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Introduction

Let G be a connected Lie group and Γ be a lattice in G; that is, Γ is a discrete
subgroup of G such that the quotient space X = G/Γ, called a homogeneous space of
G, admits a finite G-invariant measure. The actions of subgroups of G on X form a
natural class of dynamical systems referred to as flows on homogeneous spaces.

For a closed subgroup F of G and a point x ∈ X, if the orbit Y = Fx is closed
and admits a finite F -invariant measure, say µ, then Y is called a homogeneous subset
of X and µ is called a homogeneous measure on X.

A subgroup U of G is said to be unipotent if for every u ∈ U , the adjoint automor-
phism Adu of the Lie algebra of G has all eigenvalues equal to 1. The flows defined
by the actions of unipotent subgroups are called unipotent flows.

The dynamical behaviour of unipotent flows and its connection with problems
in Diophantine approximation have generated a great deal of interest in the study of
unipotent flows. In an attempt to deal with a long standing conjecture due to Oppen-
heim, on values of quadratic forms at integral points, through the study of subgroup
actions on homogeneous spaces, Raghunathan conjectured that the closures of orbits
of unipotent flows are homogeneous sets. For horospherical flows the latter conjecture
was shown to be true by Dani [6]. Later Margulis [21] settled the Oppenheim’s con-
jecture by verifying a special case of Raghunathan’s conjecture. The reader is referred
to the survey articles by Dani [4, 10], Margulis [20, 22], and Ratner [27, 32, 33] for
the past and the recent developements in the area.

In a remarkable acheivement recently the Raghunathan’s conjecture was fully
proved by Ratner [31]. A major component of her proof [30] involves the following
classification of invariant measures.

Theorem A (Description of invariant measures) Any Borel probability measure in-
variant and ergodic under under a unipotent flow is a homogeneous measure.

In fact, let L be a subgroup of G which is generated by the unipotent one-parameter
subgroups of G contained in it. Then every L-invariant and L-ergodic Borel probability
measure on X is a homogeneous measure.

Using this classification, Ratner [31] proved the following result, which in partic-
ular settles Raghunathan’s conjecture.

A curve c : [0,∞) → X is said to be uniformly distributed with respect to a
probability measure µ on X, if for every bounded continuous function f on X,

lim
T→∞

∫ T

0

f(c(t)) dt =

∫
X

f dµ.
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Theorem B (Limit distributions of trajectories) Let u : R→ G be a unipotent one-
parameter subgroup. Then for any x ∈ X, the trajectory {u(t)x : t > 0} is uniformly
distributed with respect to a homogeneous measure µ on X such that x ∈ supp(µ). In
particular, {u(t)x : t > 0} is a homogeneous subset of X.

One also deduces the following generalization of Raghunathan’s conjecture from
this result.

Theorem C (Closures of orbits) Let L be a subgroup of G which is generated by the
unipotent one-parameter subgroups of G contained in it. Then the closure of any orbit
of L in X is a homogeneous set.

For semisimple groups G of R-rank 1, the present author [35] had independently
derived theorem B from theorem A, using the approach of [15, 12].

In this thesis we take a closer look at the space of ergodic invariant measures in the
context of theorem A, obtain new results in dynamics of polynomial trajectories on
homogeneous spaces of linear Lie groups, and classify topological factors of G-actions
on Y × G/P , where G is a simple Lie group of R-rank ≥ 2 with finite center, P is
a parabolic subgroup of G, and Y is a homogeneous space of a Lie group containing
G. The technique is motivated by the work of Dani and Margulis [14]. The details of
the main results are described below, chapterwise.

Chapter 1 is devoted to certain growth properties of polynomials of several vari-
ables; we extend a theorem of Dani and Margulis [13, Theorem 1] proved for unipotent
one-parameter subgroups.

In Chapter 2 theorem A is applied to show that the finite invariant measures of a
unipotent flow other than the G-invariant ones are supported on the image in X of
a countable union of certain algebraic subvarieties of G. We develop a ‘linerization
procedure’ which allows us to study the behaviour of ‘polynomial trajectories’ near
the images of these algebraic subvarieties in X. The results proved in the subsequent
chapters are deduced from the technical results proved in this chapter.

In Chapter 3 we obtain the following result on the space of ergodic invariant mea-
sures of unipotent flows. Let U(X) denote the space of all Borel probability measures
µ on X such that µ is invariant and ergodic with respect to the action of a unipo-
tent one-parameter subgroup of G. By theorem A, U(X) consists of homogeneous
measures.

Theorem 0.1 The space U(X) is closed in the space of all Borel probability measures
on X. More precisely, if {µi} ⊂ U(X) is a sequence converging weakly to a Borel
probability measure µ on X then µ ∈ U(X) and there exists a sequence gi → e such
that gi · supp(µi) ⊂ supp(µ) for all but finitely many i’s.

In view of a theorem of Dani and Margulis [14, Theorem 6.1] the above result
implies the following.

Corollary 0.2 Given a compact set C ⊂ X, the set {µ ∈ U(X) : supp(µ) ∩ C 6= ∅}
is compact.
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In Chapter 4 we obtain the following results on limit distributions of polynomial
trajectories on homogeneous spaces.

A map Θ : Rk → SLn(R) is called a polynomial map if every matrix coefficient of
Θ is a polynomial on Rk. A polynomial map Θ : Rk → SLn(R) is said to be of split
type if Θ(t1, . . . , tk) = θk(tk) · · · θ1(t1), ∀(t1, . . . , tk) ∈ Rk, where θi : R→ SLn(R) are
polynomial maps.

Theorem 0.3 Suppose that G is a closed subgroup of SLn(R) and let Θ : Rk → G
be a polynomial map with Θ(0) = e. Then for any x ∈ X, there exists a measure
µ ∈ U(X) such that x ∈ supp(µ) and for any sequence {Bi} of balls in Rk centered
at 0 with radius(Bi)→∞ and any f ∈ Cb(X),

lim
i→∞

1

vol(Bi)

∫
t∈Bi

f(Θ(t)Γ) dt =

∫
f dµ.

In particular, {Θ(t)x : t ∈ Rk} = Fx, where F = {g ∈ G : g · µ = µ}.
Further, if we assume that Θ is of split type, the above result also holds for any

sequence of boxes Bi = [0, T
(1)
i ]× · · · × [0, T

(k)
i ] ⊂ Rk with each T

(l)
i →∞.

Note that a unipotent one-parameter subgroup of SLn(R) is a polynomial map.
Thus theorem 0.3 generalizes theorem B. We deduce the following result on limit dis-
tributions of orbits of higher dimensional unipotent flows, solving a problem proposed
by Ratner in [31, p.236] and [32, Problem 2].

Corollary 0.4 Let N be a simply connected unipotent subgroup of G. Let Θ : Rk →
N be a map defined by Θ(t1, . . . , tk) = (exp tkbk) · · · (exp t1b1), where {b1, . . . , bk} is a
basis of the Lie algebra of N such that under Θ the Lebesgue measure on Rk projects
to a Haar measure λ on N ; (such bases always exist). Then for any x ∈ X, there
exists a measure µ ∈ U(X) such that x ∈ supp(µ) and for any f ∈ Cb(X),

lim
s1,...,sk→∞

1

λ(Θ([0, s1]× · · · × [0, sk]))

∫
h∈Θ([0,s1]×···×[0,sk])

f(hx) dλ(h) =

∫
f dµ.

The next result is a uniform version of theorem 0.3 and it generalizes [14, Theo-
rem 3] proved for one-parameter unipotent subgroups.

Theorem 0.5 Let Θ : Rk → G ⊂ SLn(R) be a polynomial map with Θ(0) = 0.
Let a compact set K ⊂ X, a function f ∈ Cb(X), and an ε > 0 be given. Then
there exist finitely many closed subgroups H1, . . . , Hr of G, with each orbit HjΓ being
homogeneous in X, and compact sets

Cj ⊂ {g ∈ G : Θ(Rk)g ⊂ gHj}, j = 1, . . . , r,

such that the following holds: For any compact set K1 ⊂ K \
⋃r
j=1CjΓ there exists

T0 > 0 such that for any x ∈ K1 and any ball B in Rk centered at 0 with Radius(B) >
T0, ∣∣∣∣ 1

vol(B)

∫
t∈B

f(Θ(t)x) dt−
∫
f dµG

∣∣∣∣ < ε,
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where µG is the G-invariant probability measrue on X.
Further if we assume that Θ is of split type, then the above result holds for any

box B = [0, s(1)]× · · · × [0, s(k)] with each s(l) > T0.

In Chapter 5, we prove certain results about actions of semisimple groups G on
homogeneous spaces of larger Lie groups. These results were known earlier only for
the actions of G on its own homogeneous spaces.

Theorem 0.6 Let L be a Lie group, Λ a lattice in L, π : L → L/Λ the natural
quotient map, and µL the L-invariant probability measure on L/Λ. Let a ∈ G be
a semisimple element and U = {u ∈ G : limn→∞ a

−nuan = e} be the associated
horospherical subgroup. Let Ω be a relatively compact neighbourhood of e in U such
that π is injective on Ω. Let µΩ be the probability measure on π(Ω) which is the image
of the restriction of a Haar measure on U to Ω. Assume that π(G1) is dense in L/Λ
for any normal subgroup G1 of G containing U . Then the sequence of measures an ·µΩ

converges weakly to µL. In particular, π({an : n ∈ N} · U) is dense in L/Λ.

The fixed point set of an involution (an automorphism of order 2) of a semisimple
group G is said to be symmetric subgroup of G. For example, SO(n) is the fixed
point set of the involution of SLn(R) given by g 7→ tg−1.

Corollary 0.7 Let L, Λ, π, and µL be as in theorem 0.6. Let G be connected semisim-
ple Lie subgroup of L with finite center. Let H be a symmetric subgroup of G such
that the orbit π(H) admits a (unique) H-invariant probability measure, say µH . Let
{gi} be a sequence in G. Suppose that π(G1) is dense in L/Λ for any closed connected
normal subgroup G1 of G such that the image of {gi} in G/(G1H) has a convergent
subsequence. Then the sequence of measures gi · µH converges weakly to µL.

This result generalises a theorem of Duke, Rudnik and Sarnak [16] (cf. Eskin and
McMullen [17]), where the case of L = G is considered.

We also apply the results to study equivariant maps and address a question raised
by Stuck and Zimmer [39, Problem C]. The following result is obtained in this respect.

Corollary 0.8 Let L be a Lie group and Λ a lattice in L, G a connected semisimple
Lie subgroup of L with finite center. Suppose that the action of G1 on X = L/Λ is
minimal for any closed connected normal subgroup G1 of G such that R-rank(G/G1) ≤
1. Let P be a parabolic subgroup of G, Y a Hausdorff space with a continuous G-
action, and X × G/P → Y → X continuous surjective G-equivariat maps such that
the composition is the projection on X. Then Y is G-equivariantly homeomorphic to
X ×G/P ′ for some parabolic subgroup P ′ of G containing P .

This result extends a theorem of Dani [7], where the special case of L = G is
proved.
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Chapter 1

Polynomials and returning to
compact sets

1.1 Growth properties of polynomial functions

Certain growth properties of polynomials of bounded degrees observed by Margulis
in [19] have played a key role in understanding the dynamics of individual orbits
of unipotent flows. Here we generalize these properties for polynomials of several
variables.

Notation 1.1 For d ∈ N, let Pd denote the space of real polynomials of degree at
most d.

Fix d ∈ N. By Lagrange’s interpolation formula, for any t0 < t1 < . . . < td, any
f ∈ Pd, and t ∈ R,

f(t) =
d∑

k=0

f(tk)
∏
i 6=k

t− ti
tk − ti

. (1.1)

For any measurale set E ⊂ Rn, the Lebesgue measure of E is denoted by |E|.

Lemma 1.2 There exists a constant M > 0 such that for any nonempty bounded
open interval I ⊂ R and any f ∈ Pd,

|I| · sup
t∈I

∣∣∣∣ ddtf(t)

∣∣∣∣ ≤M · sup
t∈I
|f(t)|.

Lemma 1.3 There exists a constant M ≥ 1 such that for any nonempty bounded
open intervals I ⊂ J in R and a function f ∈ Pd,

sup
t∈J
|f(t)| ≤M · |J |

d

|I|d
· sup
t∈I
|f(t)|.

Proofs of lemma 1.2 and lemma 1.3: By a linear change of variable, we may assume
that I = (0, 1). Put ti = i/d for i = 0, . . . , d. Put Pk(t) =

∏
i 6=k

t−ti
tk−ti

for k = 0, . . . , d.
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By equation 1.1,

d

dt
f(t) =

d∑
k=0

f(tk)
d

dt
Pk(t).

Now

sup

{∣∣∣∣ ddtPk(t)
∣∣∣∣ : t ∈ (0, 1), k = 0, . . . , d

}
≤ dd+1.

Therefore

sup
t∈(0,1)

∣∣∣∣ ddtf(t)

∣∣∣∣ ≤ (d+ 1)dd+1 · sup
t∈(0,1)

|f(t)|.

This proves lemma 1.2.
Also sup{|Pk(t)| : t ∈ J, k = 0, . . . , n} ≤ (d|J |)d. Therefore by equation 1.1, we

have sup t ∈ J |f(t)| ≤ ((d+ 1)dd)|J |d · supt∈(0,1) |f(t)|. This proves lemma 1.3. �

Lemma 1.4 There exists a constant M ≥ 1 such that for any ε > 0, a bounded
interval J ⊂ R and f ∈ Pd, if we put

E = {s ∈ J : |f(s)| < (εd/M) · sup
t∈J
|f(t)|},

then |E| ≤ ε · |J |.

Proof. The set E has at most d1 = [(d + 2)/2] components. Let M1 be the M as in
lemma 1.3. Put M = M1d

d
1. For each component I of E, apply lemma 1.3. Then

sup
t∈J
|f(t)| ≤M1 ·

|J |d

|I|d
·
(
εd

M
· sup
t∈J
|f(t)|

)
.

Therefore |I| ≤ (ε/d1)|J |, and hence |E| ≤ ε · |J |. �

Notation 1.5 Fix d,m ∈ N. Let Pd,m denote the space of real polynomials of degree
d in m variables.

Let Sm denote the unit ball in Rm around 0. For any open convex set B ⊂ Rm,
t0 ∈ B, and v ∈ Sm, put

Bv,t0 = {t > 0 : tv + t0 ∈ B}.

Lemma 1.6 There exists a constant M ≥ 1 such that for any bounded open convex
sets D ⊂ B ⊂ Rm, t0 ∈ D, and f ∈ Pd,m,

sup
t∈B
|f(t)| ≤M

(
sup
v∈Sm

|Bv,t0|/|Dv,t0|
)md
· sup
t∈D
|f(t)|.

Proof. For any v ∈ Sm, the function t 7→ f(tv + t0) is in P(md). Therefore the result
follows from lemma 1.3. �
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Lemma 1.7 Given M > 1 there exists λ > 1 such that for any f ∈ Pd,m and a
bounded open convex set B, there exist an open convex set D ⊂ B and t0 ∈ D such
that

sup
v∈Sm

|Bv,t0|/|Dv,t0| ≤ λ and sup
t∈B
|f(t)| ≤M · inf

t∈D
|f(t)|. (1.2)

Proof. Let 1 < M ′ < M and λ = 2M1/(1 − M ′−1) > 1, where M1 is a constant
such that the contention of lemma 1.2 holds for all f ∈ P(dm). Let t0 ∈ B such that
|f(t0)| ≥ (M ′/M) supt∈B |f(t)|. For every v ∈ Sm, define φv(t) = f(tv + t0), ∀t ∈ R.
Then φv ∈ P(md) and hence

sup
t∈Bv,t0

∣∣∣∣dφv

dt
(t)

∣∣∣∣ ≤ 2M1

|Bv,t0|
|f(t0)|, ∀v ∈ S.

Then for any 0 ≤ t ≤ λ−1|Bv,t0|, we get

|φv(t)| =

∣∣∣∣φv(0) + t · dφv

dt
(t1)

∣∣∣∣
≥ (1− 2M1λ

−1)|f(t0)|
= (1/M ′)|f(t0)|.

Hence, if we put

D = ∪v∈Sm [0, λ−1Bv,t0)v + t0,

then D is an open convex subset of B and equation 1.2 holds. �

1.2 Condition for returning to compact sets

In this section we extend an important result of Dani and Margulis [13] about large
compact sets in finite volume homogeneous spaces, having relative measures close to
1 with respect to trajectories of unipotent flows.

First we describe some elementary results, which will also be used again at a latter
stage. The results are therefore presented in a form more technical than is necessary
for the immediate purpose.

Notation 1.8 For any set E ⊂ R and m ∈ N, define Em := {sm : s ∈ E}.

Lemma 1.9 Let E and F be Borel measurable subsets of a bounded interval I ⊂
[0,∞) and m ∈ N be such that for some ε1, ε2 ∈ (0, 1/m),

|E| ≤ ε1 · |I| and |F | ≥ (1− ε2) · |I|.

Then

|Em| ≤ (mε1)(1−mε2)−1 · |Fm|.

7



Proof. Suppose that I = [a, b], where 0 ≤ a < b. Then

|Em| =

∫ bm

am
χEm(t) dt

= m ·
∫ b

a

χE(s)sm−1 ds

≤ m · |E|bm−1

≤ m · |E|(bm − am)/(b− a)

≤ (mε1) · |Im|. (1.3)

Similarly, we have

|Fm| = |Im| − |(I \ F )m| ≥ (1−mε2) · |Im|. (1.4)

The lemma follows from eqs. 1.3 and 1.4. �

Lemma 1.10 Let B be a bounded open convex subset of Rm. Fix t0 ∈ B. Let E and
F be measurable subsets of B. Suppose there are a subset D ⊂ B, containing E and
F , and ε1, ε2 ∈ (0, 1/m) such that, for every x ∈ Sm, the set Dx,t0 is open in [0,∞),
and for every connected component I of Dx,t0, we have

|Ex,t0 ∩ I| ≤ ε1 · |I| and |Fx,t0 ∩ I| ≥ (1− ε2) · |I|.

