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LIMIT DISTRIBUTIONS OF POLYNOMIAL
TRAJECTORIES ON HOMOGENEOUS SPACES

NIMISH A. SHAH

1. Introduction. Let G be a Lie group and F a lattice in G; that is, F is a discrete
subgroup of G such that G/F admits a finite G-invariant measure. Let u: R G be
a unipotent one-parameter subgroup of G; that is, Ad u(t) is a unipotent linear
automorphism of Lie(G) for all R. The action of {u(t): R} on G/F is called a
unipotent flow.
Through the series of four fundamental papers I-R 1-1, I-R2"I, I-R3-1, I-R4] proving

the Raghunathan conjectures on "nice algebraic" behaviour of unipotent flows,
Marina Ratner proved also the following result: For any x G/F, there exists a
closed subgroup F of G such that the orbit Fx is closed and admits a unique
F-invariant probability measure, say #r, and the trajectory {u(t)x: > 0} is uni-
formly distributed with respect to/r. That is, for any bounded continuous function
f on G/F,

lim - f(u(t)x) dt f d#r.

Essentially the basic property of a unipotent one-parameter subgroup used in the
work of Ratner is that the map t-- Ad u(t) is a polynomial function in each
coordinate of End(Lie(G)). Therefore it is natural to ask the following question. Let
G be a closed subgroup of SLn(R), and F a lattice in G. Let 0: R G be a map which
is a polynomial function, namely, each matrix coordinate is a polynomial. Then is
it true that the trajectory {0(t)F: > 0} is uniformly distributed with respect to a
measure of the form/ as above? In the case when G R and F Z", this indeed
holds, as can be deduced from a classical result due to Weyl. In this paper we answer
the question affirmatively in a more general setup.
A group G is called real algebraic if it is an open subgroup of R-points of an

algebraic group G defined over R. A map : Rk--- G is called regular algebraic
if it is the restriction of a morphism : Ck G of algebraic varieties defined over
R. We caution the reader that a map such as 4: R --. R* given by (t) 1 + t2 for
all R is not regular algebraic according to our definition, as does not extend
to an algebraic map from C to C*.
The following is the main result.
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THEOREM 1.1. Let G be a real algebraic group, and let A c G1 G be closed
subgroups such that GIlA admits a finite Gt-invariant measure. Let k N and O:
RR G be a map defined as (R)(t: tk)= Ok(tk)’’’O(tt) for all (tl, tk) Rk,
where Oi: R G is a regular algebraic map for 1,..., k. Suppose that (R)(0) e
and (R)(Rk) c G:. Then there exists a closed subgroup F of G containing O(Rk) such
that the orbit FA is closed in G/A and admits a unique F-invariant probability
measure, say #e, and the following holds: given sequences Ttt) c,..., Tk)

as n - c, for the boxes Bn [’0, Ttt)] x x ]-0, Ttk)] we have

lim m(Bn)l f . f((R)(t)A) dm(t) f fdr

for all f e C(G/A), the space of continuous functions with compact support on G/A,
rn being the Lebesgue measure on Rk.

Our proof crucially involves Ratner’s theorem [R3] on the measure rigidity of
unipotent flows. It also requires the technique of relating the action of G on
thin neighbourhoods in G/A of images of compact subsets of certain algebraic
subvarieties of G, with linear actions of G on thin neighbourhoods of compact
subsets of certain algebraic subvarieties in finite-dimensional vector spaces. This
linearisation procedure was first used in [DS] and later developed further in
[DM2], IS], and [DM3].
We will deduce the following fact as a consequence of our proof of Theorem

1.1.

COROLLARY 1.1. Let G, A, and Gt be as in Theorem 1.1. Let O: R- G be a
regular algebraic map such that 0(R) GI and 0(0) e. Then there exists a closed
subgroup F of G containing 0(R) such that the orbit FA is closed and admits a
unique F-invariant probability measure, say #, and the following holds: for any
k > and f Co(G/A) we have

lim fro /k) fFroo - f(O(t A) dt= fdl.tF.
A

The main theorem is proved only for the product type of regular algebraic
functions (R). Using the above corollary, we obtain a version of it which holds for
all regular algebraic functions.

COROLLARY 1.2. Let G, A, and G be as in Theorem 1.1. Let (R): Rk-* G be a
regular algebraic map such that tg(O)= e and ()(Rk) GI. Then there exists a
closed subgroup F of G containing (9(Rk) such that the orbit FA is closed and
admits a unique F-invariant probability measure, say I, and the following holds:
for any f Co(G/A),

lim
m(B)

/((R)(OA) dm() fd#,
R c B A

where BR denotes the ball of radius R in Rk centered at the origin.
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It may be emphasized that in this result for all regular algebraic maps (R),
the averaging is allowed only on balls, rather than on the boxes as in Theorem
1.1 whose sizes could increase at different rates in different coordinates.
Using the results we answer affirmatively a question raised by Ratner in [R4],

[R5] regarding the limit distributions of orbits of higher-dimensional unipotent
subgroups on finite-volume homogeneous spaces of Lie groups. First we recall
some notation from [R 1].

Let N be a connected simply connected nilpotent group with Lie algebra _n. Let
B {b,..., bk} be a basis in _n. For v _n, write v (v)b. We say that the
basis B is triangular if ak([b, bj]) 0 for all k < max{i, j} and all i,j 1, k.
Any permutation of a triangular basis is called a regular basis.

