. There exist i ∈ {1, . . . , r}, λ ∈ F (which is a finite set), and γ ∈ Γ

such that for p = pi · λ−1 we have

‖p · γ−1φ(B)‖2 < α .

Note that p is contained in the one-dimensional subspace of Vi = ∧lig
associated to the Lie algebra u of the unipotent radical of P = γ−1Piγ,
which is a maximal proper Q-parabolic subgroup of G. Also p ∈ Vi(Q)\{0}
and P = {g ∈ G : g · p ∈ R× · p} (see equation (12)).

Remark 3.11. Note that Theorem 1 of [DM2] for unipotent one-parameter
subgroups can be recovered from Theorem 3.9 by puttingm = 1, n = dim g,
and Λ = 0. Since Λ = 0, by changing the parameterization, here we can
avoid the dependence of C on the choice of T .

Remark 3.12. See [Sh2, Theorem 2.2] for a result similar to Theorem 3.9
for any Lie group G and any lattice Γ in G.

See also a recent preprint “Flows on homogeneous spaces and Diophan-
tine approximation on manifolds” by D.Y. Kleinbock and G.A. Margulis
for related results.

4 A Result About Linear Representations of GGG

In this section we obtain a result in linear algebra with allows us to apply
the results of the previous section in order to prove Theorem 1.1 when H is
an algebraic torus. The proof uses a certain decomposition of the group G
(Proposition 4.4) and the following properties of finite dimensional spaces
of functions on a set.
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Lemma 4.1. Let X be any set and {β1, . . . , βn} be a set of linearly
independent complex valued functions on X. Then there exists a finite set
{t1, . . . , tn} ⊂ X such that the matrix A = (βi(tj))i,j=1,...,n is nonsingular.
In particular, for any a = (a1, . . . , an) ∈ Cn, we have

sup
j=1,...,n

∣∣∣ n∑
i=1

aiβi(tj)
∣∣∣ ≥ ‖A−1‖−1 · ‖a‖ ,(14)

where ‖T‖ denotes the operator norm of a linear transformation T .

Proof. By induction we choose t1, . . . , tn−1 such that (βi(tj))i,j=1,...,n−1
is a nonsingular matrix. Suppose there does not exist tn such that A is
nonsingular, then

det((βi(tj))i,j=1,...,n) = 0 , ∀ tn ∈ X .

This is a linear dependence relation between the βi, i = 1, . . . , n as functions
in the variable tn. It is a nontrivial relation because the coefficient of βn(tn)
is ±det((βi(tj))i,j=1,...,n−1) 6= 0. This contradicts the linear independence
of the βi’s, and the proof is complete. �

Corollary 4.2. Let X be a set and S be a subset of a finite dimensional
subspace of the space of complex valued functions on X. Then there exists
a finite set X0 ⊂ X such that for any f ∈ S, if f(X0) = 0 then f(X) = 0. �

Using the fact that an analytic function on a compact neighborhood Ω
of 0 in Cm is determined by its restriction to Rm ∩ Ω one has:

Corollary 4.3. Let S be a subset of a finite dimensional subspace of
the space of analytic functions on a compact neighborhood Ω of 0 in Cm.
Then there exists M > 0 such that for any f ∈ S,

sup
t∈Ω
|f(t)| ≤M · sup

t∈Ω∩Rm
|f(t)| .(15)

�

The next proposition is the main result of this section. In the proof
of Theorem 1.1, it takes care of the central torus of H and reduces the
problem to the case of semisimple H.

Proposition 4.4. Let G be a connected semisimple real algebraic group
and T a real algebraic torus in G. Then there exists a closed subset Y of
G such that the following holds.

1. G = ZG(T ) · Y .
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2. For any linear representation of G on Rn, and a given neighborhood
Ω of e in T , there exists c > 0 such that

sup
t∈Ω
‖v · ty‖ ≥ c · ‖v‖ , ∀v ∈ Rn and ∀ y ∈ Y .