Then
|E| ≤ (mε1)(1−mε2)−1 · |F |.

Proof. Let σ denote the rotation invariant measure on Sm such that the volume of
the unit ball in Rm is σ(Sm)/m. Using polar decomposition of B at the pole t0, we
have

|E| =

∫
x∈Sm

dσ(x) ·
∫ |Bx,t0 |

0

χEx,t0
(t)tm−1 dt

= (1/m)

∫
x∈Sm

dσ(x) ·
∫ |Bx,t0 |

m

0

χEx,t0
(t1/m) dt

= (1/m)

∫
x∈Sm

|Em
x,t0
| dσ(x)

≤ (mε1)(1−mε2)−1 · (1/m)

∫
x∈Sm

|Fm
x,t0
| dσ(x)

= (mε1)(1−mε2)−1 · |F |,

where the inequality follows from lemma 1.9. This completes the proof. �

Notation 1.11 Let G be a Lie group and g the Lie algebra associated to G. For
d,m ∈ N, let Pd,m(G) denote the set of continuous maps Θ : Rm → G such that for
all c, a ∈ Rm and X ∈ g, the map

t ∈ R 7→ Ad ◦Θ(tc + a)(X) ∈ g

8



is a polynomial of degree at most d in each co-ordinate of g (with respect to any
basis).

We shall write Pd(G) for the set Pd,1(G). Note that if θ ∈ Pd(G) is a group
homomorphism then θ is a Ad-unipotent one-parameter subgroup ofG, and conversely
any Ad-unipotent one-parameter subgroup θ belongs to Pd(G), where d = dimG− 1.

Theorem 1.12 Let G be a Lie group and Γ a lattice in G. Then given a compact
set C ⊂ G/Γ, an ε > 0, and a d ∈ N, there exists a compact subset K ⊂ G/Γ with
the following property: For any x ∈ G/Γ, any Θ ∈ Pd,m(G) and any bounded open
convex set B ⊂ Rm, one of the following conditions hold:

1. 1
|B| |{t ∈ B : Θ(t)x ∈ K}| ≥ (1− ε).

2. Θ(B)x ∩ C = ∅.

Proof. In [14, Theorem 6.1], the result is stated for a one-parameter Ad-unipotent
subgroup u : R → G, in the place of Θ as above. The proof uses only the property
that u ∈ Pd(G) for d = dimG−1, rather than the condition that u is a one-parameter
subgroup. Hence essentially the same proof applies for all θ ∈ Pd(G).

Now choose a compact set K such that the conclusion of the theorem is valid for
ε/m in place of ε and θ ∈ Pd(G) in place of Θ.

Let B be as in the hypotheis. Suppose that condition (2) does not hold. Then
there exists t0 ∈ B such that Θ(t0)x ∈ C. Define

E = {t ∈ B : Θ(t)x 6∈ K}.

Fix x ∈ Sm. Define a map θ(t) = Θ(tx+t0) for all t ∈ R. Then θ ∈ Pd(G). Therefore

|Ex,t0| = |{t ∈ Bx,t0 : θ(t)x 6∈ K}| < (ε/m) · |Bx,t0 |.

Therefore by lemma 1.10, for F = D = B, ε1 = ε/m, and ε2 = 0, we get

|E| ≤ ε · |B|.

This completes the proof. �
The usefulness of the above result is enhanced by the following theorem which

provides an algebraic condition as an alternative to the possibility Θ(B)x ∩ C = ∅.

Notation 1.13 Let G be a connected Lie group and g denote the Lie algebra asso-

ciated to G. Let V = ⊕dim g

k=1 ∧k g, the direct sum of exterior powers of g, and consider

the linear G-action on V via the representation ⊕dim g

l=1 ∧lAd, the direct sum of exterior
powers of the adjoint representation of G on g.

Fix any euclidean norm on g and let B = {e1, . . . , edim g} denote an orthonormal
basis of g. There is a unique euclidean norm ‖ · ‖ on V such that the associated basis
of V given by

{el1 ∧ · · · ∧ elr : 1 ≤ l1 < . . . < lr ≤ dim g, r = 1, . . . , dim g}

is orthonormal. This norm is independent of the choice of B.
To any Lie subgroup W of G and the associated Lie subalgebra w of g we associate

a unit-norm vector pW ∈ ∧dim ww ∈ V .
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Theorem 1.14 Let G be a connected Lie group, Γ a lattice in G, and π : G→ G/Γ
the quotient map. Let M be the smallest closed normal subgroup of G such that
Ḡ = G/M is a semisimple group with trivial center and no compact factors. Let
q : G → Ḡ be the quotient homomorphism. Then there exist finitely many closed
subgroups W1, . . . ,Wr of G such that each Wi is of the form q−1(Ui) with Ui for
the unipotent radical of a maximal parabolic subgroup of Ḡ, π(Wi) is compact and
the following holds: Given d,m ∈ N and reals α, ε > 0, there exists a compact set
C ⊂ G/Γ such that for any x ∈ G/Γ, Θ ∈ Pd,m(G), and a bounded open convex set
B ⊂ Rm, one of the following conditions is satisfied:

1. {t ∈ B : Θ(t)x ∈ C}| ≥ (1− ε)|B|.

2. There exist g ∈ π−1(x) and i ∈ {1, . . . , r} such that

sup
t∈B
‖Θ(t)g · pWi

‖ < α.

Proof. By Auslander’s theorem [26, 8.24] and Borel’s density theorem [26, 5.24], Γ̄ =
q(Γ) is a lattice in Ḡ and the fibres of the map q̄ : G/Γ→ Ḡ/Γ̄ are compact M -orbits.
Therefore to prove this result, without loss of generality, we may assume that Ḡ = G.

Then there are finitely many normal connected subgroups G1, . . . , Gr of G such
that G = G1 × · · · ×Gr and each Γi = Gi ∩ Γ is an irreducible lattice in Gi (see [26,
5.22]). Therefore without loss of generality we may replace Γ by its finite-index
subgroup Γ1 × · · · × Γr. In order to prove the theorem for G, it is enough to prove it
for each Gi separately. Thus without loss of generality we may assume that Γ is an
irreducible lattice.

Then by the arithmeticity theorem of Margulis [23, 40], if R-rank of G is at least
2 then Γ is an arithmetic lattice. That is, there exist a semisimple algebraic group G
defined over Q and a surjective homomorphism ρ : G(R)0 → G with compact kernel
such that for Λ = G(Z)∩G(R)0 the subgroup Γ∩ ρ(Λ) is a subgroup of finite index
in both Γ and ρ(Λ). Again in this case without loss of generality we may replace G
by G(R)0 and Γ by Λ.

We shall prove the result by considering the cases of (1) arithmatic lattices, and
(2) G of R-rank 1, separately.

1.2.1 Case of arithmetic lattices

Let G = G(R)0 for a semisimple algebraic group G defined over Q. Let Γ = G(Z)∩G
and π : G → G/Γ be the natural quotient map. Let r be the Q-rank of G. We can
assume that r ≥ 1, since otherwise by Godement’s compactness criterion (see [1,
Theorem 8.4]), G/Γ is cocompact and the results of this section are trivial.

Let P denote a minimal Q-parabolic subgroup of G. Then by [1, Theorem 15.6],
there exists a finite set F ⊂ G(Q) such that

G(Q) = P(Q) · F · Γ.

Let S be a maximal Q-split torus of G contained in P. The subgroup P determines
an order on the set of Q-roots of S. Let ∆ = {α1, . . . , αr} be the corresponding
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system of simple Q-roots. Take i ∈ {1, . . . , r}. Let Pi denote the standard maximal
parabolic subgroup associated to the set of simple roots ∆ \ {αi}. Let Ui be the
unipotent radical of Pi and put Ui = Ui(R). Then for any g ∈ Pi(R), we have

g · pUi = det(Adg|ui) · pUi .

Define a function di : G→ R∗ as

di(g) = ‖g · pUi‖2 ∀g ∈ G.

Theorem 1.15 Given d,m ∈ N and α > 0 there exists a compact set C ⊂ G/Γ
such that for any bounded open convex set B ⊂ Rm and any Θ ∈ Pd,m(G), one of the
following conditions is satisfied:

1. There exists i ∈ {1, . . . , r} and λ ∈ FΓ such that

di(Θ(t)λ−1) = ‖φ(t)λ−1 · pUi‖2 < α, ∀t ∈ B.

2. π(Θ(B)) ∩ C 6= ∅.

To prove this result we need to set up some more notation and recall a result from
[13].

For I ⊂ {1, . . . , r}, put J = {1, . . . , r} \ I. Define

PI =
⋂
i∈I

Pi

QI = {g ∈ PI : di(g) = 1, ∀i ∈ I}

Note that P ∩ QI is a minimal Q-parabolic subgroup of QI . Therefore by [1,
Theorem 15.6], there exists a finite set FI ⊂ QI(Q) such that

QI(Q) = (P ∩QI)(Q)FI(Γ ∩QI(R)). (1.5)

We define
Λ(I) = (Γ ∩QI)FI

−1,

where QI = QI(R). Note that P∅ = Q∅ = G and Λ(∅) = ΓF−1.

Lemma 1.16 Let j ∈ {1, . . . , r}, I ⊂ {1, . . . , r} \ {j}, and I ′ = I ∪ {j}. Then there
exists a finite set E ⊂ P(Q) such that

Λ(I)Λ(I ′) ⊂ Λ(I)E.

Proof. By definition

Λ(I)Λ(I ′) = (QI ∩ Γ)FI
−1 · (QI′ ∩ Γ)FI′

−1.

There exists a finite set L ⊂ QI(Q) such that

FI
−1(QI′ ∩ Γ) ⊂ FI

−1(QI ∩ Γ) ⊂ (QI ∩ Γ)L.
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Now by eq. 1.5, there exists a finite set E1 ⊂ (P ∩QI)(Q) such that

(LFI′
−1)−1 ⊂ E1FI(Γ ∩QI).

Now

Λ(I)Λ(I ′) ⊂ (QI ∩ Γ)(LFI′
−1)

⊂ (QI ∩ Γ)FI
−1E1

−1

= Λ(I)E,

where E = E1
−1 ⊂ P(Q). �

Notation 1.17 Let I be the collection of all permutations of elements of subsets of
{1, . . . , r}. Let I = (i1, . . . , ip) ∈ I. Then by lemma 1.16 there exists a finite set
L(I) ⊂ G(Q) such that

Λ(∅)Λ({i1}) · · ·Λ({i1, . . . , ip−1}) = ΓL(I).

We define L(∅) = {e}.
For positive reals 0 < a < b and α > 0, and any λ ∈ ΓL(I), define

Wα,a,b(I, λ) = {g ∈ G : a ≤ di(gλ) ≤ b, ∀i ∈ I and

dj(gλθ) > α, ∀j ∈ {1, . . . , r} \ I, ∀θ ∈ Λ(I)}.

Note that for any γ ∈ Γ,

Wα,a,b(I, γλ) = Wα,a,b(I, λ)γ−1.

Define the following subsets of G/Γ:

Wα,a,b(I) =
⋃

λ∈L(I)

π(W (I, λ)) =
⋃

λ∈ΓL(I)

π(W (I, λ)).

Proposition 1.18 (Dani and Margulis [13, Proposition 1.8]) The set Wα,a,b(I) is
compact.

Notation 1.19 Fix d,m ∈ N. The map V 3 v 7→ ‖v‖2 is a polynomial function on
V . Therefore there exists d′ ∈ N such that for any i ∈ {1, . . . , r}, φ ∈ Pd,m(G) and
g ∈ G, the map f : Rm → R defined as f(t) = di(φ(t)g), ∀t ∈ Rm, is in Pd′,m(G).

Let B be an open convex subset of Rm and Θ ∈ Pd,m(G). When condition (1)
in theorem 1.15 fails to hold, using the following proposition we shall find constants
0 < a < b and α > 0 (independent of Θ and B), I ∈ I, and t ∈ B such that
π(Θ(t)) ∈ Wα,a,b(I).

Proposition 1.20 (cf.[13]) Let α > 0 and D ⊂ Rm be a bounded open convex subset.
Suppose a family F ⊂ Pd′,m(G) satisfies the following conditions:
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1. For any t ∈ D and any β > 0,

#{f ∈ F : |f(t)| < β} <∞.

2. For every f ∈ F ,
sup
t∈D
|f(t)| > α.

Then one of the following conditions is satisfied:

(a) |f(t0)| > α for all f ∈ F and t0 ∈ D.

(b) There exist an open convex subset D1 ⊂ D and f0 ∈ F such that the following
holds:

(i) f0(D1) ⊂ (α/2, α).

(ii) For all f ∈ F ,
sup
t∈D1

|f(t)| > α/M,

where M ≥ 1 is a constant depending only on d′ and m.

Proof. If (a) does not hold then by condition (1), there exists t0 ∈ D and a finite set
F1 ⊂ F such that |f(t0)| ≥ α for all f ∈ F \ F1. There exists s ∈ (0, 1) such that if
we put E = {(1−s)t0 +sv : v ∈ D} then E is an open convex subset of D containing
t0 and the following holds:

(1) supt∈E |f(t)| ≥ α, ∀f ∈ F1, and

(2) there exists f0 ∈ F1 such that supt∈E |f0(t)| = α.

By lemma 1.7, there exists a constant λ > 1 (depending only on d′ and m) and
an open convex subset D1 of E containing t0 such that

|Ev,t0 |
|(D1)v,t0|

≤ λ, ∀v ∈ Sm

and
inf
t∈D1

|f0(t)| ≥ α/2.

Now by lemma 1.6, there exists a constant M ≥ 1 (depending only on λ, d′ and m)
such that for any f ∈ F we have

sup
t∈D1

|f(t)| ≥ α/M.

This completes the proof. �
Proof of theorem 1.15. Let α > 0 be given. Let B ⊂ Rm be a bounded open

convex set and let Θ ∈ Pd,m(G). Suppose that the condition (1) of the theorem fails
to hold.
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By a stepwise construction we shall obtain I ∈ I, λ ∈ ΓLI , and constants 0 <
aI < bI and αI > 0 depending only on I and α such that

π(Θ(B)) ∩ π(WαI ,aI ,bI (I, λ)) 6= ∅.

In view of proposition 1.18 this will imply that the second condition of the theorem
holds.

First note the following procedure: Suppose I ∈ I, λ ∈ ΓLI , an open convex set
D ⊂ Rm, and constants 0 < aI < bI are such that

(A) di(Θ(B)λ) ⊂ (aI , bI), ∀i ∈ I.

Let F(I, λ) denote the family of all functions f : Rm → R>0 of the form f(t) =
dj(Θ(t)λθ) for all t ∈ Rm, where θ ∈ Λ(I) and j ∈ J = {1, . . . , r} \ I. Suppose
further that for some αI > 0, we have

(B) sup
t∈D
|f(t)| > αI , ∀f ∈ F(I, λ).

Observe that condition (1) of proposition 1.20 is satisfied for the family F(I, λ),
because the set Γ · LIΛ(I) · pj is discrete in V for every j ∈ J . The condition (2)
of proposition 1.20 follows from the condition (B) as above. Therefore due to the
proposition, one of the following holds:

(a) There exists t0 ∈ D such that dj(Θ(t0)λθ) ≥ αI for all θ ∈ Λ(I) and all j ∈ J .

In this case by condition (A) we have Θ(t0)Γ ∈ WαI ,aI ,bI (I). We fix this I ∈ I,
t0 ∈ B, and constants 0 < aI < bI and αI > 0 and stop the procedure.

(b) There exist j0 ∈ J , θ0 ∈ Λ(I), and an open convex subset D1 ⊂ D such that
the following holds:

(i) dj0(Θ(D1)λθ0) ⊂ (αI/2, αI).

(ii) For all θ ∈ Λ(I) and j ∈ J ,

sup
t∈D1

dj(θλΘ(t)) ≥ αI/M.

In this case, let I1 = I∪j0, and λ1 = λθ0. We will now show that conditions (A)
and (B) are satisfied for D1, I1 and λ1, with suitable constants aI1 ,bI1 , and αI1 .
Since di(gθ0) = di(g), ∀i ∈ I and ∀g ∈ G, condition (A) is satisfied with
aI1 = αI/2 and bI1 = αI .

By lemma 1.16, there exists a finite set E ⊂ P(Q) (depending only on I and
j0) such that for any θ ∈ Λ(I ∪ {j0}), there exists θ′ ∈ Λ(I) and δ ∈ E such
that θ0θ = θ′δ. Hence for every j ∈ J \ {j0},

sup
t∈D1

dj(Θ(t)λ1θ) = sup dj(Θ(t)λθ0θ)

= sup dj(Θ(t)λθ′δ)

= sup dj(Θ(t)λθ′) · dj(δ)
≥ αI/M · β,
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where β = minδ∈E dj(δ) > 0 depends only on I and j0. Therefore condition (B)
is also satisfied for the family F(I1, λ1) and αI1 = βαI/M > 0.

This completes the description of our procedure.

To prove the theorem, we start with I = ∅, λ = e, and D = B. Then condition (A)
is vacuously satisfied. We can assume that condition (1) in the statement of the
theorem does not hold. Then condition (B) is satisfied for F(∅, e).

We can repeatedly apply the above procedure till we get I, λ ∈ ΓLI , and constants
0 < aI < bI and αI > 0 such that di(Θ(B)λθ) > αI for all θ ∈ Λ(I); at which step we
are through. Since the cardinality of I increases each time we apply the procedure,
it must stop after at most r steps. This completes the proof. �

Now in the arithmetic case the theorem 1.14 is obtained by combining theorem 1.12
with theorem 1.15.