COROLLARY 1.3. Let G be a Lie group, F a closed subgroup of G such that G/F
admits a finite G-invariant measure, and N a simply connected unipotent subgroup
of G. Let {bl, bk} be a regular basis in n_. For sl, Sk > 0 define

(s, Sk) {(exp tkbk)’’’(exp tb) e N" O < t1 < s1, j 1, k}.

Then for any x G/F, there exists a closed subgroup F of G containing N such that
the orbit Fx is closed and admits a unique F-invariant probability measure, say
and the following holds: for any f C(G/F),

lim !f f(hx)d2(h)=ffd#r,
where 2 denotes a Haar measure on N.

In Section 2 we make some reductions so that the results proved elsewhere for
a homogeneous space G/F, where F is a lattice, can be applied to the homoge-
neous space G/A. In Section 3 we modify a result of Dani and Margulis about
returning of any unipotent trajectory to compact sets with large densities on a
finite-volume homogeneous space, in order to obtain the same result for polyno-
mial trajectories. In Section 4 we show that any limiting distribution of a polyno-
mial trajectory is invariant under a nontrivial unipotent one-parameter subgroup
and apply the measure rigidity of unipotent flows due to Ratner. In Section 5 we
develop further the method of linearising G-action on certain subsets of G/A as
mentioned earlier in the introduction. In the last section we complete the proofs
of the results stated above.
We conclude this introduction with a natural question. Let 0 be a map as in

the Corollary 1.1. Then does there exist a closed subgroup F of G containing O(Z)
such that the orbit FA is closed and admits a unique F-invariant probability
measure, say #v, and for any f e C(G/A),

lim f(O(n)A) f dpv ?
n=O
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In the case when G is a nilpotent group, this question can be answered affirma-
tively (cf. [CFS, Chapter 7-1, for the abelian case). But even in the simplest semi-
simple case of G G1 SL2(R), A SL2(Z), and the regular algebraic map

O(t) for all e R, the question is unanswered.

Thanks are due to G. A. Margulis for suggestions regarding the formulation of
the main theorem and help in resolving some technical difficulties in the proof.
The author wishes to thank S. G. Dani, Alex Eskin, Shahar Mozes, and Marina
Ratner for several useful discussions. This work was mainly carried out while the
author was visiting the Mathematical Sciences Research Institute at Berkeley,
California.

2. Some reductions. We begin by noting the following.

PROPOSITION 2.1. Let G be a real algebraic group, and 19" Rk--- G a regular
algebraic map such that t9(0) e.

(1) Let L be the smallest closed subgroup of G containing O(Rk). Then L is

generated by algebraic unipotent one-parameter subgroups of G.
(2) Suppose further that there exist closed subgroups A c GI G such that Gila

admits a finite Gt-invariant measure and O(Rk) Gi. Let F be the smallest closed
subgroup containing O(Rk) such that the orbit FA is closed. Then F/(F A) admits
a finite F-invariant measure, and the Zariski closure of F A contains F.

Proof. Let denote the Zariski closure of L in G. Recall that any regular
algebraic map from Rk to R* or to a compa_ct algebraic group is constant. There-
fore, by the definition of L, we have that L has no nontrivial toral or compact
factors. Hence/ is generated by algebraic unipotent one-para,meter subgroups of
G. In particular, the radical of L is unipotent, and hence L L. This proves (1).

Let denote the Zariski closure of A in G. By a version of Borel’s density
theorem as in [D2, Theorem 4.1], all unipotent one-parameter subgr_oups of G
are contained in , in particular L . Now, replacing G1 by Gt A and G by, we can assume that A is Zariski dense in G and, in particular, A, the con-
nected component of e in A, is a normal subgroup of G.
Now let ’G G/A denote the quotient homomorphism. Then (A) is a dis-

crete subgroup of (G). And the map : G/A--. b(G)/(A), defined as b(gA)=
(g)(A) for all g G, is an equivariant isomorphism. Now (F) is the smallest
closed subgroup of (Gt) containing (L) such that (F)(A) is closed. By l-S,
Theorem 2.31, F/(F c A) (F)/((F) c (A)) admits a finite f-invariant measure.
Now, by the above Borel density argument, L is contained in the Zariski clo-

sure of F A. Therefore, due to the definition of F, the Zariski closure of F A
also contains F. This proves (2). El

Note 2.1. In view of Proposition 2.1, by replacing A by F A, G by F, and G
by the Zariski closure of F, we may assume that there is no proper algebraic
subgroup A of G such that I)(Rk) A and AA is closed.
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Note 2.2. Let W be the closed subgroup generated by all algebraic unipotent
one-parameter subgroups of G contained in A. Then W is a normal subgroup of
G. Let q: G G/W be the natural quotient map. By I-S, Lemma 2.9-1, W is a real
algebraic group. Therefore G/W is a real algebraic group and q is an algebraic
morphism. Note that G/A q(G)/q(A)equivariantly. Therefore without loss of
generality we can replace A by q(A), G1 by q(G), G by q(G), and 19 by q o 19. In
view of this we can assume that A contains no nontrivial algebraic unipotent
one-parameter subgroups of G.

Note 2.3.
constant.

Also, without loss of generality we may assume that Ok is non-

3. Relative measures of a large compact set in G/A on polynomial trajectories.
We need a modified version of an important result due to Dani and Margulis on
the asymptotic behaviour of unipotent trajectories on finite-volume homogeneous
spaces of Lie groups. First we recall some elementary facts and fix some notation.