For instance, if G = SLn(R) and T a diagonal subgroup containing a
regular semisimple element, we get Y = NK in the theorem, where N is
the lower triangular unipotent subgroup and K = SOn(R).

Proof. Let S be a maximal complex algebraic torus in G(C) containing
T (C). Fix a complex Borel subgroup B of G(C) containing S. Consider
the root system of G(C) with respect to S. Consider the system of positive
roots associated to the Borel B. Let ∆ denote the corresponding system
of simple roots. Let Ψ ⊂ ∆ be the set of roots which are trivial on T . Let
P denote the standard complex parabolic subgroup of G(C) associated to
Ψ. Let U be the unipotent radical of P . Then P = ZG(C)(T (C))U . Put
M = ZG(T ). Then M(C) = ZG(C)(T (C)).

Let θ be a Cartan involution of G which stabilizes T . Extend the differ-
ential of θ on the Lie algebra of G to a conjugate linear automorphism on
the complexification of the Lie algebra. This lifts to a Cartan involution of
GC, also denoted by θ, where G(C) is treated as a real algebraic semisimple
group. The complex conjugation on GC, denoted by σ, is an involution on
G(C). Note that the involutions θ and σ commute with each other.

Let K be the maximal compact subgroup of G(C) corresponding to θ.
Then

G(C) = PK = M(C)UK .

Note that σ and θ stabilize M(C). Therefore M = {m ∈ M(C) :
σ(m) = m} is a symmetric subgroup of M(C). Treating M(C) as a real
algebraic group, there exists a real algebraic R-split torus A in M(C) such
that

θ(a) = a−1 = σ(a) , ∀ a ∈ A ,

and
M(C) = M ·A · (K ∩M(C))

(see [Sc, Prop. 7.1.2-3]). Since M(C) normalizes U , we have

G(C) = MAUK .

Put Y = (AUK) ∩G. Since M ⊂ G, we have

G = M · Y .



Vol. 7, 1997 NON-DIVERGENCE OF TRANSLATES OF ALGEBRAIC MEASURES 69

We need to show that Y satisfies condition 2. The linear G-action on
Rn extends to a complex linear G(C)-action on Cn. Let ρ : G(C)→ SLn(C)
denote the associated representation.

Claim 1. Let Ω be a neighborhood of e in T . Then there exists a constant
c1 > 0 such that for any q ∈ Cn and u ∈ U ,

sup
t∈Ω
‖q · (tut−1)‖ ≥ c1 · ‖q‖ .

To prove the claim, let S′ be a maximal complex algebraic torus of
SLn(C) and B′ a Borel subgroup in SLn(C) containing S′ such that ρ(S) ⊂
S′ and ρ(B) ⊂ B′. The set of characters on S′ with respect to the adjoint
action on sln(C) forms a root system. Consider the system of positive roots
associated to the Borel B′. Let ∆′ be the corresponding system of simple
roots. Let Ψ′ ⊂ ∆′ be the set of roots which are trivial on ρ(T ). Let P ′

be the standard parabolic subgroup of SLn(C) associated to Ψ′. Let U ′ be
the unipotent radical of P ′. Then it is straightforward to verify that

ρ(U) ⊂ U ′ .

Hence to prove the claim we can assume that u ∈ U ′.
We can choose an orthonormal basis {e1, . . . , en} of Cn (used only for

the proof of Claim 1) such that for each 1 ≤ k ≤ n,

ek · S′ ⊂ C-span{ek} and ek ·B′ ⊂ C-span{e1, . . . , ek} .

Note that the elements of Cn are row vectors and SLn(C) acts from the
right.

Let αij (1 ≤ i ≤ n, 1 ≤ j ≤ n) be the characters on T such that
for any matrix X = (xij) ∈ Mn(C) and t ∈ T , the (i, j)-th coordinate of
ρ(t)Xρ(t)−1 is αij(t)xij . When for some i0 < j0, the character αi0j0 = 1,
then by the definition of U ′, we have ui0j0 = 0 for every (uij) ∈ U ′.