1.2.2 Case of semisimple Lie groups of R-rank 1

Let G be a connected semisimple Lie group of R-rank 1, Γ a lattice in G, and π :
G→ G/Γ the quotient map. Let A be a maximal R-split torus in G and P a minimal
parabolic subgroup of G containing A. Let U be the unipotent radical of P . Let K
be a maximal compact subgroup of G such that the Cartan involution of G associated
to K preserves A. Let M = ZG(A) ∩K. Then we have the decompositions G = KP
and P = MAU .

Let g denote the Lie algebra of G and u the Lie subalgebra of g associated to
U . Fix an AdK-invariant norm on g and consider the associated norm on V as
described in notation 1.13. The norm on V is now K-invariant. We define a function
d : G→ R∗ as

d(g) = ‖g · pU‖2, ∀g ∈ G.
In view of the decomposition G = KP , we have that

g · pU = det(Adg|u) · pU , ∀g ∈ P,

and
g · pU = ±pU , ∀g ∈MU.

For η > 0, define Sη = {g ∈ G : 0 < d(g) < η}. By [18, Theorems 0.6-0.7] we
have the following.

Proposition 1.21 There exists a finite subset F of G such that the following holds:

1. For every f ∈ F , the orbit Uπ(f) ∼= U/(fΓf−1 ∩ U) is compact.

2. For any η > 0, the set (G/Γ) \ π(SηF ) is compact.

3. There exists η0 > 0 such that for any f1, f2 ∈ F and g1, g2 ∈ Sη0, if π(g1f1) =
π(g2f2) then f1 = f2 and g1

−1g2 ∈MU .

In particular, for any g ∈ G, if there are γ1, γ2 ∈ Γ and f1, f2 ∈ F such that
d(gγifi

−1) < η0 for i = 1, 2, then f1 = f2 and γ1f1
−1 · pU = ±γ2f2

−1pU ; in
particular, d(gγ1f1

−1) = d(gγ2f2
−1).
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�

The next result is an analogue of theorem 1.15 in the rank 1 case.

Theorem 1.22 For any connected set C ⊂ G, one of the following conditions is
satisfied:

1. There exists λ ∈ FΓ such that

‖gλ−1 · pU‖2 < η0/2, ∀g ∈ C.

2. π(C) 6⊂ π(Sη0/2F ).

Proof. Suppose that (1) and (2) do not hold. Then there exist g1, g2 ∈ C and λ1, λ2 ∈
FΓ such that d(g1λ1

−1) < η0/2, d(g2λ1
−1) = η0/2, and d(g2λ2

−1) < η0/2. This
contradicts part (2) of proposition 1.21. �

Now in the rank-1 case, the theorem 1.14 is deduced from theorem 1.12 and
theorem 1.22. As indicated before this completes the proof. �
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Chapter 2

Invariant measures of unipotent
flows and behaviour of polynomial
trajectories near their supports

In technical terms this chapter is the core the thesis. We describe here a method
for investigating dynamics of individual trajectories of unipotent flows, and more
generally, ‘polynomial trajectories’ on homogeneous spaces. This uses crucially the
homogeneity of ergodic invariant measures for unipotent flows proved by Ratner.
The remaining chapters of the thesis show how the method can be applied in various
situations.

2.1 Finite volume, ergodicity and Zariski density

First observe the following.

Lemma 2.1 Let F be a locally compact Hausdorff second countable group acting
continuously on a locally compact Hausdorff second countable space X. For a point
x ∈ X define Fx = {g ∈ F : gx = x}. Consider the map φ : F/Fx → X, defined by
φ(gFx) = gx for all g ∈ F . Then the orbit Fx is closed if and only if the map φ is
proper. In particular, Fx is F -equivariantly homeomorphic to the homogeneous space
F/Fx.

Lemma 2.2 Let G be locally compact Hausdorff second countable group and Γ a
discrete subgroup of G. Let F and H be cloded subgroups of G. Let Z1 and Z2 be
closed orbits of F and H respectively in G/Γ, and put Z = Z1 ∩Z2. Then every orbit
of F ∩H in Z is both open and closed in Z. In particular, for any subgroup L of G
and any point x ∈ G/Γ, there exists the smallest closed subgroup F of G containing
L such that the orbit Fx is closed.

Proof. Let z ∈ Z. Then Fz = Z1 and Hz = Z2 are closed. Therefore F/Fz ' Fz and
H/Hz ' Hz. Also Gz, Fz and Hz are discrete. Therefore there exists a neighbourhood
Ω of the identity e in G such that ΩΩ−1 ∩ Gz = {e}, (Fz ∩ Ωz) = (F ∩ Ω)z and
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(Hz ∩ Ωz) = (H ∩ Ω)z. This implies that (Fz ∩Hz ∩ Ωz) = (F ∩H ∩ Ω)z. Hence
(F ∩H)z is open in Fz ∩Hz = Z for every z ∈ Z. Now (F ∩H)z is closed, because
its complement in Z is the union of open F ∩H orbits in Z and Z is closed. �

Notation 2.3 Let G be a connected Lie group, Γ a lattice in G, X = G/Γ, and
L a subgroup such that the unipotent one-parameter subgroup of G contained in L
generate L.

Our aim in this section is to prove the following:

Theorem 2.4 For x ∈ X let F be the smallest subgroup of G such that L ⊂ F and
Fx is closed. Then the following holds.

1. The stabilizer Fx is a lattice in F .

2. A unipotent one-parameter subgroup of G contained in L acts ergodically on Fx
with respect to the F -invariant probability measure.

3. Let ρ : F → GL(V ) be a finite dimensional representation such that ρ(L) is
generated by one-parameter groups of unipotent transformations on V . Then
ρ(Fx) is Zariski dense in ρ(F ).

We recall some preliminaries and a result due to Margulis before going to the
proof of the theorem.

Definition 2.5 A subgroup H of G is said to have property-D if for every locally
finite H-invariant measure σ on X, there exist measurable H-invariant subsets Xi,
i ∈ N such that σ(Xi) <∞ for all i ∈ N and X =

⋃
i∈NXi.

In particular if H has property-D then every locally finite H-ergodic and H-
invariant measure on X is finite.

Proposition 2.6 [5, Theorem 4.3]. Any unipotent subgroup U ⊂ G has property-D.
�

Definition 2.7 Let F be a topological group, H ⊂ F and L ⊂ F . We say that the
triple (F,H,L) has the Mautner property if the following condition is satisfied: for
any continuous unitary representation of F on a Hilbert space H, if a vector ξ ∈ H
is fixed by L then it is also fixed by H.

The following Proposition is a slight modification of Theorem 1.1 in [24].

Proposition 2.8 Let F be a Lie group and L be a subgroup such that the unipotent
one-parameter subgroups contained in L generate L. Then there exists a closed normal
subgroup H of F such that (i) L ⊂ H and (ii) the triple (F,H,L) has the Mautner
property.

18



Proof. Let U be a unipotent one-parameter subgroup contained in L. By Theorem
1.1 of [24], there exists a normal subgroup HU ⊂ F such that (a) (F,HU , U) has
the Mautner property and (b) the image of Ad(U) in the automorphism group of
the Lie algebra of F/HU is relatively compact. For each u ∈ U , Adu is a unipotent
transformation of the Lie algebra of F , therefore the image of U in F/HU is in the
center. Hence the group UHU is normal in F and (F,UHU , U) has the Mautner
property.

Let U1, . . . , Un be unipotent one-parameter subgroups of G which generate L. Let
H1, . . . , Hn be normal subgroups of F such that Ui ⊂ Hi and the triples (F,Hi, Ui)
have the Mautner property for all 1 ≤ i ≤ n. Then H = H1 · · ·Hn satisfies the
conditions (i) and (ii). �

The proof of theorem 2.4 depends on the following observation by Margulis.

Lemma 2.9 [20, Remarks 3.12]. Suppose H ⊂ G admits a Levi decomposition H =
S ·N , where S is a semisimple group without compact factors and N is the unipotent
radical of H. Then H has property-D.

Proof. Let σ be a locally finite H invariant measure on X. We consider the left regular
unitary representation on L2(X, σ).

Let W be a maximal unipotent subgroup of S. Then W ·N is a unipotent subgroup
of G. By proposition 2.6 there exists a measurable W ·N invariant partition {Xi}i∈N
of X such that σ(Xi) < ∞ for all i ∈ N. If χi denotes the characteristic function
of Xi then χi is a W · N invariant function in L2(X, σ). By proposition 2.8 there
exists a normal subgroup Q of G containing W ·N such that χi is Q invariant for all
i ∈ N. Since S is semisimple group without compact factors, S ⊂ Q. Hence Xi is H
invariant for all i ∈ N. This completes the proof. �

Now we discuss the group theoretic structure of a closed subgroup generated by
unipotent one-parameter subgroups.

Lemma 2.10 Let H ⊂ G be a closed subgroup such that the unipotent one-parameter
subgroups of G contained in H generate H. Then H admits a Levi decomposition
H = S · N , where S is a semisimple group with no compact factors and N is the
unipotent radical of H.

Proof. It is enough to prove the lemma for the adjoint group of G. Therefore we may
assume that G ⊂ GL(n,R) and its unipotent elements are unipotent linear transfor-
mations. By Levi decomposition H = S ·R, where S is a connected semisimple group
and R is the radical of H. Suppose H1 is a normal subgroup of H containing R such
that H/H1 is a compact semisimple group. Note that under a surjective morphism a
unipotent element projects to a unipotent element. Since compact semisimple groups
contain no nontrivial unipotent elements, by hypothesis H = H1. This shows that S
has no compact factors.

To prove the other part we argue as follows; we refer the reader to [26, Prelimi-
naries 2] for the results used in the the argument.

Let H be the smallest algebraic R-subgroup of GL(n,C) containing H. Let
N be the unipotent radical of H. By Levi decomposition there exists a connected
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semisimple R-subgroup S ⊂ H such that S · N is a normal subgroup of H and
T = H/(S ·N) is an algebraic R-torus. Now the projection of any unipotent element
of H in T is unipotent. But any algebraic torus contains only semisimple elements.
Hence by hypothesis H ⊂ S ·N. By minimality of H, H = S ·N.

Since H normalizes the Lie subalgebra r corresponding to its radical R, by defini-
tion H normalizes r⊗C. Hence R is contained in the radical of H. Since the radical
of H is unipotent, R consists of unipotent linear transformations. This completes the
proof. �

Lemma 2.11 Let L be as in notation 2.3. Suppose that L acts ergodically on X
with respect to a probability measure ν. Then L contains a unipotent one-parameter
subgroup of G acting ergodically on the measure space (X, ν).

Proof. Let N be the radical of L. Then L = S · N , where S is a semisimple group
with no compact factors and N is a unipotent subgroup of G. Let U1 be a unipotent
one-parameter subgroup of S such that no proper normal subgroup of S contains U .
Then W = U1N is a unipotent subgroup of G, and it is not contained in any proper
normal subgroup of L. Therefore by Mautner’s phenomenon, W acts ergodically with
respect to ν, (see [24, Theorem 1.1] and [22]). Now by [8, Proposition 2.2], there exists
a one-parameter subgroup of N which acts ergodically on X with respect to ν. �

Proposition 2.12 Let F be a connected Lie group, ∆ be a closed nonconnected sub-
group of F and U = {ut}t∈R be a one-parameter subgroup of F such that U∆ = F .
Let ρ : F → GL(E) be a finite dimensional representation of F such that ρ(U) con-
sists of unipotent linear transformations of E. Then every ∆-stable subspace of E is
also F -stable.

Proof. Let W be ∆-stable subspace of E. Passing to a suitable exterior power of ρ,
we may assume that dim(W ) = 1. For any v ∈ E \{0}, let v̄ ∈ P1(E) denote the one-
dimensional subspace of E containing v. Let ρ̄ : F → PGL(E) be the projective linear
representation of F on the projective space P1(E) corresponding to ρ; that is, ρ̄(v̄) =
ρ(v) for all v ∈ E \ {0}. Let w ∈ W \ {0}, and let ϕ : R → E be the map given by
ϕ(t) = ρ(ut)w for all t ∈ R. Fix an orthonormal basis {e1, . . . , en} of E with respect
to some inner product. Since ρ(U) consists of unipotent linear transformations, there
exist polynomials ϕ1, . . . , ϕn on R such that ϕ(t) =

∑n
i=1 ϕi(t)en for all t ∈ R. Now

ϕ2
i (t)/

∑n
j=1 ϕ

2
j(t) converges as t→∞ for 1 ≤ i ≤ n. Hence limt→∞ ϕ(t)/‖ϕ(t)‖ = p

for some p ∈ E with unit norm.
Let ∆0 denote the connected component of the identity in ∆. If F = U∆ then

F = U∆0 and there exists t0 ∈ R \ {0} such that ukt0 ∈ ∆ for all k ∈ N. Therefore
ρ(∆)w = w and ϕ(kt0) = w for all k ∈ N. Since ϕ is a polynomial function, it must
be constant. Thus ρ(F )w = w in this case.

Suppose F \ U∆ 6= ∅. For any f ∈ F \ U∆, there exist sequences {tk}k∈N ⊂ R,
and {δk}k∈N ⊂ ∆ such that tk → ∞ and utkδk → f as k → ∞. For x ∈ E \ {0}, let
x̄ denote its image in P1(E). Since ρ̄(∆)w̄ = w̄,

ρ̄(f)w̄ = lim
k→∞

ρ̄(utkδk)w̄ = lim
k→∞

ρ̄(utk)w̄ = lim
k→∞

φ(tk) = p̄.
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Now for any u ∈ U , uf ∈ F \ U∆. Therefore

p̄ = ρ̄(uf)w̄ = ρ̄(u)(ρ̄(f)w̄) = ρ̄(u)p̄.

Thus ρ̄(U)p̄ = p̄. By putting u = e we get that p̄ = w̄. Therefore ρ̄(U∆)w̄ = w̄.
Hence ρ̄(F )w̄ = w̄. This completes the proof. �

We also need the following lemma.

Lemma 2.13 Let F be a Lie group, Λ be a discrete subgroup of F and H be a normal
subgroup of F such that HΛ = F . Then H acts ergodically on (F/Λ, σ), where σ is
a locally finite F -semi-invariant measure on F/Λ with the modular function of F as
its character (cf. [26, §1.4]).

Proof. The proof of Lemma 8.2 in [3] goes through as it is, if we replace L2(F/Λ, σ)
by the space of locally integrable functions on (F/Λ, σ). �

Proof of theorem 2.4. By proposition 2.8 there exists a smallest closed normal sub-
group H of F containing L such that the triple (F,H,L) has the Mautner property.

Since H is normal in F , HFx is a subgroup of F . If H1 = HFx then H1 ⊃ H
and H1x is closed in Fx. By minimality of F as in the hypothesis, H1 = F . Hence
HFx = F .

Let H ′ be the closure of the group generated by all unipotent one-parameter
subgroups of G contained in H. Then L ⊂ H ′ and H ′ in normal in F . Therefore by
the hypothesis on H, H ′ = H.

Let σ be a locally finite F -semi-invariant measure on F/Fx with a character ∆F ,
where ∆F is a modular function of F . If f is the Lie subalgebra corresponding to F
then ∆F (f) = | det(Adf |f )| for all f ∈ F .

Since H is the closure of a subgroup generated by unipotent one-parameter sub-
groups, ∆F (H) = 1. Therefore σ is H-invariant. By lemma 2.13, H acts ergodically
on (F/Fx, σ). Since Fx is closed, the natural inclusion F/Fx ↪→ X is proper. There-
fore we may treat σ as a locally finite ergodic invariant measure of H on X. By
Lemmas 2.9 and 2.10, H has property-D. Hence σ is finite. This proves part (1).

A finite F -semi-invariant measure σ must be F -invariant. Now by the Maut-
ner property of the triple (F,H,L), L also acts ergodically on (Fx, σ). Hence by
lemma 2.11, there exists a one-parameter unipotent subgroup U of G contained in L
such that U acts ergodically on Fx. This proves part (2).

Ergodicity of the action implies, by Hedlund’s lemma, that U has a dense orbit
in Fx. Therefore replacing U by one of its conjugates in F , we may assume that
Ux = Fx. To prove part (3), we may assume that V = Rn. Let d ≥ 0. Let Pd
be the finite dimensional vector space of real polynomials of degree ≤ d defined on
Mn(R), the space of n × n matrices with real entries. Consider the representation
π of GL(n,R) on Pd defined as follows: for g ∈ GLn(R), p ∈ Pd and x ∈ M(n,R),
we have (π(g)p)(x) = p(g−1x). Clearly π(g)p ∈ Pd. Since π : GL(n,R) → GL(Pd)
is an algebraic morphism, π preserves algebraic unipotent subgroups. Thus π ◦ ρ(U)
consists of unipotent linear transformations of Pd. Define

Id = {p ∈ Pd : p(ρ(δ)) = 0 for all δ ∈ Fx}.
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Then Id is a subspace of Pd. Since Fx is a group, Fx stabilizes Id. Therefore by
proposition 2.12, for all f ∈ F and p ∈ Id we have π(ρ(f−1))p ∈ Id and hence
p(ρ(f)) = [π(ρ(f−1))p](e) = 0. Thus p(ρ(f)) = 0 for all f ∈ F and p ∈ Id. Since this
happens for every d ≥ 0, we conclude that ρ(F ) is contained in the Zariski closure of
ρ(Fx) in GL(n,R). This proves (3). �

2.2 Finite invariant measures of a unipotent flow

Let G be a Lie group, Γ a discrete subgroup of G, X = G/Γ, and π : G → X
the quotient map. Let L be a subgroup of G generated by unipotent one-parameter
subgroups of G contained in L. Let X0(L) be the set of all x ∈ X such that there
exists a closed subgroup F of G containing L such that the orbit Fx is closed and
admits a finite F -invariant measure.

For any x ∈ X, let F (x, L) denote the smallest closed subgroup F of G containing
L such that the orbit Fx is closed; such a subgroup exists by lemma 2.2.