LEMMA 3.1. Let E and F be Borel measurable subsets of a bounded interval
I c [0, ), and let k > 1. Suppose there exist nonnegative reals < 1/k and ,2 <
1/k such that

(E) < et "d(l) and d(f) > (1 e2)" d(l),

where d denotes the Lebesgue measure on R. Then

d(Ek) < (ke)(1 ke2)-" d(Fk),

where Ek := {sk: S E}.

Proof. Let I I-a, b]. Then

k

(Ek) .e(t) dt

k" ff ;tr(s)sk- ds

< k" d(E)bk-

< k" d(E)(bk ak)/(b a)

< (ket). d(lk). (1)

Similarly, we have

d(Fk) (Ik) d((I\F)k) > (1 ke2)" d(Ik).

The result follows from equations (1) and (2).

(2)

r-1
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LEMMA 3.2. Let B be a bounded open convex subset of Rk. Let S be the unit
sphere in Rk centered at the origin. Fix to B. For any subset E of B, and any
x S, define

E,, {t > O: tx + to E}.

Let E and F be measurable subsets of B. Suppose there are: a subset D c B, con-
taining E and F, and nonnegative reals el < 1/k and/;2 < 1/k such that, for every
x S, the set Dx is open in [0, ) and, for every connected component I of Dx, we
have

Then

d(E c I) < e d(I) and d(F,, c I) > (1 2)" d(I).

m(E) < (ke)(1 ke2)-.m(F),

where m denotes the Lebesgue measure on Rk.

Proof. Let a denote the rotation-invariant probability measure on S such that
the volume of a unit ball in Rk is tr(S)/k. Using polar decomposition of B at the
pole to, we have

x ff(B,,)m(E) da(x)" ZE.(t)tk-t dt

fx

(B’)"

(l/k) da(x). ZE.(t/k) dt

(l/k) f,,s d(Ek,,) da(x)

< (kel)(1 ke2)-1 (l/k) f,,s d’(Fk) dot(x)

(ket)(1 ke2)-i.m(F),

where the inequality follows from Lemma 3.1. This completes the proof. E!

Notation. Let G be a Lie group. For k, l N, let t(Rk, G) denote the set of
continuous maps 19" R G such that, for all e, a R and X Lie(G), the map

s R Ad o (R)(tc + a)(X)e Lie(G)

is a polynomial of degree at most in each coordinate of Lie(G).
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Let t(G) denote the set #t(R 1, G). Note that if 0 t(G) is a group homo-
morphism, then 0 is a one-parameter Ad-unipotent subgroup of G, and the con-
verse holds for dim G 1.

THEOREM 3.1. Let G be a Lie #roup and A a closed sub#roup such that G/A
admits a finite G-invariant measure. Then, #iven a compact set C c G/A, an e > O,
and an N, there exists a compact subset K c G/A with the followinl property:
for any x G/A, and 0 (Rk, G), and any bounded open convex set B Rk, if
O(B)x c C # , then

m(B)
m({t e B: (R)(t)x e K}) > (1 s).

Proof. In [DM3, Theorem 6.1], the result is stated for an Ad-unipotent one-
parameter subgroup u: R G, in the place of 19 as above. The proof uses only the
property that u d(G), where d dim G- 1, rather than the fact that {u(t)} is
also a one-parameter subgroup. Hence essentially the same proof applies for all
0 #,(G).
Now choose a compact set K such that the conclusion of the theorem is valid

for s/k in place of s and 0 t(G) in place of O.
Let B be as in the hypothesis and take to B such that O(to)x C. Define

E {t B: (R)(t)x K}.

Let S denote the unit sphere in Rk centered at the origin. Fix x S. Define a map
O(t) (R)(tx + to) for all R. Then 0 e t(G). Therefore

d(E,,) d({t 6 B,,: O(t)x K}) < (s/k)" ’(B,).

Therefore, by Lemma 3.2, for F D B, sl s/k, and s2 0, we get

m(E) < s" m(B).

This completes the proof. El

Limit distributions of a polynomial trajectory on G/A. Let G, G, A, and 19
be as in Theorem 1.1. Let #(G/A) denote the space of Borel probability measures
on G/A with the weak topology. For any bounded open convex set B Rk, let
#B (G/A) be such that, for any f Co(G/A),

f d#B m(B)
f((R)(t)A) dt.

/A B

COROLLARY 3.1. Given a sequence {Bn}n r of bounded open convex subsets of
Rk containing O, there exist a strictly increasing sequence {ni}i r c N and a mea-
sure # (G/A) such that #B,,-/z as - .
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Proof. Using the existence of limits in the space of probability measures on
the one-point compactification of G/A, say X*, we obtain a subsequence
converging to a probability measure # on X*. Since (R)(Rk)A c G1/A, due to The-
orem 3.1, for any > 0 there exists a compact set K c G/A such that #a.(K)
1 e for all n N. Therefore #(K) > 1 e, and hence #(G/A) 1.

Note 3.1. In view of Corollary 3.1, to prove Theorem 1.1, it is enough to show
the following: For i= 1 k, let sequences T as n be given. Put
Bn [0, T21] x x [0, T2k] for all n N. Suppose that #an # in (G/A) as
n . Let F be the smallest closed subgroup of G containing A and (R)(Rk) such
that the orbit FA is closed. Then # is F-invariant and #(FA) 1.