Let q =
∑n
i=1 qiei ∈ Cn, u = (uij) ∈ U ′, and t ∈ T . Then

q · (tut−1) =
n∑
i=1

yi(t)ei ,

where

yi(t) = qi +
n∑

j=i+1
αij(t)uijqj .

Fix i ∈ {1, . . . , n}. Since distinct characters on T are linearly independent
on Ω, we can choose characters β0 = 1, β1, . . . , βk on T , for some k, which
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are linearly independent on Ω and

{β0, . . . , βk} = {1} ∪ {αij : i < j} .

Moreover since uij = 0 if αij = 1, we have

yi(t) = qi +
k∑
l=1

βl(t)zl ,

where each zl is obtained by summing the coefficients uijqj corresponding
to those αij which are same as βl. Now for every i = 1, . . . , n, by Lemma 4.1
there exists a constant Ci > 0 such that

sup
t∈Ω
|yi(t)| ≥ Ci · |qi| .

Therefore there exists a constant c1 > 0 such that

c1 · ‖q‖ ≤ sup
t∈Ω
‖q · (tut−1)‖ .(16)

This completes the proof of Claim 1.
Since Ω is relatively compact, there exists a constant c′ > 0 such that

for any v ∈ Cn and t ∈ Ω,

‖v‖ ≥ c′ · ‖v · t−1‖ .(17)

Therefore by equations (16) and (17), for any q ∈ Cn and u ∈ U , we
have

sup
t∈Ω
‖q · tu‖ ≥ c2 · ‖q‖ ,(18)

where c2 = c′c1 > 0.

Claim 2. There exists a constant c3 > 0 such that for any v ∈ Rn and
a ∈ A,

‖v · a‖ ≥ c3 · ‖v‖.(19)

(Note that when T is an R-split torus, A is compact and the claim is trivial.)

To prove the claim, let Λ be the finite set of characters on A such that
if we define

V λ = {v ∈ Cn : v · a = v · λ(a) , ∀ a ∈ A} , ∀λ ∈ Λ ,

then
Cn = ⊕λ∈ΛV

λ .
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For every v ∈ Cn, write v =
∑
λ∈Λ vλ, where vλ ∈ V λ for all λ ∈ Λ. Then

there exists c3 > 0 such that for all v ∈ Cn,

c3 · ‖v‖ ≤ sup
λ∈Λ
‖vλ‖ ≤ c3−1 · ‖v‖ .(20)

Then for every λ ∈ Λ and a ∈ A,

‖v · a‖ ≥ c3 · |λ(a)| · ‖vλ‖ .(21)

Since σ preserves norm ‖ · ‖ on Cn and σ(a) = a−1 for all a ∈ A, for
any v ∈ Rn and a ∈ A,

‖v · a−1‖ = ‖v · σ(a)‖ = ‖σ(v · a)‖ = ‖v · a‖ .

Therefore due to equation (21),

‖v · a‖ ≥ c3 · ‖vλ‖ , ∀λ ∈ Λ .

Now by equation (20),
‖v · a‖ ≥ c23 · ‖v‖ .

This completes the proof of Claim 2.
Now since K is compact, there exists c4 > 0 such that for any v ∈ Cn

and k ∈ K,

‖v · k‖ ≥ c4 · ‖v‖ .(22)

Let v ∈ Rn. Given y ∈ Y there exist a ∈ A, u ∈ U and k ∈ K, such
that y = auk. Then by equations (18), (19), and (22), we get

sup
t∈Ω
‖v · ty‖ ≥ c4 · sup

t∈Ω
‖v · tau‖

= c4 · sup
t∈Ω
‖(v · a)tu‖

≥ c4c2 · ‖v · a‖
≥ c4c2c3 · ‖v‖.

This completes the proof of Proposition 4.4. �

5 Returning to Compact Sets

In this section we complete the proof of Theorem 1.1.

Lemma 5.1. Let G and H ⊂ G be connected reductive real algebraic Q-
groups admitting no nontrivial Q-characters. Then the following conditions
are equivalent:
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1. (H ∩Γ)\H is compact for any arithmetic lattice Γ ⊂ G(Q) in G with
respect to the Q-structure on G.