Remark 2.14 Let x ∈ X0(L). Then by proposition 2.12, F (x, L)x is a lattice in
F (x, L) and Ad(F (x, L)x) is Zariski dense in Ad(F (x, L)), where Ad : G → Aut(g)
is the Adjoint representation.

Notation 2.15 Let H be the collection of all closed connected subgroups H of G
such that H ∩ Γ is a lattice in H and Ad(H ∩ Γ) is Zariski dense in Ad(H). Note
that by [26, Lemma 1.12], the orbit HΓ/Γ is closed.

Fix a (positive definite) inner product on g, and let σ be the induced Riemannian
metric on G which is invariant under all the right translations. Then σ projects to a
unique Riemannian metric σ̄ on X such that the map π : G→ X is locally isometric.
Now for any H ∈ H the restriction of σ̄ on the submanifold π(H) = HΓ/Γ determines
a smooth measure, which is H-invariant. We denote the total measure of this orbit
by volσ(π(H)).

It was proved by Ratner [30, Theorem 1] that the collection H is countable; also
compare [35, Lemma 5.2] and [14, Proposition 2.3]. We recall the following result,
which provides more precise information in this regard.

Proposition 2.16 ([14, Theorem 5.1]) For any c > 0, the set

Hc = {H ∈ H : volσ(π(H)) < c}

is finite. In particular, the collection H is countable.

Notation 2.17 For any H ∈ H, define

N(H,L) = {g ∈ G : L ⊂ gHg−1} and

S(H,L) =
⋃

F∈H, F⊂H,F 6=H

N(F,L).
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By remark 2.14, we have

X0 =
⋃
H∈H

π(N(H,L)).

Lemma 2.18 Let g ∈ G, H ∈ H, and put x = π(g). Then

g ∈ N(H,L)⇔ F (x, L) ⊂ gHg−1

and
g ∈ S(H,L)⇔ F (x, L) ⊂ gHg−1 and dimF (x, L) < dim gHg−1.

In other words,
g ∈ N(H,L) \ S(H,L)⇔ F (x, L) = gHg−1.

In particular,

π(N(H,L) \ S(H,L)) = π(N(H,L)) \ π(S(H,L)). (2.1)

Proof. The assertions easily follow from the definitions and theorem 2.4. �

Notation 2.19 For any H ∈ H, define

TH = π(N(H,L) \ S(H,L)),

[H] = {γHγ−1 : γ ∈ Γ} ⊂ H, and

[H] = {[H] : H ∈ H}.

Lemma 2.20 For any H1, H2 ∈ H, the following holds:

1. [H1] = [H2]⇔ TH1 = TH2.

2. [H1] 6= [H2]⇔ TH1 ∩ TH2 = ∅.

In particular, the notation T[H] := TH is well defined, and X0 is the disjoint union of
{T[H] : [H] ∈ [H]}.

Proof. Suppose that [H1] = [H2]. Let γ ∈ Γ be such that H2 = γH1γ
−1. Then for

any g ∈ G and x = π(g), by lemma 2.18,

g ∈ N(L,H2) \ S(L,H2) ⇔ F (x, L) = gH2g
−1 = (gγ)H1(gγ)−1

⇔ gγ ∈ N(L,H1) \ S(L,H1).

Hence TH1 = TH2 .
Suppose that there exists x ∈ TH1 ∩ TH2 . Then there exist g1, g2 ∈ π−1(x) such

that H1 = g1
−1F (x, L)g1 and H2 = g2

−1F (x, L)g2. Now g1 = g2γ for some γ ∈ Γ.
Therefore H2 = γH1γ

−1. Hence [H1] = [H2].
From this discussion the statements (1) and (2) follow. �
Now we state the fundamental theorem due to Ratner describing ergodic invariant

measures for actions of the subgroups L on G/Γ as above.

23



Theorem 2.21 (Ratner [30]) Let µ be an L-invariant and L-ergodic probability
measure on X. Let

F = {g ∈ G : g · µ = µ}.

Then F acts transitively on supp(µ); that is, µ is the unique F -invariant probability
measure on a closed F -orbit.

Using this result we give a description of any finite L-invariant probability measure
on X.

Proposition 2.22 Let µ be a L-invariant probability measure on X. For every [H] ∈
[H], let µ[H] denote the restriction of µ on T[H]. Then the following statements hold.

1. The measure µ[H] is L-invariant, and any L-ergodic component of µ[H] is of
the form gλ, where g ∈ N(H,L) \ S(H,L) and λ is a H-invariant measure on
HΓ/Γ.

2. For H1, H2 ∈ H, if [H1] 6= [H2], then the measures µ[H1] and µ[H2] are mutually
singular.

3. For any measurable set A ⊂ X,

µ(A) =
∑

[H]∈[H]

µ[H](A).

In particular, if µ(π(S(G,L)) = 0 then Γ is a lattice in G and µ is the unique G-
invariant probability measure on X.

Proof. Since µ and TH are invariant under the action of L, so is µ[H]. The collection,

{gπ(H) ∩ TH : g ∈ N(H,L) \ S(H,L)}

forms a measurable partition of T[H] into L-invariant atoms. Hence any ergodic com-
ponent of µ[H], say ν, is supported on a closed orbit of the form gπ(H) for some
g ∈ N(H,L). Now for every x ∈ gπ(H)∩ TH , we have that F (x, L) = gHg−1. Hence
by theorem 2.21, ν is gHg−1-invariant. Hence λ = g−1ν is an H-invariant measure
supported on π(H). This proves (1).

The statement (2) follows from lemma 2.20(2).

To prove part (3), let ν ∈ P(X) be any ergodic component of µ. Let x ∈ supp(ν)
be such that the orbit Lx is dense in supp(ν). By Ratner’s theorem, supp(ν) = Λ(ν)x.
Clearly, Λ(ν)0 = F (x, L). If we put H = g−1F (x, L)g for any g ∈ π−1(x), then by
theorem 2.4, H ∈ H. Now by lemma 2.18, we have that g ∈ N(H,L) \S(H,L). Also
note that ν(π(S(H,L))) = 0. Therefore ν(X \ T[H]) = 0. This shows that ν is an
ergodic component of µ[H]. In view of statement (2), this implies the statement (3).

�
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2.3 Linear presentation of G-actions near singular

sets

Let V be the representation of G as described in notation 1.13. For H ∈ H, let
ηH : G → V be the map defined by ηH(g) = gpH = (∧dAdg)pH for all g ∈ G. Let
NG(H) denotes the normalizer of H in G. Define

N1
G(H) = ηH

−1(pH) = {g ∈ NG(H) : det(Adg|h) = 1}.

Applying proposition 2.16 we deduce the following.

Theorem 2.23 ([14, Theorem 3.4]) The orbit ΓpH is closed, and hence discrete. In
particular, the following holds.

1. The map φ : G/ΓH → G/Γ× V defined by

φ(gΓH) = (π(g), ηH(g)), ∀g ∈ G,

is proper.

2. The orbit N1
G(H)Γ is closed in G/Γ.

3. For every x ∈ G/Γ, the set ηH(π−1(x)) of representatives of x in V is discrete.

4. For any compact set Z ⊂ G/Γ, the set ηH(π−1(Z)) is closed in V .

Proof. First note that for any g ∈ G,

‖gp‖ = Jacobian of the linear map : w ∈ h 7→ (Adg)w ∈ (Adg)h

= volσ(gπ(H))/volσ(π(H)). (2.2)

For any γ ∈ Γ, we have γπ(H) = π(γHγ−1). Therefore, for any c > 0,

#{ηH(γ) ∈ V : γ ∈ Γ, ‖ηH(γ)‖ < c}
≤ #{F ∈ H : [F ] = [H], volσ(π(F ))/volσ(π(H)) < c}
< ∞, due to proposition 2.16.

This shows that ηH(Γ) is discrete in V , proving the main part of the theorem.
To prove statement (1), let K be a compact subset of G and D a compact subset

of V . Define
S = {γ ∈ Γ : γpH ∈ K−1 ·D}.

Since K−1 ·D is compact and ηH(Γ) is discrete, the set SpH is finite. Since S ⊂ Γ
and ΓpH = ΓH , the set q(S) is finite, where q : G→ G/ΓH is the quotient map. Note
that

φ−1(π(K), D) ⊂ Kφ−1(π(e), K−1D) = Kq(S).

Therefore φ(K,D) is compact in G/ΓH . This completes the proof of statement (1).
The rest of the statements are easy consequences of statement (1). �
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Proposition 2.24 (cf. [14, Prop. 3.2]) Let V (H,L) be the linear span of ηH(N(H,L))
in V . Then

ηH
−1(V (H,L)) = N(H,L).

Proof. For any l in the Lie algebra l of L, let a linear map φl : V → V be defined as
φ(v) = l ∧ v for all v ∈ V . For any g ∈ G,

g ∈ N(H,L) ⇔ l ⊂ Adg(h)

⇔ η(g) ∈ kerl∈l φl

⇔ η(g) ∈ Linear span of η(N(H,L).

�

Notation 2.25 Put ΓH = NG(H) ∩ Γ; then γπ(H) = π(H). Therefore by equa-
tion 2.2, γpH = ±pH . In view of this we define V̄ = V/{Id,−Id}, if ΓHpH =
{pH ,−pH}, and define V̄ = V if ΓHpH = pH . The action of G factors through
the quotient map from V onto V̄ . Let p̄H denote the image of pH in V̄ , and define
η̄H : G → V̄ as η̄H(g) = gp̄H for all g ∈ G. Now ΓH = η̄H

−1(p̄H) ∩ Γ. Let V̄ (H,L)
denote the image of V (H,L) in V̄ . Note that the inverse image of V̄ (H,L) in V is
V (H,L).

For any subset Z of G/Γ, define

Rep(Z) := {gp̄H ∈ V̄ : g ∈ G, π(g) ∈ Z}.

Proposition 2.26 Let H ∈ H and D be a compact subset of V̄ (H,L). Let K be a
compact subset of G/Γ. Define

S(K,D) = {x ∈ K : #(Rep(x) ∩D) > 1}.

Then the following holds.

1. S(K,D)) is compact.

2. There exist m ∈ N and Fi ∈ H, where Fi ⊂ H and dimFi < dimH for
1 ≤ i ≤ m, such that

S(K,D) ⊂ π

(
m⋃
i=1

NG(Fi, L)

)
.

3. Given any compact set K1 ⊂ K \ S(K,D), there exists a neighbourhood Φ of
D in V̄ such that for any x ∈ K1, the set Rep(x) ∩ Φ contains at most one
element.

Proof. By theorem 2.23, there exists a compact set C ⊂ N(H,L) such that q(C) =
φ−1(K,D) ⊂ G/ΓH . Put

C∗ = C ∩

 ⋃
γ∈Γ\ΓH

Cγ

 .
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Then S(K,D) = π(C∗). Put ∆ = (Γ \ ΓH) ∩ C−1C. Then

C∗ = C ∩

(⋃
γ∈∆

Cγ

)
.

Since ∆ is finite, C∗ is compact. This proves (1).
Let x ∈ S(K,D). Then there exist c ∈ C∗ and γ ∈ ∆ such that x = π(c) and

cγ ∈ C. Since C ⊂ N(H,L), we have c−1Lc ⊂ γHγ−1. Let W be the subgroup
generated by all unipotent one-parameter subgroups contained in H ∩ γHγ−1. Put
F (γ) = F (π(e),W ); clearly F (γ) = F (Γ, L) in the earlier notation. Then F (γ) ∈ H,
F (γ) ⊂ H ∩ γHγ−1, and c ∈ N(F (γ), L). Since γ 6∈ ΓH , we have dimF (γ) < dimH.
Thus,

C∗ ⊂ ∪γ∈∆N(F (γ), L).

This proves (2).
Let {Φi}i∈N be a decreasing sequence of relatively compact neighbourhoods of D

such that ∩i∈NΦi = D. Let Ci be a compact subset of G such that q(Ci) = φ−1(K,Φi).
Put ∆i = Ci

−1Ci ∩ (Γ \ ΓH) and

C∗i = Ci ∩
(
∪γ∈Γ\ΓHCiγ

)
= Ci ∩ (∪γ∈∆i

Ciγ) .

Put ∩i∈NCi = C. Since φ is a proper map, we have q(C) = φ−1(K,D). Therefore
∩i∈N∆i = ∆. Since ∆i is finite for each i ∈ N, there exists i1 ∈ N such that ∆i = ∆
for all i ≥ i1. Therefore, ∩i∈NC∗i = C∗. Hence given a compact set K1 ⊂ K \ π(C∗),
there exists i0 ∈ N such that K1 ⊂ K \ π(C∗i ) for all i ≥ i0. Now the statement (3)
holds for Φ = Φi0 . �

2.4 Dynamics of polynomial trajectories near sin-

gular sets

The following growth property of polynomial maps has turned out to be of great
significance in the study of polynomial trajectories near affine algebraic varieties.

Proposition 2.27 ([14, Proposition 4.2]) Let a compact set C ⊂ V̄ (H,L), an ε > 0
and a d ∈ N be given. Then there exists a larger compact set D ⊂ V̄ (H,L) such
that the following property holds: for any neighbourhood Φ of D in V̄ there exists a
neighbourhood Ψ of C in V̄ such that for any θ ∈ Pd(G), any w ∈ V̄ and any bounded
interval (a, b) of R, if θ(a)w 6∈ Φ, then

|{t ∈ (a, b) : θ(t)w ∈ Ψ}| < ε · |{t ∈ (a, b) : θ(t)w ∈ Φ}|. (2.3)

Proof. Let C be a finite collection of linear functionals on V such that

V (H,L) = ∩f∈Cf−1(0).

For any f ∈ C, θ ∈ Pd(G) and w ∈ V , the maps t 7→ f(θ(t) ·w) and t 7→ ‖θ(t) ·w‖2

are in Pd1 for some d1 ∈ N depending on d and dimG.
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By lemma 1.4, there exists M > 1 such that for any bounded interval J and
ψ ∈ Pd1 , we have ∣∣∣∣{t ∈ J : |ψ(t)| < (1/M) sup

t∈J
|ψ(t)|}

∣∣∣∣ ≤ ε · |J |.

For R > 0, define B(R) = {w ∈ V̄ (H,L) : ‖w‖2 < R}. Let R > 0 be such that
C ⊂ B(R). Put

D = V̄ (H,L) ∩B(MR).

For c > 0, let Zc(C) be the image of the set {w ∈ V : |f(w)| < c, ∀f ∈ C} in V̄ (H,L).
Now given a neighborhood Φ of D, there exists c > 0 such that Zc(C)∩B(MR) ⊂ Φ.
Put

Ψ = Zc/M(C) ∩B(R).

Then Ψ is a neighborhood of C contained in Φ.
Fix any w ∈ V , let w̄ denote its image in V̄ (H,L). Let J be any connected

component of I2. Suppose that θ(a) · w̄ 6⊂ Φ. Then there exists a1 ∈ J such that
θ(a1)·w̄ 6∈ Φ. Therefore either |f0(θ(a1)·w)| ≥ c for some f0 ∈ C or ‖θ(a1)·w‖2 ≥MR.
Hence by the choice of M > 0, we have that∣∣{t ∈ J : |f(θ(t) ·w)| < c/M and ‖θ(t) ·w‖2 < R}

∣∣ ≤ ε · |J |.

From this eq. 2.3 follows.
�

Proposition 2.28 Given a compact set C ⊂ N(H,L) \ S(H,L), an ε > 0, and a
d ∈ N, there exists a neighbourhood Ω of π(C) in G/Γ such that for any θ ∈ Pd(G),
one of the following conditions is satisfied.

(i) There exists γ ∈ Γ such that

π(θ(R)) ⊂ θ(0)γπ(N1
G(H)).

Moreover if π(θ(0)) ∈ C then γ can be chosen to depend only on θ(0), rather
than the map θ.

(ii) There exists T0 ≥ 0 such that for all T > T0,

|{t ∈ (0, T ) : π(θ(t)) ∈ Ω}| ≤ εT.

Proof. Let a compact set D ⊂ V̄ (H,L) be as in proposition 2.27, for ε/2 in place
of ε. Let K be any compact neighbourhood of π(C) in G/Γ. By proposition 2.26,
we have π(C) ∩ S(K,D) = ∅. Let Ω1 be an open neighbourhood of π(C) such that
Ω1 ⊂ K \ S(K,D). Again by proposition 2.26, there exists a neighborhood Φ of D
such that for every x ∈ Ω1, the set Rep(x) ∩ Φ contains at most one element.

By the choice of D there exists a neighborhood Ψ of C contained in Φ such that
eq. 2.3 holds for ε/2 in place of ε.
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Put

Ω = {y ∈ Ω1 : Rep(y) ∩Ψ 6= ∅} and

E = {t ∈ R : π(θ(t)x) ∈ Ω}. (2.4)

By the choice of Φ, for every t ∈ E, there exists a unique wt ∈ Γ · p̄H such that
θ(t) ·wt ∈ Φ.

Suppose that for some s ∈ E, there exists an unbounded interval J containing s
such that θ(J) ·ws ⊂ Φ. Since θ ∈ Pd(G), we have θ(t) ·ws = θ(0) ·ws for all t ∈ R.
Let γ ∈ Γ such that ws = γ · p̄H . Then condition (1) holds for g = θ(0)γ. Also
wt = ws for every t ∈ E.