4. Invariance under a unipotent flow. In this section we show that the limiting
distribution # as in Note 3.1 is invariant under the action of the nontrivial uni-
potent one-parameter subgroup of G. This result allows us to apply Ratner’s
measure rigidity theorem in our study.

Using the following observation, we associate nontrivial unipotent elements to
nonconstant regular algebraic maps into algebraic groups (cf. [DM1, Proposition
2.4]).

LEMMA 4.1. Let G be a real algebraic group and O: R - G a nonconstant regu-
lar algebraic map. Then there exists a q > 0 and a nontrivial algebraic unipotent
one-parameter subgroup p: R G such that, for any s R,

lim O(t + st-)O(t)-t p(s).
t-*frO

Proof. Let M(n, R) denote the affine space of n x n real matrices which con-
tains G as an affine subvariety. There exist polynomials Oo(t for i,j 1,..., n,
such that O(t) (0(t)),,. Put

d deg(0(t)):= max deg(0o(t)).
i,j=l

For R, we have

O(t + ) O(t) + O)(t) l"/=1

Note that the/th derivative Ot(t) is a regular algebraic map of degree d 1. Since
the map g g-1 is an algebraic morphism on G, we have that the map t- O(t)-is also regular algebraic. Put

q max (1//) deg(O)(t)O(t)-) > O.
<l<d
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Then for every < < d,

lim O)(t)O(t)-lt-qz 2 M(n, R),
t-o0

(3)

and (21,..., 2d) :# 0. Put

sl
p(s) I +

l’- ".

for all s e R. Then, for any s e R and any map st with st s as , we have

lim O(t + stt-q)O(t)-1 p(s). (4)

Now, for sl, 82 ff R,

p(S + $2)P($2)-I lim (O(t + (st + s2)t-q)O(t)-l)’(O(t)O(t + s2t-q)-l)

lim O(Yt + stY;-)O(Yt)-1
t-- oO

where y, + $2 t-q and st sl(yt/t),
p(s). (5)

Thus, by equations (3), (4), and (5), p: R---, G is a nontrivial algebraic group
homomorphism. Therefore p is a nontrivial algebraic unipotent one-parameter
subgroup of G. This completes the proof. El

We digress to modify the above result in the next lemma for its use in proving
_Corollary 1.1 later.

LEMMA 4.2. Let the notation be as in Lemma 4.1. Take k > 1. Put (t) O(t 1/k)
for all > O. Then for ql (1/k)(q + 1) > and every s R,

lim (t + st-’)(t)-1 p(s/k),
t..- oO

where p is the unipotent one-parameter subgroup as in the conclusion of Lemma 4.1.

Proof. Using Taylor’s expansion, we get

(t + St-qt) 1/k 1/k + St t-qt-l+l/k Yt + stY-k(qt+l-1/k),

where Yt tl/k, and st s/k as . Now the result follows from equation (4).
El
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We need the following elementary fact.

LEMMA 4.3. For any bounded continuous function f on R, any q > -1, and
sR,

lim
1 ;:r-.oo - f(t + st-q) f(t) at o,

where the rate of convergence depends only on s, q, and sup Ifl, rather than f itself.

The next result is the first main step in the proof of Theorem 1.1.

PROPOSITION 4.1. Let the measure l be as constructed in Note 3.1. Then # is
invariant under a nontrivial unipotent one-parameter subgroup of G.

Proof. Due to Note 2.3, Ok is nonconstant. Obtain q > -1 and a nontrivial
unipotent one-parameter subgroup p: R G as in Lemma 4.1 for Ok in place of 0.
To show that/ is invariant under the action of p, take any s e R and any f
Co(G/A). Then

f(p(s)x) d#(x) lim
m(B.) =, ).A

f(p(s)O(tk)’’" 0(tl)A) am(t)

lim
m(Bn)n--* oo =(t tk_l) [0, TnI)] x[O, Tnk-l)]

dt dtk-1

f(Ok(tk + st;q)Ok-l(tk-1)’’ Ol(tl)A) dtk)
n-.oolim m(Bn) . f((R)(tl,..., tk)A) dt

ft f(x) d/(x),
/A

where the second equality follows from the choice of p and the uniform continu-
ity of f, and the third equality follows from Lemma 4.3 applied to the integration
in the variable k. This completes the proof. E!

Description of measures invariant under a unipotent flow. To describe a finite
invariant measure of unipotent flow using Ratner’s classification of finite ergodic
invariant measures, we introduce some notation. We note that the results of this
subsection and of Section 5 hold under a weaker assumption that G is any Lie
group and A is a closed subgroup of G such that A is normal in G.
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Let be the collection of all closed connected subgroups H of G such that (1)
H A, (2) H/H c A admits a finite H-invariant measure, and (3) the subgroup
generated by all unipotent one-parameter subgroups of H acts ergodically on
H/H A with respect to the H-invariant probability measure. Note that by Prop-
osition 2.1, the Zariski closure of Ad(H c A) contains Ad(H).

THEOREM 4.1 (Ratner). The collection 3If is countable.