2. ZG(H) is Q-anisotropic; that is, it contains no nontrivial Q-split
torus.

3. H is not contained in any proper Q-parabolic subgroup of G.
4. Every Q-subgroup of G containing H is reductive.
5. H does not normalize any nontrivial unipotent subgroup of G defined

over Q.

Proof. 1 ⇔ 2: This equivalence is the Godement’s compactness criterion
(see [B]).

2 ⇒ 3: Suppose H is contained in a proper Q-parabolic subgroup P .
The centralizer of any Levi subgroup of P defined over Q contains a non-
trivial Q-split torus. Now H being reductive and defined over Q, it is con-
tained in a Levi subgroup of P defined over Q. Therefore ZG(H) contains
a nontrivial Q-split torus.

3 ⇒ 2: Since G admits no nontrivial Q-characters, the same holds for
G/[G,G], where [G,G] is the commutator of G and it is semisimple. Now
since G/[G,G] is a torus defined over Q, it does not contain a nontrivial Q-
split torus. Suppose that ZG(H) contains a nontrivial a Q-split torus, say
T . Then T ⊂ [G,G]. Hence ZG(T ) is the Levi part of a proper Q-parabolic
subgroup of G, necessarily containing H.

3 ⇒ 5: Follows from the fact that a subgroup normalizing a nontrivial
unipotent subgroup defined over Q is contained in a proper Q-parabolic
subgroup (see [Mo]).

Clearly 5 ⇒ 3 and 5 ⇒ 4.
4 ⇒ 5: If H normalizes a unipotent Q-subgroup U , then NG(U) is a

non-reductive Q-subgroup containing H. �

Proof of Theorem 1.1. We shall prove the theorem by induction on dimG.

Reduction to the case of semisimple G: Let Z be the maximal central
torus in G. Then G1 = Z\G is a semisimple real algebraic group defined
over Q, and the quotient homomorphism q : G → G1 is defined over Q.
Now H1 := q(H) is a reductive Q-subgroup with Q-anisotropic centralizer
in G1. Also Γ1 := q(Γ) is an arithmetic lattice in G1. Let φ : Γ\G→ Γ1\G1
be the natural quotient map, whose fibers are orbits of Z. By Lemma 5.1,
applied to G itself in place of H there, we have that π(Z) is compact.
Therefore every Z-orbit in Γ\G is compact. Hence, if the conclusion of the
theorem for G1, H1, and Γ1 holds, it will also hold for G, H, and Γ. Thus
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if dimZ > 0, viz. if G is not semisimple, the result follows by induction on
dimG. Therefore we can assume that G is semisimple.

Applying Theorem 3.9: Let h be the Lie algebra of H, m = dimH,
and {X1, . . . ,Xm} be a basis of h (over R). Put HC = H(C). Define a map
Θ : Cm → HC as

Θ(t1, . . . , tm) = exp(t1X1) · · · exp(tmXm) , ∀ (t1, . . . , tm) ∈ Cm .

By Corollary 3.2, there exist n ∈ N and Λ > 0 be such that for any g ∈ G,
if we define φ(t) = Θ(t)g (∀ t ∈ Rm), then φ ∈ EG(m,n,Λ).

Now to prove Theorem 1.1, it is enough to show that given any ε > 0
and any bounded ball J in Rm the following holds: there exists a compact
set K ⊂ Γ\G such that

|{t ∈ J : π(Θ(t))g ∈ K}| > (1− ε)|J | , ∀ g ∈ G .(23)

Suppose that there does not exist such a compact set K. Take any
sequence αi → 0 and obtain a sequence of compact sets Ci ⊂ Γ\G as in
the statement of Theorem 3.9. By our assumption, there exists a sequence
{gi} ⊂ G such that the equation (23) fails to hold for K = Ci and g = gi for
each i. Hence for each i and φ(t) = Θ(t)gi, condition 2 in the conclusion of
Theorem 3.9 fails to hold. Therefore condition 1′ in Remark 3.10 must be
satisfied for each i. Therefore after passing to a subsequence, the following
holds: There exist a representation of G over Q on a vector space V with
a Q-structure, a point p ∈ V (Q) \ {0} and a sequence {γi} ⊂ Γ such that

lim
i→∞

sup
t∈J
‖p · γiΘ(t)gi‖ = 0 ,(24)

where ‖ · ‖ is a fixed Euclidean norm on V (C).