Therefore if condition (1) does not hold, then there exists T0 ≥ 0 with the following
property: Take any T > T0 and put I = [0, T ]. Then for any t ∈ E ∩ I, there exists
a largest open interval I(t) ⊂ I containing t such that

θ(I(t)) ·wt ⊂ Φ and θ(I(t)) ·wt 6⊂ Φ. (2.5)

Put I = {I(t) : t ∈ E ∩ I}. Then for any I1 ∈ I and s ∈ I1 ∩ E, we have
I(s) = I1. Therefore for any t1, t2 ∈ E ∩ I, if t1 < t2 then either I(t1) = I(t2) or
I(t1)∩I(t2) ⊂ (t1, t2). Hence every t ∈ I is contained in at most two distinct elements
of I. Thus ∑

I1∈I

|I1| ≤ 2|I|. (2.6)

Now by eqs. 2.3 and 2.5, for any t ∈ E ∩ I,

|{s ∈ I(t) : θ(s) ·wt ∈ Ψ}| < (ε/2) · |I(t)|. (2.7)

Therefore by eqs. 2.6 and 2.7, we get

|E ∩ I| ≤ (ε/2) ·
∑
I1∈I

|I1| ≤ ε · |I|.

This completes the proof. �
The use of a result like proposition 2.28 is illustrated here by an alternate proof

of Ratner’s distribution rigidity theorem.

Theorem 2.29 (Ratner [31]) Let G be a Lie group and Γ a lattice in G. Let U =
{u(t)} be a unipotent one-parameter subgroup of G and x ∈ G/Γ. Then there exists
a closed subgroup F of G containing U such that the orbit Fx is closed, it admits a
finite F -invariant probability measure, say µ, and the trajectory {u(t)x : t > 0} is
uniformly distributed with respect to µ.

Proof. For T > 0, let νT ∈ P(G/Γ) be such that for any bounded continuous function
f on G/Γ, ∫

G/Γ

f dνT =
1

T

∫ T

0

f(u(t)x) dt.
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Let Ti →∞ be any sequence in R such that νTi → ν for some ν ∈ P(G/Γ∪ {∞}) in
the weak∗ topology. In view of the theorem due to Dani and Margulis as stated in the
introduction, we have that ν({∞}) = 0. Hence ν ∈ P(G/Γ). It is straightforward to
verify that ν is U -invariant.

Now in view of lemma 2.20, let H ∈ H be of smallest possible dimension such that
ν[H] 6= 0. Let C1 be any compact subset of N(U,H)\S(U,H) such that ν[H](π(C1)) =
ε > 0. Then for any neighbourhood Ω of π(C1), we have that νTi(Ω) > ε for all large
i ∈ N. Apply proposition 2.28 for C = C1 and the ε as above. Then the condition (2)
of the proposition fails to hold for {u(t)}, x, and any neighbourhood Ω of π(C1).
Hence there exists g ∈ π−1(x) such that g ∈ C. Hence we have that g ∈ N(U,H).
Therefore Ux ⊂ gHg−1x = g(HΓ/Γ).

If dimH < dimG, then the proof can be completed by an obvious inductive argu-
ment. Therefore we may assume that H = G. Hence ν = ν[H]. Now by lemma 2.20,
every ergodic component of ν[H] is G-invariant. Hence ν is G-invariant. Thus we
showed that every limit point of the set {νT : T > 0} in P(G/Γ∪{∞}) is the unique
G-invariant probability measure on G/Γ. This proves that νT → µ as T →∞, where
µ is the G-invariant probability measure on G/Γ. This completes the proof. �

Now we generalize proposition 2.28 in the case of Θ ∈ Pd,m(G) instead of θ ∈
Pd,1(G). Our proof of this generalization requires the following additional condition.

Assumption: G/Γ admits a finite G-invariant measure.

Theorem 2.30 Given a compact set C1 ⊂ N(H,L) \ S(H,L), an ε > 0, and d,m ∈
N, there exists a neighbourhood Ω of π(C) in G/Γ such that for any x ∈ G/Γ and
any sequence Θi → Θ0 in Pd,m(G), one of the following conditions is satisfied.

(I) There exists g ∈ π−1(Θ0(0)x) such that

Θ0(Rm)x ⊂ gπ(N1
G(H)).

(II) There exists a bounded open convex set B′ ⊂ Rm and i0 ∈ N such that for all
bounded open convex subsets B of Rm containing B′ and all i ≥ i0,

1

|B|
|{t ∈ B : Θi(t)x ∈ Ω}| < ε.

We shall give a proof by induction on dimH. For this purpose we first need to
prove a stronger and technical version of it.

Proposition 2.31 Let ε > 0, d ∈ N, and a compact set K ⊂ G/Γ be given. Let
C1 be a compact subset of N(H,L). Then there exist compact sets D ⊂ V̄ (H,L) and
S1 ⊂ ∪mi=1NG(Fi, L), where m ∈ N, and Fi ∈ H with Fi ⊂ H and dimFi < dimH
for 1 ≤ i ≤ m, such that the following holds: Let a neighbourhood Φ of D in V̄ and
a compact set Z ⊂ K \ π(S1) be given. Then there exists a neighbourhood Ω of π(C1)
in G/Γ such that for any x ∈ G/Γ, Θ ∈ Pd,m(G), and a bounded open convex set
B ⊂ Rm, one of the following conditions is satisfied:
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(1) Θ(B)x ∩ Z = ∅.

(2) Θ(B)v ⊂ Φ for some v ∈ Rep(x).

(3)

1

|B|
|{t ∈ B : Θ(t)x ∈ Ω}| < ε.

First we derive theorem 2.30 from proposition 2.31.

Proof of theorem 2.30: Let K be the closure of a relatively compact neighbourhood
of π(C1). Obtain D and S1 using proposition 2.31.

Due to eq. 2.1, π(C1)∩π(S(H,L)) = ∅. Therefore there exists a neighbourhood of
π(C1) containded in K with its closure Z such that Z ∩ π(S1) ∪ S(K,D) = ∅. Using
proposition 2.26 obtain a neighbourhood Φ of D in V̄ such that every x ∈ Z has at
most one representative in Φ. Now using proposition 2.31, obtain a neighbourhood
Ω of π(C1) contained in Z such that for any Θ ∈ Pd,m(G) and any bounded open
convex set B ⊂ Rm, at least one of the three possibilities of its conclusion holds.

Suppose that the possibility (II) of the present theorem does not hold. Then after
passing to a subsequence, there exists a sequence {Bi}i∈N of bounded open convex
sets in Rm such that Bi ⊂ Bi+1 for all i ∈ N, ∪i∈NBi = Rm, and for each i ∈ N,
the possibility (3) fails to hold for Bi in place of B and Θi in place of Θ. Now since
Ω ⊂ Z, the possibility (1) cannot hold. Therefore the possibility (2) must hold.

Hence for every i ∈ N, there exists vi ∈ Rep(x) such that Θi(Bi)vi ⊂ Φ; in
particular, vi ⊂ Θi(B1)−1Φ. Since Θi → Θ0 as i → ∞, the set (∪i∈NΘi(B1)−1) Φ
is relatively compact. Since Rep(x) is discrete, by passing to a subsequence we may
assume that vi = v1 for all i ∈ N. Therefore, Θ0(Rm)v1 ⊂ Φ. Since the map
Rm 3 t 7→ Θ0(t)v1 ∈ V is polynomial, we have that Θ0(Rm)v1 = Θ(0)v1. Let
g1 ∈ π−1(x) such that v1 = g1pH . Since the stabilizer of v1 in G is g1N

1
G(H)g1

−1,
we have Θ0(Rm)g1 ⊂ gN1

G(H), where g = Θ0(t0)g1. Thus the possibility (I) of the
present theorem holds. This completes the proof. �

For the purpose of proving proposition 2.31 by using induction on dimH we need
its following consequence.

Corollary 2.32 Let ε > 0, d ∈ N, and a compact set K ⊂ G/Γ be given. Let C1 be
a compact subset of ∪ni=1NG(Hi, L), where n ∈ N and Hi ∈ H for 1 ≤ i ≤ n. Then
there exists a compact set D1 ⊂ ∪ni=1NG(Hi, L) such that the following holds: Given
a compact set Z ⊂ K \ π(D1), there exists a neighbourhood Ω of π(C1) in G/Γ such
that for any x ∈ G/Γ, Θ ∈ Pd,m(G), and a bounded open convex set B ⊂ Rm, either

Θ(B)x ∩ Z = ∅

or
1

|B|
|{t ∈ B : Θ(t)x ∈ Ω}| < ε. (2.8)
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Proof. We prove the result for n = 1, the general case follows easily from this.
Using proposition 2.31 for H = H1, obtain compact sets D ⊂ V̄ (H,L) and

S1 ⊂ ∪mi=1NG(Fi, L),

where m ∈ N, and Fi ∈ H with Fi ⊂ H, and dimFi < dimH for 1 ≤ i ≤ k.
By theorem 2.23(4) and proposition 2.24, there exists a compact set D̃ ⊂ N(H,L)

such that
{x ∈ K : Rep(x) ∈ D} = π(D̃).

Now D1 = S1 ∪ D̃ is a compact subset N(H,L).
Let Z ⊂ K \ π(D1) be a given compact set. Then Rep(Z) ∩ D = ∅. By theo-

rem 2.23, Rep(Z) is closed in V̄ . Therefore there exists a neighbourhood Φ of D in
V̄ such that

Φ ∩ Rep(Z) = ∅. (2.9)

Suppose that Θ(B)x∩Z 6= ∅. Then the Possibilities (1) and (2) of proposition 2.31
cannot hold due to eq. 2.9. Therefore the possibility (3) of the proposition must hold,
and hence eq. 2.8 holds. This completes the proof. �

Proof of proposition 2.31: Let Ω1 be a relatively compact neighbourhood of π(C1)
in G/Γ. By theorem 1.12, there exists a compact set K1 ⊂ G/Γ such that for any
y ∈ Ω1, θ ∈ Pd(G), and T > 0,

1

T
`({t ∈ [0, T ] : θ(t)x ∈ K1}) > 1− 1/(4k). (2.10)

For the compact set C = C1pH ⊂ V̄ (H,L), obtain a compact set D ⊂ V̄ (H,L)
such that the conclusion of proposition 2.27 is satisfied for ε/(4k) in place of ε.

As we mentioned earlier, we shall prove this theorem by induction on dimH. Note
that when dimH is small, S(H,L) = ∅ and hence S(K1, D) = ∅. We begin with some
observations for which we first assume that S(K1, D) 6= ∅.

By proposition 2.26, there exists m ∈ N and for each 1 ≤ i ≤ m there exists
Fi ∈ H with Fi ⊂ H and dimFi < dimH such that

S(K1, D) ⊂ π

(
m⋃
i=1

NG(Fi, L)

)
.

Therefore there exists a compact set C2 ⊂ ∪mi=1NG(Fi, L) such that

S(K1, D) = π(C2).

By induction we can assume that the theorem is true for each Fi. Hence the
corollary 2.32 is valid for C2 in place of C1 and Fi in place of Hi in its statement.
Thus we obtain a compact set

S2 ⊂
m⋃
i=1

NG(Fi, L)
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such that the following holds: Given any compact set Z1 ⊂ Ω1 \ π(S2) there exists a
neighbourhood Ω2 of S(K1, D) such that for any y ∈ Z1, θ ∈ Pd(G), and T > 0,

1

T
`({t ∈ [0, T ] : θ(t)y ∈ Ω2}) < 1/(4k). (2.11)

Again we apply corollary 2.32 as above for S2 in place of C1 and obtain a compact
set

S1 ⊂
m⋃
i=1

NG(Fi, L)

such that the following holds: Given a compact set Z ⊂ K \π(S1) as in the statement
of the proposition, there exists a neighbourhood Ω3 of π(S2) such that for the given
x ∈ G/Γ, Θ ∈ Pd,m(G), and the bounded open convex set B ⊂ Rm, either

Θ(B)x ∩ Z = ∅

or
1

|B|
|{t ∈ B : Θ(t)x ∈ Ω3}| < ε/(4k). (2.12)

Put
Z1 = Ω1 \ Ω3 (2.13)

and obtain a neighbourhood Ω2 of S(K1, D)) such that eq. 2.11 holds.
Suppose if S(K1, D) = ∅, the above equations are satisfied if we put S2 = S1 = ∅

and Ω3 = Ω2 = ∅.
Let Φ be a given neighbourhood of D as in the statement of the present propo-

sition. Using proposition 2.26, we replace Φ by a smaller neighbourhood such that
every y ∈ K1 \ Ω2 has at most one representative in Φ.

By the choice of D, there exists a neighbourhood Ψ of C in V̄ with Ψ ⊂ Φ such
that for any θ ∈ Pd(G), any v ∈ V̄ , and an interval (a, b), if θ(a)v 6∈ Φ, then

`({t ∈ [a, b] : θ(t)v ∈ Ψ}) < ε/(4k) · `({t ∈ [a, b] : θ(t)v ∈ Φ}). (2.14)

Put
Ω = {y ∈ Ω1 : Rep(y) ∩Ψ 6= ∅}. (2.15)

Then Ω is an open neighbourhood of π(C1).
After having made the above constructions, we start analysing the Possibilities

(1), (2), and (3) of the conclusion of the present proposition.
First suppose that the possibility (2) does not hold. Take any v ∈ Rep(x). Then

there exists tv ∈ B such that Θ(tv)v 6∈ Φ. Let S denote the unit sphere in Rm

centered at the origin. Take any x ∈ S. Define θx(t) = Θ(tx+ tv) for all t ∈ R. Thus
θx ∈ Pd(G). Define

Ψx(v) = {t ∈ [0, 1] : θx(t)v ∈ Ψ},
Φx(v) = {t ∈ [0, 1] : θx(t)v ∈ Φ},
Ψ∗x(v) = {t ∈ Ψx(v) : θx(t)x ∈ Z1},
Φ′x(v) =

⋃
{(a, b) ⊂ Φx(v) : (a, b) ∩Ψ∗x(v) 6= ∅}, and

Φ∗x(v) = {t ∈ Φ′x(v) : θx(t)x ∈ K1 \ Ω2}
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Let I = (a, b) be any connected component of Φ′x(v). Since 0 6∈ Φx(v), we have
a 6∈ Φx(v). Therefore by eq. 2.14,

`(Ψx(v) ∩ I) < ε/(4k)`(I). (2.16)

Since I ∩Ψ∗x(v) 6= ∅, by eqs. 2.10, 2.11, and 2.13,

`(Φ∗x(v) ∩ I) > (1− 1/(2k))`(I). (2.17)

Define

Ψ∗(v) = {t ∈ B : Θ(t)v ∈ Ψ, Θ(t)x ∈ Z1} =
⋃
x∈S

Ψ∗x(v)x + tv, (2.18)

Φ′(v) =
⋃
x∈S

Φ′x(v)x + tv, and

Φ∗(v) = {t ∈ Φ′(v) : Θ(t)x ∈ K1 \ Ω2} =
⋃
x∈S

Φ∗x(v)x + tv. (2.19)

Due to eq. 2.16 and eq. 2.17, we can apply lemma 1.10 for sets Ψ′(v) in place of E,
Φ∗(v) in place of F , and Φ∗(v) in place of D, and the constants ε1 = ε/(4k) and
ε2 = 1/(2k). Then

|Ψ∗(v)| ≤ (ε/2) · |Φ∗(v)|. (2.20)

Observe that by our choice of Φ, for any two distinct v1, v2 ∈ Rep(x),

Φ∗(v1) ∩ Φ∗(v2) = ∅. (2.21)

Now by eqs.2.13, 2.15, 2.20, 2.21, and 2.18, we get

|{t ∈ B : Θ(t)x ∈ Ω ∩ Z1}| ≤ | ∪v∈Rep(x) Ψ∗(v)|
≤

∑
v∈Rep(x)

|Ψ∗(v)|

≤ (ε/2) ·
∑

v∈Rep(x)

|Φ∗(v)|

≤ (ε/2) · |B|. (2.22)

Now suppose that possibility (1) also does not hold. Then eq. 2.12 holds. The
possibility (3) follows from eq. 2.12, 2.13, and eq. 2.22. This completes the proof. �
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Chapter 3

On the space of ergodic invariant
measures of unipotent flows

3.1 Main result and its consequences

Let G be a connected Lie group, Γ a discrete subgroup of G, and π : G → G/Γ the
natural quotient map. Let X denote the homogeneous space G/Γ on which G acts
by left translations.

Let P(X) denote the set of Borel probability measures on X equipped with the
weak∗ topology. The group G acts on P(X) such that for every g ∈ G and µ ∈ P(X),
we have gµ(A) = µ(g−1A) for all Borel measurable subsets A ⊂ X. The action
(g, µ) 7→ gµ is continuous.

For µ ∈ P(X), define

supp(µ) = {x ∈ X : µ(Ω) > 0 for every neighbourhood Ω of x in X}

Then supp(µ) is a closed subset of X. Also define the invariance group

Λ(µ) = {g ∈ G : gµ = µ}.

Then Λ(µ) is a closed (and hence a Lie) subgroup of G.
Let Q(X) = {µ ∈ P(X) : the group generated by all unipotent one-parameter

subgroups of G contained in Λ(µ) acts ergodically on X with respect to µ}.
Recall that by lemma 2.11, every µ ∈ Q(X) is ergodic for the action of a single

unipotent one-parameter subgroup of G, say {u(t)} contained in Λ(µ). And by the
Birkhoff ergodic theorem, for almost all x ∈ supp(µ), the trajectory {u(t)x : t > 0}
is uniformly distributed with respect to µ.

Now we state the main result of this chapter.

Theorem 3.1 Let {{ui(t)}t∈R} be a sequence of unipotent one-parameter subgroups
of G, and let {µi} be a sequence in P(X) such that for each i ∈ N, µi is an ergodic
{ui(t)}t∈R-invariant measure. Suppose that µi → µ in P(X), and let x ∈ supp(µ).
Then the following holds:

1. supp(µ) = Λ(µ)x.
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2. Let gi → e be a sequence in G such that for every i ∈ N, gix ∈ supp(µi) and the
trajectory {ui(t)gix : t > 0} is uniformly distributed with respect to µi. Then
there exists i0 ∈ N such that for all i ≥ i0,

supp(µi) ⊂ gi · supp(µ).