Proof. See JR3, Theorem 1.1] or [DM3, Proposition 2.1] for different proofs
of the result. El

Let W be a subgroup of G which is generated by one-parameter unipotent
subgroups of G contained in W. For any H , define

N(H, W)= (g G: W gHg-},

S(H, W)= N(H’, W).
H’ ,,H" =H
dim H’ <dim H

Let n: G G/A denote the natural quotient map. Note that (see [MS, Lemma
2.4])

rc(N(H, W)\S(H, W))= n(N(H, W))\n(S(H, W)). (6)

The following version of Ratner’s measure ridigity theorem was obtained in
[MS, Theorem 2.2-1.
THEOREM 4.2 (Ratner). Let W be a subgroup as above and I (G/A) a

W-invariant measure. For every H f, let #n denote the restriction of # on
n(S(H, W)\S(H, W)). Then the following hold.

1. For all Borel-measurable subsets A = G/A,

#(A)= #.(A),
H *

where /f* = is a countable set consisting of one representative from each
A-conjugacy class of elements in ,.

2. Each #n is W-invariant. For any W-ergodic component v (G/A) of lan,
there exists a g N(H, W) such that v is the (unique) gHg-l-invariant proba-
bility measure on the closed orbit gilA.

To understand the measure/ as in Proposition 4.1, we should study the action
of G in thin neighbourhoods of images in G/A of compact subsets of N(H, W)\
S(H, W). In the following section we show that, on these thin neighbourhoods,
the G-action is equivariant with the linear G-action on thin neighbourhoods of
compact subsets of an affine algebraic subvariety in a finite-dimensional linear
G-space. In the next section we carry out this linearisation process.
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5. Linearisation of G-action on thin neighbourhoods of (N(H, W)\S(H, W)).
Let H . Let g denote the Lie algebra of G and h_ its subalgebra associated
to H. For d di-m h_, put VH /g, the dth exterior power, and consider the
linear G-action on VH via the represe-ntation/d Ad, the dth exterior of the adjoint
representation of G on g. Fix PH e/d b\{0}, and let qH: G Vn be the map defined
by qn(O) OPn (/k d O)Pn for all O G. Note that

/l(pn) {g e N(H)" dct(Adg[0 1},

where N(H) denotes the normalizer of H in G; we denote this subgroup by NI(H).
Put An N(H) A. For any 6 An, we have 6(HAHA and hence

preserves the volume of HA/A. Therefore [det(Ad 6[h)[ 1, and hence 6pn +Pn.
In view of this, we define Vn Vn/{Id, -Id} if Anpn {Pn, --Pn}, and Vn Vn

if Anpn Pn. The action of G factors through the quotient map from Vn onto Vn.
Let Pn denote the image of pn in Vn, and define gn" G Vn as n(O) OPn for all
9 e G. Then An l(n) A.

For any subset Z of G/A, define

Rep(Z) "= {gu e Vn" g G, u(g) Z}.

THEOREM 5.1 [DM3, Theorem 3.4]. The orbit A.n is closed, and hence dis-
crete. In particular, the following hold.

(1) The orbit N (H)A is closed in G/A.
(2) For every x G/A, the set Rep(x) is discrete in Vn.
(3) For any compact set Z c G/A, the set Rep(Z) is closed in Vn.
(4) The map q: G/An - G/A x Vn defined by

O(eA,,) ((), ,,()) (Vg e G),

is proper.

Let W be a subgroup of G which is generated by unipotent one-parameter
subgroups of G contained in W.

PROPOSITION 5.1 [DM3, Proposition 3.2]. Let An denote the Zariski closure of
On(N(H, W)) in Vn. Then

(AH) N(H, W).

PROPOSITION 5.2. Let H e and D be a compact subset of An. Let K be a
compact subset of G/A. Define

f(D, K) { g e G: zr(g) e K, gn e D, and g6Pn e D for some 6 e A\An}.
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Then the followinl hold.
(1) n(S(D, K)) is compact.
(2) There exist m e N and Fi 3’ with F c H and dim Fi < dim H for 1 < <

m such that

= (3 N(F,,
i=1

(3) Given any compact set K, c K\n(St(D, K)), there exists a neighbourhood
of D in V, such that, for any x e Kx, the set Rep(x)c is either empty or a
singleton set.

Proof. Statements (1) and (2) follow from [DM3, Proposition 7.2]. Statement
(3) follows from [DM3, Corollary 3.5]. El

Dynamics of polynomial trajectories in thin neiThbourhoods. The following
growth property of polynomial maps has turned out to be of great significance in
the study of polynomial trajectories near affine algebraic varieties.

PROPOSITION 5.3 [DM3, Proposition 4.2]. Let a compact set C An, an e >
O, and an N be Tiven. Then there exists a larTer compact set D An such that,
for any neiIhbourhood (I) of D in Va the following7 property holds: there exists a
neiThbourhood tp of C in Va with tp c such that, for any 0 (G), any element
w Vn, and any bounded interval (a, b) of R, if O(a)w , then

t’({t 6 (a, b): O(t)w tp}) < e. ({t (a, b)" O(t)w (I)}). (7)

Proof. This result is proved in [DM3, Proposition 4.2] for a unipotent one-
parameter subgroup u: R--, G in place of 0. The fact that u d(G) for d
dim G- is the only property of u which is used in the proof. The same proof
goes through for any 0 (G). E!

We need the following result for our proof of Theorem 1.1. This result and the
other related results are also of independent interest. For rest of the section we
further assume that G/A admits a finite G-invariant measure.