Reduction to the case of semisimple H: Let T be the center of H.
There exists a neighborhood Ω of e in T and a nonempty ball J1 in Rm
centered at 0 such that

Θ(J1)Ω ⊂ Θ(J) .(25)

By Proposition 4.4, there exists a closed subset Y ⊂ G such that

G = ZG(T ) · Y(26)

and there exists c > 0 such that for any v ∈ V (R) and y ∈ Y ,

sup
ω∈Ω
‖v · ωy‖ ≥ c‖v‖.(27)
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From equations (24), (25), (26), and (27) one can deduce that there
exists a sequence {zi} ⊂ ZG(T ) such that

lim
i→∞

sup
t∈J1

‖p · γiΘ(t)zi‖ = 0 .(28)

Since the orbit p ·Γ is discrete in V (R), the set p ·ΓC is bounded away
from 0 for any given compact set C ⊂ G. Hence there exists an i0 ∈ N,
depending on C, such that

π(Θ(J1)) · zi ∩ π(C) = ∅ , ∀ i ≥ i0 .(29)

Note that G2 = ZG(T ) is a reductive real algebraic group defined over
Q and ZG2(H) ⊂ ZG(H) is Q-anisotropic. Since ZG2(G2) ⊂ ZG2(H) is
Q-anisotropic, G2 admits no nontrivial characters defined over Q. Hence
Γ2 = Γ ∩ G2 is an arithmetic lattice in G2. Let π′ : G2 → Γ2\G2 be the
natural quotient map. In view of the natural injection Γ2\G2 ↪→ Γ\G,
we have that π′(H) = π(H). Therefore µH is the H-invariant probability
measure on π′(H).

Let ε = (1/2) · µH(Θ(J1)) > 0. Then by equation (29), there exists a
sequence {zi} ⊂ G2 such that for any compact set K ⊂ Γ2\G2,

µH(Kzi−1) < 1− ε ∀ i ≥ i0 ,(30)

for some i0 ∈ N depending on K.
If dimG2 < dimG, this contradicts the induction hypothesis. Therefore

we may assume that G2 = G. Since T is central in G2 and G is semisimple,
we have that dimT = 0; in other words, H is semisimple.

Taking care of compact factors of H via complexification of Γ\G: It
is straightforward to verify that the collection of entire functions of the
form Cm 3 t 7→ ‖v · Θ(t)g‖2, where v ∈ V (C) and g ∈ G, is contained in
a finite dimensional subspace of the space of complex valued functions on
Cm. Therefore by Corollary 4.3 and equation (24), there exists a ball D of
positive radius in Cm such that

lim
i→∞

sup
t∈D
‖p · γiΘ(t)gi‖ = 0 .(31)

By restriction of scalars from Q[i] to Q, we can treat G(C),H(C), and
V (C) as real algebraic groups defined over Q.

Let ΓC be an arithmetic lattice in G(C) with respect to the Q-structure
of RQ[i]/Q(G) such that Γ ∩ ΓC is of finite index in Γ. Hence without loss
of generality we may assume that Γ ⊂ ΓC. Let πC : G(C) → ΓC\G(C) be
the natural quotient map. Since p ∈ V (Q) and ΓC is arithmetic, the orbit
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p · ΓC is discrete in V (C). From this and equation (31) it follows that for
any compact set K ⊂ ΓC\G(C), there exists i0 ∈ N such that

πC(Θ(D))gi ∩K = ∅ , ∀ i ≥ i0 .(32)