3. Let L be the subgroup generated by all the (unipotent one-parameter) subgroups
gi
−1{ui(t)}gi, i ≥ i0. Then µ is invariant and ergodic for the action of L on X.

In particular, Q(X) is a closed subset of P(X). Also for any compact set K ∈ X,
the set Q(K) := {µ ∈ Q(X) : K ∩ supp(µ) 6= ∅} is closed in P(X).

In view of a theorem of Dani and Margulis that in a finite volume homogeneous
space, unipotent trajectories starting from a fixed compact set visit a (possibly larger)
fixed compact set with frequency (of visit) close to 1 (see theorem 1.12), we deduce
the some useful consequences of the main theorem under the following additional
condition on X.

Assumption: The homogeneous space X admits a finite G-invariant measure.

Let X ∪{∞} denote the one-point compactification of X. Note that P(X ∪{∞})
is compact.

Corollary 3.2 Let {µi} ⊂ Q(X) be a sequence of measures converging to a measure
µ ∈ P(X ∪ {∞}). Then either µ ∈ Q(X) or µ({∞}) = 1.

Moreover, Q(K) is compact for any compact set K ⊂ X.

Let W = {Ui = {ui(t)}t∈R : i ∈ N} be a sequence of unipotent one-parameter
subgroups of G. We say that a point x ∈ X is regular for W if there does not exist
any proper closed subgroup F of G such that the orbit Fx is closed and F ⊃ Ui for
infinitely many i ∈ N.

We say that a point x ∈ X is generic for W if for every bounded continuous
function f of X the following holds: There exists a sequence Si →∞ in R such that
for any sequence {Ti} with each Ti ≥ Si, we have

lim
i→∞

1

Ti

∫ Ti

0

f(ui(t)x) dt =

∫
X

f dµG,

where µG is the G-invariant probability measure on X.

Corollary 3.3 A point x ∈ X is generic for W if and only if it is regular for W.
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3.2 Proofs of the results

Proof of theorem 3.1. Without loss of generality we may assume that {ui(t)} 6= {e} for
all large i ∈ N. Then for each large i ∈ N there exists wi ∈ g such that ‖wi‖ = 1 and
{ui(t) : t ∈ R} = {exp(twi) : t ∈ R}, where g is the Lie algebra of G and ‖ ·‖ denotes
a Euclidean norm on it. By passing to a subsequence, we may assume that wi → w
for some w ∈ g, ‖w‖ = 1. For any t ∈ R, we have Ad(exp(twi)) → Ad(exp(tw)) as
i→∞. Therefore U = {exp(tw) : t ∈ R} is a (nontrivial) unipotent subgroup of G.
Since exp twi → exp tw for all t ∈ R and µi → µ, it follows that µ is invariant under
the action of U on X.

Let W be the subgroup generated by all unipotent one-parameter subgroups of G
contained in Λ(µ). Then dimW > 0.

By proposition 2.22(1), there exists H ∈ H such that µ(π(S(H,W ))) = 0 and
µ(π(N(H,W ))) > 0. Hence there exists a compact set C ⊂ N(H,W )\S(H,W ) such
that

µ(π(C)) = α > 0. (3.1)

Let gi → e be a sequence in G such that for every i ∈ N, gix ∈ supp(µi) and the
trajectory {ui(t)gix}t>0 is uniformly distributed with respect to µi; note that, due to
Birkhoff ergodic theorem, such a sequence always exists. Take any y ∈ supp(µ)∩π(C).
Then for each i ∈ N there exists yi ∈ {ui(t)gix}t≥0 such that as i → ∞, yi → y.
Let hi → e be a sequence in G such that hiyi = y for all i ∈ N. Put µ′i = hiµi
and u′i(t) = hiui(t)hi

−1 for all t ∈ R and all i ∈ N. Then µ′i → µ as i → ∞. Also
y ∈ supp(µ′i) and the trajectory {u′i(t)y : t > 0} is uniformly distributed with respect
to µ′i for each i ∈ N.

Let h ∈ π−1(y). For each i ∈ N, apply proposition 2.28 for C as above, ε = α/2,
and θ(t) = ui(t)h (∀t ∈ R) to obtain a neighbourhood Ω of π(C). By equation 3.1,
there exists k0 ∈ N such that µ′i(Ω) > ε for all i ≥ k0. Therefore for any i ≥ k0 and
all large T > 0,

1

T
` ({t ∈ [0, T ] : u′i(t)y ∈ Ω}) > ε.

This shows that for each i ≥ k0, the condition (2) of proposition 2.28 is violated for
θ(t) = ui(t)h, ∀i ≥ k0. Therefore according to the condition (1) of proposition 2.28,
there exists γ ∈ Γ such that for each i ≥ k0,

{u′i(t)y}t∈R ⊂ hγπ(N1
G(H)),

Put F = (hγ)N1
G(H)(γ−1h−1). By theorem 2.23, the orbit F 0y = hγπ(N1

G(H))0 is
closed in X.

We intend to prove the parts (1) and (2) of theorem 3.1 by induction on dimG.

First suppose that dimF 0 < dimG. By lemma 2.1, we can treat F 0y as a homo-
geneous space of F 0. Also each {u′i(t)} is a unipotent subgroup of F 0 and each µ′i is
supported on F 0y. Therefore by induction hypothesis applied to F 0, we obtain the
following: supp(µ) = (Λ(µ) ∩ F 0)y and there exists j0 ∈ N such that for all i ≥ j0,
supp(µ′i) ⊂ supp(µ).
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Next suppose that dimF 0 = dimG. In this case F = G, and hence H is a normal
subgroup of G. Let Ḡ = G/H be the quotient group. Since dimH ≥ dimW > 0,
we have dim Ḡ < dimG. We will project the measures on the homogeneous space
G/(HΓ) of Ḡ and apply induction.

Let ρ : G → Ḡ be the quotient homomorphism. Since HΓ is closed in G, the
subgroup Γ̄ = ρ(Γ) is closed (and hence discrete) in Ḡ. Put X̄ = Ḡ/Γ̄, and let
ρ̄ : X → X̄ be the natural quotient map. Define a map ρ̄∗ : P(X)→ P(X̄) such that
for any ν ∈ P(X) and any Borel measurable subset A ⊂ X̄, ρ̄∗(ν)(A) = ν(ρ̄−1(A)).
Then ρ̄∗ is continuous. Put ν̄ = ρ̄∗(ν) for any ν ∈ P(X).

Put ȳ = ρ̄(y). Observe the following: for each i ≥ k0, (1) {ρ(u′i(t))} is a unipotent
one-parameter subgroup of Ḡ, (2) µ̄i is ergodic {ρ(u′i(t))}-invariant, (3) ȳ ∈ supp(µ̄′i),
and (4) the trajectory {ρ(u′i(t))ȳ}t>0 is uniformly distributed with respect to µ̄′i. Also
µ̄i → µ̄ as i → ∞. Therefore by induction hypothesis applied to Ḡ, we obtain the
following:

1. supp(µ̄) = Λ(µ̄)ȳ.

2. There exists j0 ≥ k0 such that for all i ≥ j0,

supp(µ̄′i) ⊂ supp(µ̄).

Since H is normal in G, by proposition 2.22(2), each ergodic component of µH
is H-invariant. Since N(H,W ) = G and µ(π(S(H,W ))) = 0, we have µ = µH .
Therefore µ is H-invariant.

We claim that
ρ−1(Λ(µ̄)) = Λ(µ). (3.2)

First observe that for any ν ∈ P(X), by Fubini’s theorem, there exists a unique
ν̄-measurable map

ν(·) : X̄ → P(X)

with the following properties:

1. For almost all x̄ ∈ (X̄, ν̄), we have that νx ∈ P(ρ̄−1(x̄)).

2. For any bounded continuous function f on X, define a function f̄ on X̄ as

f̄(x̄) =

∫
ρ̄−1(x̄)

f dνx̄ for a.e. x̄ ∈ (X̄, ν̄).

Then f̄ is ν̄-measurable, and ∫
X̄

f̄ dν̄ =

∫
X

f dµ.

By uniqueness of ν(·), for any g ∈ G, we have

(g · ν)x̄ = g · νρ(g−1)x̄, for a.e. x̄ ∈ (X̄, ρ(g) · ν̄).
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Since µ is H-invariant and H ⊂ ker ρ, for any h ∈ H, we have that

µx̄ = (h · µ)x̄ = h · µρ(h−1)x̄ = h · µx̄, for a.e. x̄ ∈ (X̄, µ̄).

Therefore the measure µx̄ is H-invariant for a.e. x̄ ∈ (X̄, µ̄). Since ρ̄−1(x̄) is a closed
H-orbit in X, any H-invariant probability measure on this set is unique. Hence for
any H-invariant probability measures µ1 and µ2 on X, if µ̄1 = µ̄2 then µ1 = µ2.

Now suppose that ρ(g)µ̄ = µ̄ for some g ∈ G. Since ρ(g)µ̄ = ḡ · µ and g · µ is
gHg−1 = H-invariant, we have g · µ = µ. This completes the proof of the claim as in
equation 3.2.

Now for all i ≥ j0,

supp(µ′i) ⊂ ρ̄−1(supp(µ̄)) = ρ−1(Λ(µ̄))y = Λ(µ)y.

In particular, supp(µ) ⊂ Λ(µ)y. Since Λ(µ)y admits a unique Λ(µ)-invariant proba-
bility measure, we have that supp(µ) = Λ(µ)y.

Thus in either of the cases dimF 0 < dimG or dimF 0 = dimG, we have obtained
the following conclusions: supp(µ) = Λ(µ)y, and there exists j0 ∈ N such that for all
i ≥ j0, supp(µ′i) ⊂ supp(µ). Thus x ∈ Λ(µ)y, and hence

supp(µ) = Λ(µ)x.

Since hi(gix) ∈ hi · supp(µi) = supp(µ′i) for all i ∈ N, we have (higi)x ∈ Λ(µ)x for
all i ≥ j0. Therefore since hi → e and gi → e, there exists i0 ≥ j0 such that for all
i ≥ i0, higi ∈ Λ(µ). Hence for all i ≥ i0,

supp(µi) = hi
−1 · supp(µ′i) ⊂ hi

−1 · Λ(µ)x = gi · supp(µ).

This proves parts (1) and (2) of theorem 3.1 for G.
Now let L be defined as in part (3) of the theorem. Let M be the smallest closed

subgroup of G containing L such that the orbit My is closed. Then {u′i(t)y : t ∈
R} ⊂My and hence supp(µ′i) ⊂My. Thus Λ(µ)y = supp(µ) ⊂My. By minimality,
M = Λ0(µ). Now by theorem 2.4, L acts ergodically on Λ(µ)y with respect to µ.
This completes the proof of the theorem. �

Proof of corollary 3.2. By lemma 2.11, for each i ∈ N, there exists a unipotent
one-parameter subgroup {u(t)} acting ergodically on X with respect to µi. Hence
by Birkhoff ergodic theorem, there exists a set Xi ⊂ X such that µi(Xi) = 1 and
the trajectory {ui(t)x : t > 0} is uniformly distributed with respact to µi for each
x ∈ Xi. Suppose that µ(∞) < 1. Then there exists a compact set K ⊂ X such that
K ∩ supp(µi) 6= ∅ for all i ∈ N. Since Xi = supp(µ) for all i ∈ N, there exists a
sequence xi ∈ Xi converging to a point x ∈ K. Now by the theorem of Dani and
Margulis [14, Theorem 6.1] (see theorem 1.12 for a more general statement), given
δ > 0, there exists a compact set K1 ⊂ X such that for any i ∈ N and T > 0,

(1/T )|{t ∈ [0, T ] : ui(t)xi ∈ K1}| > 1− δ.

Hence µ(K1) ≥ 1− δ. Now the corollary follows from theorem 3.1. �
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Proof of corollary 3.3. First suppose that x is regular for W . By theorem 2.29, for
each i ∈ N, the trajectory {ui(t)x : t > 0} is uniformly distributed with respect to
some µi ∈ Q(x). By corollary 3.2, there exists a sequence ik →∞ such that µik → µ
for some µ ∈ Q(x). Then by theorem 3.1, Uik ⊂ Λ(µ) for all large k ∈ N. Since x is
regular for W , we have that Λ(µ) = G. In particular, µi → µ = µG as i→∞.

Let f be a given bounded continuous function on X. Then for each i ∈ N, there
exists Si > 0 such that for every Ti > Si,∣∣∣∣∫

X

f dµi −
1

Ti

∫ Ti

0

f(ui(t)x) dt

∣∣∣∣ < ε/i.

Now since µi → µG, we have

lim
i→∞

1

Ti

∫ Ti

0

f(ui(t)x)dt =

∫
fdµG.

Thus x is generic for W . The converse implication is obvious. �
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Chapter 4

Limit distributions of polynomial
trajectories on homogeneous spaces

The basic property of a unipotent one-parameter subgroup used in the work of
Ratner is that the map t 7→ Adu(t) is a polynomial function in each co-ordinate
of End(Lie(G)). Therefore it is natural to ask the following question. Suppose
G = SLn(R), Γ = SLn(Z), and θ : R → G is a map which is a polynomial function,
namely, each matrix co-ordinate is a polynomial. Then is it true that the trajectory
{φ(t)Γ : t > 0} is uniformly distributed with respect to a measure of the form µF as
above? In the case when G = Rn and Γ = Zn this indeed holds as can be deduced
from a classical result due to Weyl. In this paper we answer the question affirmatively
in a more general set up.

4.1 Main result and its consequences

A group G is called real algebraic if it is an open subgroup of R-points of an algebraic
group G defined over R. A map Θ : Rk → G is called regular algebraic if it is the
restriction of a morphism Θ : Ck → G of algebraic varieties defined over R. We
caution the reader that a map such as φ : R → R∗ given by φ(t) = 1 + t2 for all
t ∈ R, is not regular algebraic according to our definition, as φ does not extend to an
algebraic map from C to C∗.

In this chapter we prove the following result.

Theorem 4.1 Let G be a real algebraic group and let ∆ ⊂ G1 ⊂ G be closed subgroups
and suppose that G1/∆ admits a finite G1-invariant measure. Let k ∈ N and Θ :
Rk → G be a map defined as Θ(t1, . . . , tk) = θk(tk) · · · θ1(t1) for all (t1, . . . , tk) ∈ Rk,
where θi : R→ G is a regular algebraic map for i = 1, . . . , k. Suppose that Θ(0) = e
and Θ(Rk) ⊂ G1. Let F be the smallest closed subgroup of G containing Θ(Rk)
such that the orbit F∆ is closed in G/∆ and admits a unique F -invariant probability

measure, say µF . Suppose we are given sequences T
(1)
n → ∞, . . . , T (k)

n → ∞ in R as
n→∞, and consider the boxes Bn = [0, T

(1)
n ]× · · · × [0, T

(k)
n ], ∀n ∈ N. Then for any
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sequence gn → e in F and any f ∈ Cc(G/∆), we have

lim
n→∞

1

m(Bn)

∫
t∈Bn

f(Θ(t)gn∆) dm(t) =

∫
F∆

f dµF ,

where m denotes the Lebesgue measure on Rk.

We will also deduce the following fact using the arguments in our proof of theo-
rem 4.1.

Corollary 4.2 Let G, ∆, and G1 be as in theorem 4.1. Let θ : R → G be a regular
algebraic map such that θ(R) ⊂ G1 and θ(0) = e. Let F be the smallest closed
subgroup of G containing θ(R) such that the orbit F∆ is closed and admits a unique
F -invariant probability measure, say µF . Then for any k ≥ 1, any sequences gn → e
in F and Tn →∞ in R as n→∞, and any f ∈ Cc(G/∆), we have

lim
n→∞

1

Tn

∫ Tn

0

f(θ(t1/k)gn∆) dt =

∫
F∆

f dµF .

Using the above corollary, we obtain a variation of theorem 4.1 which holds for all
regular algebraic maps, the averages however being taken over increasing sequences
of balls (rather than boxes whose sizes could increase at different rates in different
coordinates).

Corollary 4.3 Let G, ∆, and G1 be as in theorem 4.1. Let Θ : Rk → G be a
regular algebraic map such that Θ(0) = e and Θ(Rk) ⊂ G1. Let F be the smallest
closed subgroup of G containing Θ(Rk) such that the orbit F∆ is closed and admits
a unique F -invariant probability measure, say µF . Then for any sequences gn → e in
F and Rn →∞ in R as n→∞, and any function f ∈ Cc(G/∆),

lim
n→∞

1

m(BRn)

∫
t∈BRn

f(Θ(t)gn∆) dm(t) =

∫
F∆

f dµF ,

where BR denotes the ball of radius R in Rk around origin.

Using these results we answer affirmatively a question raised by Ratner in [31, 32]
regarding the limit distributions of orbits of higher dimensional unipotent subgroups
on finite-volume homogeneous spaces of Lie groups. First we recall some notation
from [28].

Let N be a simply connected nilpotent group with Lie algebra n. Let B =
{b1, . . . , bk} be a basis in n. For v ∈ n write v =

∑k
i=1 αi(v)bi. We say that the basis

B is triangular if αk([bi, bj]) = 0 for all k ≤ max{i, j} and all i, j = 1, . . . , k. Any
permutation of a triangular basis is called a regular basis.

Corollary 4.4 Let G be a Lie group, Γ be a closed subgroup of G such that G/Γ
admits a finite G-invariant measure, and N be a simply connected unipotent subgroup
of G. Let {b1, . . . , bk} be a regular basis in n. For s1, . . . , sk > 0 define

S(s1, . . . , sk) = {(exp tkbk) · · · (exp t1b1) ∈ N : 0 ≤ tj ≤ sj, j = 1, . . . , k}.
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Then for any x ∈ G/Γ, let F be the smallest closed subgroup of G containing N such
that the orbit Fx is closed and admits a unique F -invariant probability measure, say
µF . Then for any f ∈ Cc(G/Γ),

lim
s1→∞,...,sk→∞

1

λ(S(s1, . . . , sk))

∫
h∈S(s1,...,sk)

f(hx) dλ(h) =

∫
Fx

f dµF ,

where λ denotes a haar measure on N .