THEOREM 5.2. Given a compact set C N(H, W)\S(H, W), an e > O, and an
e N, there exists a neiThbourhood f of 7t(C) in G/A such that, for any x G/A

and any 6) I(Rk, G), one of the following7 conditions is satisfied.
(i) There exists g G such that

(R)(Rk)x gNX(H)A.

(Recall that due to Theorem 5.1 the orbit gN (H)A is closed.)
(ii) There exists a bounded open convex set B’ Rk such that, for all bounded

open convex subsets B of Rk containing B’,

1
m(B---m({t B" (R)(t)x e fl}) < e.
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For k 1, the result follows from [MS, Proposition 3.4]. The case of k > 1 is
much more involved. We give a proof by induction on dim H. For this purpose
we need to prove a more technical version of it.

PROPOSITION 5.4. Let e > O, N, and a compact set K c G/A be #iven. Let C1
be a compact subset of N(H, W). Then there exist compact sets D c An and SI
)-- N(Fi, W), where m N, and Fi with F H and dim F < dim H for 1 <
< m, such that the followin# holds: Let a neithbourhood ap of D in Vn and a

compact set Z K\x(Si) be oiven. Then there exists a neilhbourhood of r(Ci)
in G/A such that, for any x G/A, (Rk, G), and a bounded open convex set
B c Rk, one of the followino conditions is satisfied:

o()x c z .
(2) (R)(B)v for some v Rep(x).
(3)

1
m(B-------zm({t B: (R)(t)x f}) < e.

For k the result can be concluded from the proof of [DM3, Theorem 7.3].
The general case requires a different type of arrangement in the proof. First we
derive Theorem 5.2 from Proposition 5.4.

Proof of Theorem 5.2. Let K be the closure of a relatively compact neigh-
bourhood of n(C). Obtain D and $1 using Proposition 5.4.
Due to equation (6), n(C) r(S(H, W))= . Therefore there exists a neigh-

bourhood of n(C) contained in K with its closure Z such that Z c r(S u
6e(D, K)) . Using Proposition 5.2, obtain a neighbourhood of D in Vn such
that every x Z has at most one representative in . Now using Proposition 5.4,
obtain a neighbourhood f of n(C) contained in Z such that at least one of the
three possibilities of its conclusion holds.

Suppose there exists a bounded open convex set Bo c Rk for which the possi-
bility (3) fails to hold. Since f Z, the possibility (1) cannot hold. Therefore the
possibility (2) must hold.
Then there exists to Rk and v Rep(x) such that (R)(to)x Z and O(to)v *.

Such a v is unique due to the choice of . Since t (R)(t)v is an algebraic mor-
phism from Rk to n, either (a) (R)(Rk)v (R)(to)V, or (b) there exists tt Rk such
that (R)(t t)v *.

First suppose (a) holds. Then there exists e n-t(x) such that v #n, and
since the stabilizer of v in G is Nt(H)e, we have (R)(Rk)e eNt(H), where

(R)(to)at. Thus the possibility (i) of the present theorem holds.
Now suppose (b) holds. Then, for any open convex set B Bow {t }, the possi-

bilities (1) or (2) cannot hold, and hence the possibility (3) must hold. Thus possi-
bility (ii) of the present theorem holds. This completes the proof. E!

For the purpose of proving Proposition 5.4 by using induction on dim H, we
need its following consequence.
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COROLLARY 5.1. Let e > 0, N, and a compact set K G/A be #iven. Let C
be a compact subset of J= N(Hi, W), where n N and Hi 2 for 1 < < n.
Then there exists a compact set D =N(Hi, W) such that the followin# holds:
#iven a compact set Z K\n(D), there exists a neihbourhood f of rc(C) in G/A
such that, for any x G/A, 6) t(Rk, G), and a bounded open convex set B Rk,
either

O(B)x c3 Z

or

m(B)
m({t 6 B: (R)(t)x f}) < e. (8)

Proof. We prove the result for n 1; the general case follows easily from this.
Using Proposition 5.4 for H H1, obtain compact sets D c An and

= N(F,, w),

where m N, where F e with F c H, and where dim F < dim H for 1 < < k.
By Theorem 5.1(4) and Proposition 5.1, there exists a compact set D =

N(H, W) such that

{x 6 K" Rep(x) 6 D} (/).

Now D1 Sx w D is a compact subset N(H, W).
Let Z c K\r(Dx) be a given compact set. Then Rep(Z)c D . By Theorem

5.1, Rep(Z) is closed in Vn. Therefore there exists a neighbourhood of D in VH
such that

Rep(Z) ,. (9)

Suppose that (R)(B)x Z # . Then the possibilities (1) and (2) of Proposition
5.4 cannot hold, due to equation (9). Therefore the possibility (3) of the proposi-
tion must hold, and hence equation (8) holds. This completes the proof. 121

Proof of Proposition 5.4. Let fx be a relatively compact neighbourhood of
n(C) in G/A. By Theorem 3.1, there exists a compact set KI G/A such that, for
any y f, 0 t(G), and T > 0,

-e({t [0, T]" O(t)x Kx} > 1 1/(4k). (10)
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For the compact set C ClPn c An, obtain a compact set D An such that
the conclusion of Proposition 5.3 is satisfied for a/(4k) in place of
As we mentioned earlier, we shall prove this theorem by induction on dim H.

Note that when dim n is small, S(H, W) 5 and hence 6a(O, K1) . We be-
gin with some observations for which we first assume that 6e(D, K
By Proposition 5.2, there exists m N and, for each 1 <i< m, there exists

F with F c H and dim F < dim H such that

Sf(D, K1) J N(F, W)A.