Since H(C) is a complex semisimple group, it is generated by unipotent
one-parameter subgroups. Therefore by the Moore’s ergodicity theorem
and Birkhoff ergodic theorem, there exists a unipotent one-parameter sub-
group {u(t) : t ∈ R} ⊂ H(C) such that the orbit {πC(u(t)) : t > 0} is
uniformly distributed with respect to µH(C), which is the H(C)-invariant
probability measure supported on the closed orbit πC(H(C)). Hence there
exists T0 ≥ 0 such that for any T ≥ T0,

(1/T )
∣∣{t ∈ [0, T ] : πC(u(t)) ∈ πC(Θ(D))

}∣∣ > (1/2)µH(C)(πC(Θ(D))) .
(33)

Put ε = (1/2)µH(C)(πC(Θ(D)). For every i ∈ N, put ui(t) = gi
−1u(t)gi

for all t ∈ R. Now given any compact set K ⊂ ΓC\G(C), by equations (32)
and (33), there exists i0 ∈ N such that

(1/T )|{t ∈ [0, T ] : πC(gi)ui(t) ∈ K}| < (1− ε) , ∀ i ≥ i0 and ∀T ≥ T0 .
(34)

Take any sequence αi → 0. For each i, we apply Theorem 1.1 of [DM2]
(see Theorem 3.9 and Remark 3.11) to the Q-group G(C), the arithmetic
lattice ΓC, αi in place of α, and the unipotent one-parameter subgroup
{ui(t) : t ∈ R} (or φ(t) = giui(t)). Hence by inequality (34), condition 2 of
Theorem 3.9 fails to hold. Therefore condition 1′ of Remark 3.10 must be
satisfied.

Now since the collection {pi · λ−1 : 1 ≤ i ≤ r, λ ∈ F} as in this
condition 1′ is finite, after passing to a subsequence of {gi}, there exists a
properQ-parabolic subgroup P of G(C) and a sequence {γi} ⊂ ΓC such that
the following holds: Let gC be the Lie algebra of G(C) with the inherited
Q-structure. Let n be the Lie subalgebra of gC associated to the unipotent
radical of P and defined over Q. Put d = R- dim n. Consider the d-th
exterior of the Adjoint representation of G(C) on W = ∧dgC (here gC is
treated as a vector space defined over R). Then ∧dn is a one-dimensional
rational subspace of W . Let q ∈ ∧dn ∩W (Q) \ {0}. Then

‖q · γigiui(t)‖ < αi , ∀ t > 0 .(35)

Hence
q · γigiui(t) = q · γigi , ∀ i ∈ N and ∀ t ∈ R .
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Hence

q · γi · u(t) = q · γi , ∀ i ∈ N and ∀ t ∈ R .(36)

Let G(C)v denote the stabilizer of an element v of W in G(C). Note
that since the orbit q · ΓC is discrete, the orbit πC(G(C)qγi) is closed in
ΓC\G(C). Since π({u(t) : t ∈ R}) is dense in π(H(C)) and u(t) ∈ G(C)q·γi ,
we have H(C) ⊂ G(C)qγi . Now since P = NG(C)(n),

H(C) ⊂ γi−1Pγi , ∀ i ∈ N .(37)

Reduction to the case of γi = γj, ∀ i, j: Let S be a maximal Q-split
torus in G. From the standard construction of a Siegel domain (see [B]),
we deduce that there exists a finite set F ⊂ G(Q) and a compact set C ⊂ G
such that

G = ΓFSC .(38)

In view of equations (35) and (38), we obtain sequences {λi} ⊂ ΓF and
{ai} ⊂ S such that

lim
i→∞
‖q · γiλi · ai‖ = 0 .(39)

Since S is a Q-split torus, there exists a finite set Φ consisting of Q-
characters on S such that if we define

W ν = {v ∈W : v · a = v · ν(a) ∀ a ∈ S} , ∀ ν ∈ Φ ,

then W ν is the set of R-points of a Q-subspace of W and

W = ⊕ν∈ΦW
ν .