In view of [14, Theorem 3], we obtain ‘uniform versions’ of theorem 4.1 and corol-
lary 4.3 in the following results.

Corollary 4.5 Let G, ∆, and G1 be as in theorem 4.1. Let Θ : Rk → G be a regular
algebraic map with Θ(0) = 0 and Θ(Rk) ⊂ G1. Let a compact set K ⊂ G/∆, a
function f ∈ Cc(G/∆), and an ε > 0 be given. Then there exist finitely many closed
subgroups H1, . . . , Hr of G, with each orbit HjΓ being homogeneous in X, and compact
sets

Cj ⊂ {g ∈ G : Θ(Rk)g ⊂ gHj}, j = 1, . . . , r,

such that the following holds: For any compact set K1 ⊂ K \
⋃r
j=1CjΓ there exists

T0 > 0 such that for any x ∈ K1 and any ball B in Rk around origin with radius at
least T0, ∣∣∣∣ 1

m(B)

∫
t∈B

f(Θ(t)x) dt−
∫
f dµG1

∣∣∣∣ < ε,

where µG1 is the G1-invariant probability measrue on G1/∆.

Further if there exist regular algebraic maps θl : R→ G for l = 1, . . . , k such that
Θ(t1, . . . , tk) = θk(tk) · · · θ1(t1) for all (t1, . . . , tk) ∈ Rk, then the above result holds
for any box B = [0, s1]× · · · × [0, sk] with each sl > T0.

We conclude this section with a natural question. Let θ be a map as in the
corollary 4.2. Then does there exist a closed subgroup F of G containing θ(Z) such
that the orbit F∆ is closed and admits a unique F -invariant probability measure, say
µF , and for any f ∈ Cc(G/∆),

lim
N→∞

1

N

N−1∑
n=0

f(θ(n)∆) =

∫
F∆

f dµF ?

In the case when G is a nilpotent group, this question can be answered affirmatively
(cf. [2, Chap. 7], for abelian case). But even in the simplest semisimple case of

G = G1 = SL2(R), ∆ = SL2(Z), and the regular algebraic map θ(t) =

(
1 t2

0 1

)
for

all t ∈ R, the question is unanswered.
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4.2 Some reductions

We begin by noting the following.

Proposition 4.6 Let G be a real algebraic group, and Θ : Rk → G be a regular
algebraic map such that Θ(0) = e.

1. Let L be the smallest closed subgroup of G containing Θ(Rk). Then L is gen-
erated by algebraic unipotent one-parameter subgroups of G.

2. Suppose further that there exist closed subgroups ∆ ⊂ G1 ⊂ G such that G1/∆
admits a finite G1-invariant measure and Θ(Rk) ⊂ G1. Let F be the small-
est closed subgroup containing Θ(Rk) such that the orbit F∆ is closed. Then
F/(F ∩∆) admits a finite F -invariant measure, and the Zariski closure of F ∩∆
contains F .

Proof. Let L̃ denote the Zariski closure of L in G. Recall that any regular algebraic
map from Rk to R∗ or to a compact algebraic group is constant. Therefore by the
definition of L, we have that L̃ has no nontrivial toral or compact factors. Hence L̃
is generated by algebraic unipotent one-parameter subgroups of G. In particular the
radical of L is unipotent, and hence L = L̃. This proves 1).

Let ∆̃ denote the Zariski closure of ∆ in G. By a version of Borel’s density theorem
as in [9, Theorem 4.1], all unipotent one-parameter subgroups of G1 are contained in
∆̃, in particular L ⊂ ∆̃. Now replacing G by ∆̃ and G1 by G1 ∩ ∆̃, we can assume
that ∆ is Zariski dense in G and in particular ∆0, the connected component of e in
∆, is a normal subgroup of G.

Now let φ : G → G/∆0 denote the quotient homomorphism. Then φ(∆) is
a discrete subgroup of φ(G). And the map φ̄ : G/∆ → φ(G)/φ(∆), defined as
φ̄(g∆) = φ(g)φ(∆) for all g ∈ G, is an equivariant isomorphism. Now φ(F ) is the
smallest closed subgroup of φ(G1) containing φ(L) such that φ(F )φ(∆) is closed. By
[35, Theorem 2.1], F/(F ∩ ∆) ∼= φ(F )/(φ(F ) ∩ φ(∆)) admits a finite F -invariant
measure.

Now by the above Borel density argument L is contained in the Zariski closure of
F ∩∆. Therefore due to the definition of F , the Zariski closure of F ∩∆ also contains
F . This proves (2). �

We now list some simplifying assumptions that can be made without loss of gen-
erality in proving theorem 4.1.

Note 4.7 In view of proposition 4.6 by replacing ∆ by F ∩∆, G1 by F , and G by
the Zariski closure of F we may assume that there is no proper algebraic subgroup
A of G such that Θ(Rk) ⊂ A and A∆ is closed. Moreover we may also assume that
F = G1.

Note 4.8 Let W be the closed subgroup generated by all algebraic unipotent one-
parameter subgroups of G contained in ∆0. Then W is a normal subgroup of G.
Let q : G → G/W be the natural quotient map. By [35, Lemma 2.9], W is a real
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algebraic group. Therefore G/W is a real algebraic group and q is a regular algebraic
map. Note that G/∆ ∼= q(G)/q(∆) equivariantly. Therefore without loss of genrality
we can replace ∆ by q(∆), G1 by q(G1), G by q(G), and Θ by q ◦ Θ. In view of
this we can assume that ∆ contains no nontrivial algebraic unipotent one-parameter
subgroups of G.

Note 4.9 Also, without loss of generality we may assume that θk is nonconstant.

Note 4.10 Let Ḡ1 = G1/∆
0, ρ : G1 → Ḡ1 denote the natural quotient homomor-

phism, ∆̄ = ρ(∆), and ρ̄ : G1/∆→ Ḡ1/∆̄ be the natural quotient map. Consider the
action of G1 on Ḡ1/∆̄ via the map ρ. Then ρ̄ is a G1-equivariant isomorphism. Also
for any d,m ∈ N, and Θ ∈ Pd,m(G1) we have that ρ ◦Θ ∈ Pd,m. Also ∆̄ is a discrete
subgroup of Ḡ1.

Therefore the results of Chapter 1 and Chapter 2 hold (with obvious necessary
changes) for the closed subgroup ∆ ⊂ G1 and the quotient space G1/∆ in place of
the discrete subgroup Γ of G and the quotient space G/Γ.

Limit distributions of polynomial trajectories on G/∆

Corollary 4.11 Let the notation be as in theorem 4.1. Let {Bn}n∈N be a sequence
of bounded open convex subsets of Rk containing 0. For each n ∈ N, let µn be the
probability measure on G/∆ such that for any f ∈ Cc(G/∆), we have∫

G/∆

f dµn =
1

m(Bn)

∫
t∈Bn

f(Θ(t)gn) dm(t).

Then there exist a strictly increasing sequence {ni}i∈N ⊂ N and a measure µ ∈
P(G/∆) such that µni → µ as i→∞.

Proof. Using the existence of limits in the space of probability measures on the one-
point compactification of G/∆, say X∗, we obtain a subsequence {µni} converging
to a probability measure µ on X∗. Since Θ(Rk)gn∆ ⊂ G1/∆ (∀n ∈ N), due to
theorem 1.12, for any ε > 0 there exists a compact set K ⊂ G/∆ such that µn(K) ≥
1− ε for all n ∈ N. Therefore µ(K) ≥ 1− ε, and hence µ(G/∆) = 1. �

Note 4.12 In view of corollary 4.11, to prove the theorem 4.1, it is enough to show
the following: For i = 1, . . . , k, let sequence T

(i)
n → ∞ as n → ∞ be given. Put

Bn = [0, T
(1)
n ] × · · · × [0, T

(k)
n ] for all n ∈ N. Suppose that µn → µ in P(G/∆) as

n→∞. Then µ is F -invariant and µ(F∆) = 1.

4.3 Invariance under a unipotent flow

In this section we show that the limiting distribution µ as in note 4.12 is invariant
under the action of a nontrivial unipotent one-parameter subgroup of G. This result
allows us to apply Ratner’s measure rigidity theorem in our study.
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We use the following observation to associate nontrivial unipotent one-parameter
subgroups to nonconstant regular algebraic maps into algebraic groups (cf. [11, Propo-
sition 2.4]).

Lemma 4.13 Let G be a real algebraic group and θ : R → G be a non-constant
regular algebraic map. Then there exists a q ≥ 0 and a nontrivial algebraic unipotent
one-parameter subgroup ρ : R→ G such that for any s ∈ R,

lim
t→∞

θ(t+ st−q)θ(t)−1 = ρ(s).

Proof. Let M(n,R) denote the affine space of n × n real matrices which contains G
as an affine subvariety. There exist polynomials θij(t) for i, j = 1, . . . , n, such that
θ(t) = (θij(t))n×n. Put

d = deg(θ(t)) := max
i,j=1,...,n

deg(θij(t)).

For ξ ∈ R, we have

θ(t+ ξ) = θ(t) +
d∑
l=1

θ(l)(t)
ξl

l!
.

Note that the l-th derivative θ(l)(t) is a regular algebraic map of degree d− l. Since
the map g → g−1 is regular algebraic, we have that the map t 7→ θ(t)−1 is also regular
algebraic. Put

q = max
1≤l≤d

(1/l) deg(θ(l)(t)θ(t)−1) ≥ 0.

Then for every 1 ≤ l ≤ d,

lim
t→∞

θ(l)(t)θ(t)−1t−ql = λl ∈ M(n,R), (4.1)

and (λ1, . . . , λd) 6= 0. Put

ρ(s) = I +
d∑
l=1

λl
sl

l!

for all s ∈ R. Then for any s ∈ R and any map t 7→ st with st → s as t → ∞, we
have

lim
t→∞

θ(t+ stt
−q)θ(t)−1 = ρ(s). (4.2)

Now for s1, s2 ∈ R,

ρ(s1 + s2)ρ(s2)−1 = lim
t→∞

(
θ(t+ (s1 + s2)t−q)θ(t)−1

)
·
(
θ(t)θ(t+ s2t

−q)−1
)

= lim
t→∞

θ(yt + sty
−q
t )θ(yt)

−1,

where yt = t+ s2t
−q and st = s1(yt/t)

q.

= ρ(s1). (4.3)

Thus by eqs. 4.1, 4.2, and 4.3, ρ : R → G is a nontrivial algebraic group homomor-
phism. Therefore ρ is a nontrivial algebraic unipotent one-parameter subgroup of G.
This completes the proof. �

We digress to modify the above result in the next lemma for its use in proving
corollary 4.2 later.
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Lemma 4.14 Let the notation be as in lemma 4.13. Take k ≥ 1. Put ψ(t) = θ(t1/k)
for all t > 0. Then for q1 = (1/k)(q + 1)− 1 > −1 and every s ∈ R,

lim
t→∞

ψ(t+ st−q1)ψ(t)−1 = ρ(s/k),

where ρ is the unipotent one-parameter subgroup as in lemma 4.13.

Proof. Using Taylor’s expansion, we get

(t+ st−q1)1/k = t1/k + stt
−q1−1+1/k = yt + sty

−k(q1+1−1/k)
t ,

where yt = t1/k, and st → s/k as t→∞. Now the result follows from eq. 4.2. �
We need the following elementary fact.

Lemma 4.15 For any bounded continuous function f on R, any q > −1, and s ∈ R,

lim
T→∞

1

T

∫ T

1

f(t+ st−q)− f(t) dt = 0,

where the rate of convergence depends only on s, q, and sup |f |, rather than f itself.
�

The next result is the first main step in the proof of theorem 4.1. Note that this
is the only place where we make use of the fact that Θ is of the product form, rather
than of the general form as in corollary 4.3.

Proposition 4.16 Let the measure µ be as constructed in note 4.12. Then µ is
invariant under a nontrivial unipotent one-parameter subgroup of G.

Proof. By note 4.9, θk is nonconstant. Obtain q > −1 and a nontrivial unipotent
one-parameter subgroup ρ : R → G as in lemma 4.13 for θk in place of θ. To show
that µ is invariant under the action of ρ, take any s ∈ R, and any f ∈ Cc(G/∆).
Then ∫

G/∆

f(ρ(s)x) dµ(x)

= lim
n→∞

1

m(Bn)

∫
t=(t1,...,tk)∈Bn

f(ρ(s)θ(tk) · · · θ(t1))gn∆) dm(t)

= lim
n→∞

1

m(Bn)

∫
(t1,...,tk−1)∈[0,T

(1)
n ]×···×[0,T

(k−1)
n ]

dt1 · · · dtk−1 ·

·
(∫

tk∈[0,T (k)]

f(θk(tk + st−qk )θk−1(tk−1) · · · θ1(t1))gn∆) dtk

)
= lim

n→∞

1

m(Bn)

∫
t∈Bn

f(Θ(t1, . . . , tk)gn∆)dt

=

∫
G/∆

f(x)dµ(x),

where the second equality follows from the choice of ρ and the uniform continuity of
f , and the third equality follows from lemma 4.15 applied to the integration in the
variable tk. This completes the proof. �
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4.4 Proofs of the results

Proof of theorem 4.1. We shall prove the theorem by induction on dimG/∆. Let µ
be a limiting distribution as in the note 4.12. Let W be the subgroup generated by
all the unipotent one-parameter subgroups of G preserving µ. By proposition 4.16,
dimW > 0. By proposition 2.22, there exists H ∈ H such that µ(π(S(H,W ))) = 0
and µ(π(N(H,W ))) > 0 (see note 4.10). Let C1 ⊂ N(H,W )\S(H,W ) be a compact
set such that µ(π(C1)) > ε for some ε > 0. Let Θ be as in the hypothesis, then
there exists l ∈ N such that Θ ∈ Pl(Rk, G). Since Θ(Rk) ⊂ G1 and G1/∆ admits a
finite G1-invariant measure, applying theorem 2.30 to G1 in place of G, we deduce the
following: There exists a neighbourhood Ω of π(C1) such that either (I) Θ(Rk)∆ ⊂
gN1(H)∆ for some g ∈ G, or (II) µn(Ω) < ε for all large n ∈ N. Now if (II) holds
then µ(π(C1)) ≤ ε, which is a contradiction. Therefore (I) must hold.

Since gN1(H)g−1 ⊃ ∆0, we have Θ(Rk) ⊂ gN1(H)g−1. By theorem 2.23, the orbit
gN1(H)∆ is closed. Also gN1(H)g−1 is an algebraic group. Therefore by the note 4.7,
G = gN1(H)g−1; that is G = N(H). Since µ(π(N(H,W ))) > 0, we have that W ⊂ H
and G = N(H,W ). Thus µ(π(N(H,W ))) = 1. Now by proposition 2.22 (2), µ is
H-invariant.

Put Λ = H∆. Since H ∈ H and N(H) = G, we have that Λ is a closed subgroup
of G. Consider the G-equivariant quotient map q : G/∆→ G/Λ. Let q∗ : P(G/∆)→
P(G/Λ) be the map defined as q∗ν(E) = ν(q−1(E)) for all Borel sets E ⊂ G/Λ and all
ν ∈ P(G/∆). The map q∗ is continuous. Since µn → µ, we have that q∗(µn)→ q∗(µ).
Note that for any f̄ ∈ Cc(G/Λ),

∫
G/Λ

f̄ dq∗(µn) =

∫
G/∆

f̄ ◦ q dµn

=
1

m(Bn)

∫
Bn

f̄(q ◦Θ(t)gn∆) dm(t)

=
1

m(Bn)

∫
Bn

f̄(Θ(t)gnΛ) dt. (4.4)

Since Λ contains a nontrivial unipotent one-parameter subgroup of G, due to
note 4.8 we have dim Λ0 > dim ∆0. Thus dim(G/Λ) < dim(G/∆). Using the induc-
tion hypothesis we can assume that theorem 4.1 is valid for the Λ in place of ∆. Hence
due to eq. 4.4, q∗(µ) has the following property: There exists a closed subgroup F of G
containing H such that Θ(Rk) ⊂ F , q∗(µ) is F -invariant, the orbit FΛ is closed, and
q∗(µ)(FΛ) = 1. Now since the fibres of q are closed H-orbits and µ is H-invariant,
we have that µ is F -invariant; (see the proof of the claim made in equation 3.2).
Since F ⊃ H, we have that µ(F∆) = q∗µ(FΛ) = 1. Let L be any closed subgroup
of G containing Θ(Rk) such that the orbit L∆ is closed. Then µ(L∆) = 1. Hence
F ⊂ L∆0. Thus in view of note 4.12 the proof is complete. �

Proof of corollary 4.2. Let ψ : R+ → G be the function defined as ψ(t) = φ(t1/k) for
all t ≥ 0.
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Now argue just as in the proof of theorem 4.1 replacing Θ by ψ. There are exactly
three places where we use that Θ is a regular algebraic function: (1) theorem 1.12, (2)
proposition 4.16, and (3) proposition 2.27. Therefore if the corresponding statements
are shown to hold for ψ in place of Θ, we would get a proof of the corollary.

First we have lemma 4.14, which replaces θ by ψ in lemma 4.13. Therefore in the
proof of proposition 4.16, we can use lemma 4.14 in place of lemma 4.13 and obtain
the same conclusion for ψ in place of Θ. Also due to lemma 1.9, it is clear that
theorem 1.12 and proposition 2.27 are valid for ψ in place of Θ or θ. This completes
the proof. �

Proof of corollary 4.3. Let S denote the unit sphere in Rk and σ denote the rotation
invariant probability measure on S. Using polar decomposition, for any f ∈ Cc(G/∆)
and any T > 0,

1

m(BT )

∫
t∈BT

f(Θ(t)∆) dm(t) =

∫
x∈S

dσ(x)

(
1

T k

∫ Tk

0

f(Θ(t1/kx)∆) dt

)
. (4.5)

For every x ∈ S define θx(t) = Θ(tx) for all t ∈ R. Let Fx be the smallest closed
subgroup L of G such that L ⊃ ∆0, L ⊃ θx(R), and the orbit L∆ is closed.