Also there exists a compact set C2 (x Un=l N(Fi W) such that

n(C2) n(6a(D, K1)).

By induction, we can assume that the present proposition is true for each
Hence Corollary 5.1 is valid for C2 in place of Ct and F in place of H in its
statement. Thus we obtain a compact set

0 N(F,, w)
i=l

such that the following holds: given any compact set Z1 c 1\($2), there exists a
neighbourhood f22 of n(6e(D, K)) such that, for any y e Z, 0 (G), and T > 0,

-d({t I-0, T-I" O(t)y f2}) < 1/(4k). (11)

Again we apply Corollary 5.1 as above for $2 in place of C1 and obtain a
compact set

U N(F,, w)
i=l

such that the following holds: given a compact set Z K\n(S) as in the state-
ment of the proposition, there exists a neighbourhood f3 of r(S2) such that, for
the given x G/A, 19 t(Rk, G), and the bounded open convex set B c Rk, either

O(B)x Z

or

m(B)
m((t B: O(t)x f3}) < /(4k). (12)
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Put

and obtain a neighbourhood "2 of n(6e(D, Kx)) such that equation (11) holds.
Suppose, if 6e(D, Kx) , the above equations are satisfied if we put $2 S

and f3 f2 .
Let be a given neighbourhood of D as in the statement of the present propo-

sition. Using Proposition 5.2, we replace by a smaller neighbourhood such that
every y Kl\f2 has at most one representative in *.
By the choice of D, there exists a neighbourhood W of C in VH with W c such

that, for any 0 t(G), any v Vn, and an interval (a, b), if O(a)v , then

’({t e [a, b]" O(t)v W}) < /(4k). ’({t s [a, b]" O(t)v *}). (14)

Put

n {y e n" Rep(y)c W - }. (15)

Then f is an open neighbourhood of r(C).
After having made the above constructions, we start analysing possibilities (1),

(2), and (3) of the conclusion of the proposition. First suppose that possibility (2)
does not hold. Take any v e Rep(x). Then there exists to e B such that (R)(tv)v .
Let S denote the unit sphere in Rk centered at the origin. Take any x s S. Define
O(t) (R)(tx + t) for all R. Thus 0,, (G). Define

V,,(v) {t e I-0, 1]" O,(t)v V},

O(v) {t [0, 1-1" O(t)v },

/*(v) {t e /.(v)" O,(t)x e Z },

O,(v) ) {(a, b) c q)x(v): (a, b) W* # }, and

**(v) {t e *’,,(v): Odt)x K\f2}.

Let I (a, b) be any connected component of ,(v). Since 0 tI),,(v), we have
a x(v). Therefore, by equation (14),

d(qx(v) c I) < e/(4k)d(I). (16)

Since I c W*(v) - , by equations (10), (11), and (13),

ve(**x(v c I) > (1 1/(2k))ve(I). (17)
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Define

V*(v) {t B: O(t)v V, O(t)x Z } [,.) q*(v)x + to, (18)

O’(v) O,(v)x + to, and

*(v) {t ’(v): (R)(t)x 6 Kx\fz} *(v)x + to. (19)

Due to equations (16) and (17), we can apply Lemma 3.2 for sets q*(v) in place of
E, *(v) in place of F, and ’(v) in place of D, and the constants e /(4k) and
2 1/(2k). Then

m(W*(v)) < (/2).m(*(v)). (20)

Observe that by our choice of, for any two distinct Vl, D2 Rep(x),

*(v) *(vz) . (21)

Now by equations (13), (15), (20), (21), and (18), we get

m({t e B: (R)(t)x e f c Zx }) < m(U,,rr,x V*(v))

< m(V*(v))
Rep(x)

<(e/2)" m(*(v))
Rep(x)

< (e/2). m(B). (22)

Now suppose that possibility (1) also does not hold. Then equation (12) holds.
Possibility (3) follows from equations (12), (13), and (22). This completes the proof.

6. Proofs of the results stated in the introduction.

Proof of Theorem 1.1. We shall prove the theorem by induction on dim GIA.
Let/z be a limiting distribution as in Note 3.1. Let W be the subgroup gener-

ated by all the unipotent one-parameter subgroups of G preserving #. By Proposi-
tion 4.1, dim W > 0. By Theorem 4.2, there exists H e such that #(7r(S(H, W)))
0 and #(7r(N(H, W))) > 0. Let C1 c N(H, W)\S(H, W) be a compact set such that
/z0r(C1)) > e for some e > 0. Let 19 be as in the hypothesis; then there exists e N
such that O /(Rk, G). Since I)(Rk) c: Gt and Gt/A admits a finite G-invariant
measure, applying Theorem 5.2 to Gt in place of G, we deduce the following:
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there exists a neighbourhood f of n(C1) such that either (i) O(Rk)A c gNI(H)A
for some g G, or (ii) #n.(f)< e for all large n N. Now, if (ii) holds, then
#(n(Cx)) < e, which is a contradiction. Therefore (i) must hold.

Since gNl(H)g-1 A, we have O(Rk) c gN(H)g-. By Theorem 5.1, the orbit
gN(H)A is closed. Also gN(H)g- is an algebraic group. Therefore, by Note 2.1,
G gNX(H)g-; that is, G N(H). Since #(r(N(H, W))) > 0, we have that W H
and G N(H, W). Thus #(Nn((H, W)))= 1. Now, by Theorem 4.2 (2), # is H-
invariant.