Let
Φ− = {ν ∈ Φ : lim

i→∞
ν(ai) = 0} and Φ0+ = Φ \ Φ− .

Then

lim sup
i→∞

|ν(ai)| > 0 , ∀ ν ∈ Φ0+ .(40)

Put
W− = ⊕ν∈Φ−W

ν and W 0+ = ⊕ν∈Φ0+W ν .

Then W = W− ⊕W 0+. Since W− and W 0+ are R-points of Q-subspaces,
the projection π0+ : W →W 0+ with kernel W− is defined over Q.

Since F ⊂ G(Q) is finite and q ∈W (Q), there exists k ∈ N such that

q · ΓCF ⊂W
( 1
kZ
)
.(41)
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(see [B, Prop. 7.12]). Hence

inf
{
‖π0+(v)‖ : v ∈W

( 1
kZ
)∖
W−

}
> 0 .(42)

By equations (39), (40), (41), and (42), there exists i0 ∈ N such that

q · γi0λi0 ⊂W− .(43)

Put q0 = qγi0 and P0 = γi0
−1Pγi0. (Note that as a subgroup of G(C),

P0 is defined over Q.) Then by equation (37),

H(C) ⊂ P0 .(44)

Put bi = λi0aiλi0
−1, ∀ i ∈ N. Since λi0 ∈ ΓF ⊂ G, we have

{bi}i∈N ⊂ G .(45)

By equation (43) and the definition of W−, we get

lim
i→∞
‖q0 · bi‖ = 0 .(46)

The group P0∩G: Since Z(H) is Q-anisotropic, by Lemma 5.1, H does
not normalize a nontrivial unipotent Q-subgroup of G. By equation (44)
we have H ⊂ P0∩G. In view of Lemma 5.1, this will lead to a contradiction
if we prove the following:
Claim. The group P0 ∩ G normalizes a nontrivial unipotent subgroup
of G defined over Q.

To prove the claim let N0 be the unipotent radical of P0, p0 be the Lie
algebra of P0 and n0 be the Lie algebra of N0. For any g ∈ P0,

|det(Ad g|p0)| = |det(Ad(g)|n0)| .(47)

Fix a Euclidean norm on gC. Now for every g ∈ G(C) and a subspace
E ⊂ gC, let J(Ad g|E) denote the Jacobian of Ad g on the subspace E. Let
K be a maximal compact subgroup of G(C) such that Ad(K) preserves the
norm on gC. Also we have G(C) = P0K. Therefore by equation (47),

J(Ad g|p0) = J(Ad g|n0) , ∀ g ∈ G .(48)

Note that ∧dn0 is a one-dimensional subspace of W = ∧dgC contain-
ing q0. Therefore (see equation (12))

J(Ad g|n0) = ‖q0 · g‖/‖q0‖ , ∀ g ∈ G .(49)

Let σ be the complex conjugation. Then σ commutes with Ad g for all
g ∈ G. Now since the Jacobian of σ restricted to any subspace of gC is 1,
we get

J(Ad g|σ(n0)) = J(Ad g|n0) , ∀ g ∈ G .(50)
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Now by equations (45), (46), (48), (49), and (50), we obtain that

lim
i→∞

J(Ad bi|p0) = 0 = lim
i→∞

J(Ad bi|σ(n0)) .

Therefore

lim
i→∞

J(Ad bi|(p0+σ(n0))) = 0 .(51)

Now since G is reductive, J(Ad g|gC) = 1 for all g ∈ G(C). Hence we
have that

p0 ⊕ σ(n0) 6= gC .

Therefore, since

dim p0 + dimσ(n0) = dim p0 + dim n0 = dim gC ,

we get

p0 ∩ σ(n0) 6= {0} .(52)

Since P0 ∩ σ(N0) is a unipotent group normalizing N0, the group

U = (P0 ∩ σ(N0)) ·N0

is unipotent. Note that U is normalized by P0 ∩ σ(P0). Hence U ∩G is a
normal subgroup of P0 ∩G.

Take any X1 ∈ p0 ∩ σ(n0). Put X = X1 + σ(X1). Then X is in the Lie
algebra of U ∩ G. If X 6= 0, the unipotent radical of P0 ∩ G is nontrivial
and the claim holds. Otherwise

σ(X1) = −X1 , ∀X1 ∈ p0 ∩ σ(n0) .(53)

Then p0 ∩ σ(n0) ⊂ n0. Hence by equations (52) and (53), the Lie algebra
σ(n0) ∩ n0 6= 0, and it consists of purely imaginary vectors in gC = g ⊗ C.
Also since σ(n0) ∩ n0 is the Lie algebra of a unipotent group, it consists of
ad-nilpotent elements. Therefore i(σ(n0)∩n0) is a nonzero Lie subalgebra of
g consisting of nontrivial ad-nilpotent elements. Observe that it is Ad(P0∩
G)-invariant, and it is the set of R-points of a Q-subspace of g. Thus the
Lie group associated to i(σ(n0) ∩ n0) is a nontrivial unipotent subgroup of
G which is defined over Q and normalized by P0 ∩G. This completes the
proof of the claim, and the proof of the theorem. �

Proof of Corollary 1.4. Let V be a real subspace of Rn. Let V ⊥ be a
complementary subspace for V . Let r = dim(V ). For t > 0, let a(t) ∈
SLn(R) be such that

v · a(t) =

{
t−(n−r)v if v ∈ V
trv if v ∈ V ⊥ . .



Vol. 7, 1997 NON-DIVERGENCE OF TRANSLATES OF ALGEBRAIC MEASURES 79

Let W be a real subspace of Rn. Let d = dim(W ). Then
∧dW is a

one-dimensional subspace of
∧dRn. Let pW ∈

∧dW \ {0}.
We claim the following:

pW · a(t)→ 0 as t→∞⇔ dim(V ∩W ) > 1
n dim(V ) dim(W ) .

(54)

To prove the claim, let k = dim(V ∩W ). We extend a basis {w1, . . . , wk}
of V ∩W to a basis {w1, . . . , wd} of W such that pW = w1 ∧ · · · ∧wd. For
k + 1 ≤ j ≤ d, we may write wj = w−j + w+

j , where w−j ∈ V , w+
j ∈ V ⊥.

Note that p′′W := w1 ∧ · · · ∧ wk ∧ w+
k+1 ∧ · · · ∧ w

+
d 6= 0. Expressing pW in

terms of the eigenvectors of a(t) of the form w1∧· · ·∧wk ∧w±k+1∧· · ·∧w
±
d ,

we see that as t→∞,

pW · a(t)→ 0 ⇔ p′′W · a(t) = t−(n−r)k+r(d−k)p′′W → 0 .

Thus pW · a(t)→ 0 as t→∞ if and only if nk > rd; i.e. ndim(V ∩W ) >
dim(V ) dim(W ). This completes the proof of the claim.

Now assume that W is a Q-subspace of Rn. Then we can choose pW
to be a rational vector in

∧dRn. Our hypothesis that the action of H is
irreducible over Q is equivalent to the condition that H is not contained
in any proper Q-parabolic subgroup of G = SLn(R). Let Γ = SLn(Z) and
π : G → G/Γ the natural quotient map. Then by Lemma 5.1, π(Z(H)) is
compact, so that Theorem 1.1 applies.

Suppose the proposition is false; then by equation (54) and its proof,
pW · ha(t) → 0, ∀h ∈ H, and the convergence is uniform over compact
subsets of H. Let H ⊂ H be a compact set with positive Haar measure.
By Theorem 1.3 there exists a compact set C ⊂ G such that G = HΓC. For
each t > 0, let ht ∈ H such that a(t) ⊂ htΓC. Then pW ·ht−1a(t) ⊂ pW ·ΓC.
Since pW is a rational vector, pW ·Γ is discrete. Thus pW ·ΓC is bounded
away from 0, which contradicts pW · ht−1a(t)→ 0 as t→∞. �
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