Put A HA. Since H e g and N(H) G, we have that A is a closed subgroup
of G. Consider the G-equivariant quotient map q" G/A --} G/A. Let q," (G/A) ---}

(G/A) be the map defined as q,v(E)= v(q-(E)) for all Borel sets E G/A and
all v (G/A). The map q, is continuous. Since #n, ---} #, we have that q,(#z,)
q,(#). Note that for any f C(G/A),

fdq,(#)= f q d#
/A /,

m(Bn)
f(q o O()A) din(t)

m(B)
/((R)(0A) d. (23)

Since A contains a nontrivial unipotent one-parameter subgroup of G, due to
Note 2.2 we have dim A> dim A. Thus dim(G/A)< dim(G/A). Using the in-
duction hypotlesis, we can assume that Theorem 1.1 is valid for the A in place of
A. Hence, due to equation (23), q,(#) has the following property: there exists a
closed subgroup F of G containing H such that (R)(R) c F, q,() is F-invariant,
the orbit FA is closed, and q,()(FA)= 1. Now, since the fibres of q are closed
H-orbits and # is H-invariant, we have that g is F-invariant (cf. [D 1, Proposition
1.6]). Since F H, we have that (F) q,(FA) 1. Let L be any closed sub-
group of G containing (R)(11) such that the orbit LA is closed. Then #(LA)= 1.
Hence F LA. Thus in view of Note 3.1 the proof is complete. 121

Proof of Corollary 1.1. Let " R/ G be the function defined as @(t) tk(t /k)
for all > 0. Now argue just as in the proof of Theorem 1.1, replacing 19 by @.
There are exactly three places where we use that (R) is a regular algebraic function:
(1) Theorem 3.1, (2) Proposition 4.1, and (3) Proposition 5.3. Therefore, if the
corresponding statements are shown to hold for in place of (R), we would get a
proof of the corollary.

First we have Lemma 4.2, which replaces 0 by q in Lemma 4.1. Therefore, in
the proof of Proposition 4.1, we can use Lemma 4.2 in place of Lemma 4.1 and
obtain the same conclusion for q in place of (R). Also, due to Lemma 3.1, it is clear
that Theorem 3.1 and Proposition 5.3 are valid for in place of (R) or 0. This
completes the proof. El
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Proof of Corollary 1.2. Let S denote the unit sphere in Rk and tr the rotation
invariant probability measure on S. Using polar decomposition, for any f
Co(G/A) and any T > 0,

f(O(t)h) dm(t) da(x) - f(O(rX/x)A) d (24)
m(Br) s

For every x S, define Ox(t) (R)(tx) for all R. Let F,, be the smallest closed
subgroup L of G such that L = A, L = 0,,(R), and the orbit LA is closed.
Due to Corollary 1.1, for any f Co(G/A),

r-.oo - f(O(tl/k)a) dt f d#, (25)

where # denotes the unique F,,-invariant probability measure supported on the
closed orbit FA.
By Proposition 2.1, we have F,, e’. The set (R)-l(Fx) S is an analytic sub-

manifold of S. Hence, if dim((R)-l(F,,)c S) dim S, then F,, (R)(Rk). Note that if
y 0-1 (F,,) S, then F F. Put

E {x S: dim((R)-l(F,,) S) < dim(S)}.

Now a(O-t(F)c S)= 0 for every x e E. Since is a countable collection, we
have that

e U s)

is a countable union. Therefore

a(E) 0. (26)

Now let F denote the smallest closed subgroup L of G such that L A, L
(R)(Rk), and the orbit LA is closed. Then F,, F for all x S\E. Let #r denote the
unique F-invariant probability measure on FA.

Let e > 0 and f C(G/A) be given. For any R > 0, the set WR, consisting of all
x S such that - f(Ox(tl/k)A) dt f

A
< /2 (27)

for all T > R, is Borel measurable. Also note that WR, c Wa2 for all R1 < R2.
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Now, due to equation (25), we have

R>O

Therefore, by equation (26), there exists R > 0 such that

< (4"suplfl)" (28)

Now, by equations (24), (27), and (28), for every T > R, we get

f((R)(t)A) at fra f d/r- f(Ox(tl/kx)A) dt f
A

do(x)

This completes the proof.

Proof of Corollary 1.3. For i= 1, k, define Oi(t)= exp(tbi) for all e R.
Define (R)(t 1,..., tk) Ok(tk)’’’O (t) for all (tx, tk) Rk.
Note that due to JR1, Lemma 1.4], the Lebesgue measure on Rk projects under

(R) to a Haar measure on N. Note that if G a real algebraic group and N is an
algebraic unipotent subgroup, we have that 0 is a regular algebraic map for each

1, k. And the corollary immediately follows from Theorem 1.1.
Now in the general case we argue just as in the proof of Theorem 1.1. First

note that (R) (Rk, G) for l= dim G- 1. Therefore Theorem 3.1 and Proposi-
tion 5.3 are applicable to O. Since each 0 is a nontrivial unipotent one-parame-
ter subgroup of G, Proposition 4.1 holds in this case. Now, in view of the remarks
made in the proof of Corollary 1.1, the proof of Theorem 1.1 yields the validity of
the corollary. El
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