By proposition 4.6, we have Fx ∈ H. The set Θ−1(Fx) ∩ S is an analytic sub-
manifold of S. Hence if dim(Θ−1(Fx) ∩ S) = dimS then Fx ⊃ Θ(Rk). Note that if
y ∈ Θ−1(Fx) ∩ S then Fy ⊂ Fx. Put

E = {x ∈ S : dim(Θ−1(Fx) ∩ S) < dim(S)}.

Now σ(Θ−1(Fx)∩ S) = 0 for every x ∈ E. Since H is a countable collection, we have
that

E =
⋃
x∈E

(
Θ−1(Fx) ∩ S

)
is a countable union. Therefore

σ(E) = 0. (4.6)

Now let F denote the smallest closed subgroup L of G such that L ⊃ ∆0, L ⊃
Θ(Rk), and the orbit L∆ is closed. Then Fx = F for all x ∈ S \ E. Let µF denote
the unique F -invariant probability measure on F∆.

By corollary 4.2, for any x ∈ S \E, any sequences Ti →∞ in R and gi → e in F ,
and any f ∈ Cc(G/∆),

lim
i→∞

1

Ti

∫ Ti

0

f(θx(t1/k)gi∆) dt =

∫
Fx∆

f dµx, (4.7)

where µx denotes the unique Fx-invariant probability measure supported on the closed
orbit Fx∆.

Let ε > 0 and f ∈ Cc(G/∆) be given. Take any sequence Ri → ∞ in R. Take
i ∈ N, define Wi to be the set of all x ∈ S such that∣∣∣∣∣ 1

Rk
j

∫ Rkj

0

f(θx(t1/k)gj∆) dt−
∫
F∆

f dµF

∣∣∣∣∣ < ε/2 (4.8)
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for all j ≥ i. One can easily verify that Wi is Borel measurable. Also note that
Wi1 ⊂ Wi2 for all i1 ≤ i2. Now by eq. 4.7, we have

S \ E = ∪i∈NWi.

Therefore by eq. 4.6, there exists i0 ∈ N such that

σ(S \Wi0) < ε/(4 · sup |f |). (4.9)

Now by eqs. 4.5, 4.8, and 4.9, for every i ≥ i0, we get∣∣∣∣∣ 1

BRi

∫
t∈BRi

f(Θ(t)gi∆) dt−
∫
F∆

f dµF

∣∣∣∣∣
≤

∫
x∈Wi0

∪(S\Wi0
)

∣∣∣∣∣ 1

Ri
k

∫ Ri
k

0

f(θx(t1/kx)gi∆) dt−
∫
F∆

f dµF

∣∣∣∣∣ dσ(x)

< ε.

This completes the proof. �

Proof of corollary 4.4. For i = 1, . . . , k, define θi(t) = exp(tbi) for all t ∈ R. Define
Θ(t1, . . . , tk) = θk(tk) · · · θ1(t1) for all (t1, . . . , tk) ∈ Rk.

Note that due to [28, Lemma 1.4], the Lebesgue measure on Rk projects under Θ
to a haar measure on N .

Note that if G a real algebraic group and N is an algebraic unipotent subgroup,
we have that θi is a regular algebraic map for each i = 1, . . . , k. And the corollary
immediately follows from theorem 4.1.

Now in the general case we argue just as in the proof of theorem 4.1. First note
that Θ ∈ Pl(Rk, G) for l = dimG− 1. Therefore theorem 1.12 and proposition 2.27
are applicable to Θ. Since each θi is a nontrivial unipotent one-parameter subgroup
of G, the proposition 4.16 holds in this case. Now in view of the remarks made in the
proof of corollary 4.2, the proof of theorem 4.1 yields the validity of the corollary. �

Proof of corollary 4.5. In view of note 4.10, for any H ∈ H for G1 and ∆, define

N(H,Θ) = {g ∈ G1 : g−1Θ(Rk)g ⊂ H}.

Put
S =

⋃
H∈H,dimH<dimG1

N(H,Θ).

For each i ∈ N, let Hi ∈ H with dimHi < dimG1 and let Ci be a compact subset
of N(Hi,Θ) such that ∪i∈NCi = S.

Suppose that the result is not true. Then there exists a function f ∈ Cc(G/∆)
and for every i ∈ N there exist xi ∈ K \ ∪j≥iCj and Ti > 0 such that Ti → ∞, as
i→∞, and if Bi denotes the ball in Rk around the origin with radius Ti then,∣∣∣∣(1/m(Bi))

∫
t∈Bi

f(Θ(t)xi) dm(t)−
∫
f dµG1

∣∣∣∣ ≥ ε, ∀i ∈ N. (4.10)
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By passing to a subsequence, without loss of generality, we may assume that xi → x.
In particular, x 6∈ π(S). Therefore G1 is the smallest closed subgroup F of G such that
Θ(Rk) ⊂ F and Fx is admits a finite F -invariant measure. But then equation 4.10
contradicts corollary 4.3 (or theorem 4.1 in the case when Θ is of product type and
Bi’s are boxes), and the proof of the present corollary is complete. �
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Chapter 5

Limit distributions of translates of
orbits of horospherical subgroups
of semisimple subgroups

In this chapter we generalize certain results for actions of certain subgroups of a
semisimple group G acting on homogeneous spaces of Lie groups containing G. These
results were known earlier only for the actions of G on its own homogeneous spaces.

5.1 Statement of results

Let L be a connected Lie group, Λ a lattice in L, π : L → L/Λ the natural quotient
map, and µL the (unique) L-invariant probability measure on L/Λ.

Theorem 5.1 Let G be a connected semisimple real algebraic group and A a maximal
R-split torus in G. Fix an order on the set of real roots on A for G, and let ∆ be

the corresponding system of simple roots. Let A
+

be the closure of the positive Weyl

chamber in A. Let {ai}i∈N be a sequence in A
+

such that for any α ∈ ∆, either
supi∈N α(ai) <∞ or α(ai)→∞ as i→∞. Put

U+ = {g ∈ G : ai
−1gai → e as i→∞}.

Assume that no proper normal subgroup of G contains U+.
Suppose that G is immersed in L as a subgroup and π(G) is dense in L/Λ. Let

Ω be a relatively compact open subset of U+ such that π is injective on Ω. Let µΩ

be a probability measure on π(Ω) which is the image of the restriction of a Haar
measure on U+ to Ω. Then the sequence of measures aiµΩ converges weakly to µL.
In particular, {ai : i ∈ N} · π(Ω) is dense in L/Λ.

Using this theorem we obtain the several applications. To state the first result we
need a definition.

Definition 5.2 Let G be a semisimple Lie group. A subgroup S of G is said to be
symmetric if there exists an automorphism σ of G such that σ2 = 1 and S = {g ∈
G : σ(g) = g}.
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Corollary 5.3 Let G be a connected real algebraic semisimple Lie group immersed
in L, S the component of the identity of a symmetric subgroup of G, and {gi}i∈N
a sequence contained in G. Suppose that π(S) is closed and admits an S-invariant
probability measure, say µS, and that π(G1) is dense in L/Λ for any closed normal
subgroup G1 of G such that the image of {gi} in G/(G1H) has no convergent subse-
quence. Then the sequence of measures giµS converges weakly to µL.

The above result generalizes a theorem of Duke, Rudnik and Sarnak [16] (see also
Eskin and McMullen [17]) proved in the case of L = G.

In view of a result due to Dani [7], and certain other considerations, Stuck and
Zimmer [39, Question C] asked the following question:

Question: Let G be a simple Lie group with finite center and R-rank ≥ 2. Suppose
G acts minimally and locally freely on a compact Hausdorff space X. Let P be a proper
parabolic subgroup of G and suppose there are equivariant continuous surjective maps
X × G/P → Y → X such that the composite map is the projection to X. Is it true
that Y is equivariantly homeomorphic to X × G/P ′ for some parabolic P ′ ⊃ P and
the given map is the quotient map?

In the following result, we show in particular that this question has an affirmative
answer under the additional assumption that X = L/Λ for a Lie group L containing
G and the action of G is via translations.

Theorem 5.4 Let G be a semisimple Lie group of R-rank ≥ 2 with finite center,
realized as a subgroup of L such that the G-action is ergodic with respect to µL.
Further assume that G1x = Gx for any x ∈ L/Λ and any closed normal connected
subgroup G1 of G such that R-rank(G/G1) ≤ 1. Let P be a parabolic subgroup of G
and consider the diagonal action of G on L/Λ×G/P . Let Y be a Hausdorff space with
a continuous G-action and φ : L/Λ×G/P → Y be a continuous G-equivariant map.
Then there exist a parabolic subgroup Q of G containing P , a topological G-space X
with a continuous surjective G-equivariant map φ1 : L/Λ → X, and a continuous
G-equivariant map ψ : X ×G/Q→ Y such that the following holds:

1. Define the G-equivariant map ρ : L/Λ × G/P → X × G/Q as ρ(x, gP ) =
(φ1(x), gQ) for all x ∈ L/Λ and g ∈ G. Then φ = ψ ◦ ρ.

2. For any x ∈ L/Λ, define

Q(x) = {h ∈ G : φ(x, ghP ) = φ(x, gP ), ∀g ∈ G}.

Put

XQ = {x ∈ L/Λ : Q(x) = Q}.

Then XQ is a nonempty open G-invariant subset of L/Λ, φ−1(φ(XQ×G/P )) =
XQ ×G/P , and ψ restricted to ρ(XQ)×G/Q is injective.

Further if Y is locally compact and φ is surjective then φ(XQ) is open in Y .
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This result generalizes a result of Dani [7] proved in the case of L = G. Its proof
is based on the techniques of Dani’s proof and uses theorem 5.1 in addition.

To obtain more detailed information about the G-equivariant factores of L/Λ, we
prove the following result using certain results from earlier chapters. First we need a
definition.

Definition 5.5 Let L be a Lie group and Λ a closed subgroup of L. A map τ :
L/Λ→ L/Λ is called an affine automorphism of L/Λ if there exists σ ∈ Aut(L) such
that τ(gx) = σ(g)τ(x) for all x ∈ L/Λ.

Put Aut(L)Λ = {σ ∈ Aut(L) : σ(Λ) = Λ}. Define a map π : L · Aut(L)Λ →
Aff(L/Λ) by π(h, σ)(gΛ) = hσ(g)Λ for all g ∈ L. Observe that π is a surjective map.
Hence Aff(L/Λ) has the structure of a Lie group acting differentiably on L/Λ.

Theorem 5.6 Let L be a Lie group, Λ a lattice in L, and G a subgroup of L generated
by unipotent one-parameter subgroups contained in it. Suppose that G acts ergodically
on L/Λ. Let X be a Hausdorff locally compact space with a continuous G action and
φ : L/Λ→ X a continuous surjective G-equivariant map. Then there exists a closed
subgroup Λ1 containing Λ, a compact group K contained in the centralizer of the image
of G in Aff(L/Λ1), and a G-equivariant continuous surjective map ψ : K\L/Λ1 → X
such that the following holds:

1. Define the G-equivariant map ρ : L/Λ → KL/Λ1 as ρ(gΛ) = K\gΛ1 fo all
g ∈ L. Then φ = ψ ◦ ρ.

2. Given a neighbourhood Ω of e in ZL(G), there exists an open dense G-invariant
subset X0 of L/Λ1 such that for any x ∈ X0 and y ∈ L/Λ1 if ψ(K(x)) = ψ(K(y))
then y ∈ K(Ωx). In this situation, if Gx = L/Λ1, then K(y) = K(x).

From theorem 5.4 and theorem 5.6 the following result is immediate.

Corollary 5.7 Let L be a Lie group, Λ a lattice in L, and G a connected semisimple
Lie group with finite center, realized as a subgroup of L. Suppose that the action
of G1 on L/Λ is minimal for any closed normal subgroup G1 of G such that R-
rank(G/G1) ≤ 1. Let Y be a locally compact Hausdorff space with continuous G-
action, P a parabolic subgroup of G, and φ : L/Λ×G/P → Y a continuous surjective
G-equivariant map, where G-acts diagonally on L/Λ × G/P . Then there exist a
parabolic subgroup Q of G containing P , a closed subgroup Λ1 of L containing Λ,
and a compact group K contained in the centralizer of the image of G in Aff(L/Λ1)
such that Y is G-equivariantly homeomorphic to K\L/Λ1×G/Q and φ is the natural
quotient map.

5.2 Some results in Linear algebra

Lemma 5.8 Let V be a finite dimensional real vector space equipped with a Eu-
clidean norm. Let n be a nilpotent Lie subalgebra of End(V ). Let N be the associated
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unipotent subgroup of Aut(V ). Let {b1, . . . ,bq} be a basis of n. Consider the map
Θ : Rq → N defined as

Θ(t1, . . . , tq) = exp(tqbq) · · · exp(t1b1), ∀(t1, . . . , tq) ∈ Rq.

For ρ > 0, define

Bρ = {Θ(t1, . . . , tq) ∈ N : 0 ≤ tk < ρ, k = 1, . . . , q}.

Put
W = V N := {v ∈ V : n · v = v for all n ∈ N}.

Let pW denote the orthogonal projection on W . Then for any ρ > 0, there exists c > 0
such that for every v ∈ V ,

‖v‖ ≤ c · sup
t∈Bρ
‖pW (Θ(t) · v)‖.

Proof. For k = 1, . . . , q, let nk ∈ N be such that bnkk = 0. Let

I = {I = (i1, . . . , iq) : 0 ≤ ik ≤ nk − 1, k = 1, . . . , q}.

For t = (t1, . . . , tq) ∈ Rq and I = (i1, . . . , iq) ∈ I, define

tI = tiqq · · · t
i1
1 and bI =

b
iq
q · · ·bi11
iq! · · · i1!

.

Then for all v ∈ V and t ∈ Rq, we have

Θ(t) · v =
∑
I∈I

tI · (bIv). (5.1)

We define a transformation T : V → ⊕I∈IW by

T (v) =
(
pW (bI · v)

)
I∈I , ∀v ∈ V. (5.2)

We claim that T is injective. To see this, suppose there exists v ∈ V \ {0} such that
T (v) = 0. Then N · v ⊂ W⊥, the orthogonal complement of W . Hence W⊥ contains
a nontrivial N -invariant subspace. Then by Lie-Kolchin theorem, W⊥ contains a
nonzero vector fixed by N . Then W ∩W⊥ 6= {0}, which is a contradiction.

We consider ⊕I∈IV equipped with a box norm; that is

‖(vI)I∈I‖ = sup
I∈I
‖vI‖, where vI ∈ V , ∀I ∈ I.

Then there exists a constant c1 > 0 such that

‖v‖ ≤ c1 · ‖T (v)‖, ∀v ∈ V.

For all k = 1, . . . , q, and jk = 1, . . . , nk, fix 0 < tk,1 < · · · < tk,nk < ρ and
put Mk =

(
tikk,jk

)
0≤ik≤nk−1, 1≤jk≤nk

for k = 1, . . . , q. Then detMk is a Vandermonde

determinant and hence Mk is invertible.
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Let
J = {J = (j1, . . . , jq) : 1 ≤ jk ≤ nk, k = 1, . . . , q}.

For J = (j1, . . . , jq) ∈ J , put

tJ = (t1,j1 , . . . , tq,jq) and M =
(
tIJ
)

(I,J)∈I×J .

Take v ∈ V . Put

XI = T (v) and YJ = (pW (Θ(tJ)v))J∈J .

Then by equations 5.1 and 5.2,

M ·XI = YJ .

Since M = M1 ⊗ · · · ⊗Mq and each Mk is invertible, we have that M is invertible.
Hence

XI = M−1 · YJ .

Put c2 = ‖M−1‖ and c = c1c2. Then

‖v‖ ≤ c1‖T (v)‖ = c1‖XI‖ ≤ c1c2‖YJ ‖ = c · sup
J∈J
‖pW (Θ(tJ)v)‖.

This completes the proof. �

Remark 5.9 Let the notation be as in theorem 5.1. Put

Φ = {α ∈ ∆ : α(ai)→∞ as i→∞}.

Let P+ be the standard parabolic subgroup associated to the set of roots ∆\Φ. Then
U+ as defined before is the unipotent radical of P+. Let P− denote the standard
opposite parabolic subgroup for P+ and let U− be the unipotent radical of P−. Note
that

P− = {g ∈ G : {aigai−1 : i ∈ N} is compact}.

Also note that the Lie algebra of G is the direct sum of the Lie subalgebras associated
to U−, P− ∩ P+ and U+.

Lemma 5.10 Let the notation be as in theorem 5.1. Consider a representation of
G on a finite dimensional normed linear space V . Suppose that the action of G is
nontrivial and irreducible. Then for any sequence {vi} ⊂ V U+

which is bounded away
from the origin,

‖ai · vi‖ → ∞ as i→∞.

Proof. Since A is R-split, there is a finite set Λ of real characters on A such that for
each λ ∈ Λ, if we define

Vλ = {v ∈ V : a · v = λ(a)v, ∀a ∈ A},
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then V = ⊕λ∈ΛVλ. After passing to an appropriate subsequence, if we define

Λ+ = {λ ∈ Λ : λ(ai)→∞ as i→∞}
Λ− = {λ ∈ Λ : λ(ai)→ 0 as i→∞}, and

Λ0 = {λ ∈ Λ : λ(ai)→ c for some c > 0 as i→∞},

then Λ = Λ+ ∪ Λ0 ∪ Λ−.
Put W = V U+

. Since U+ is normalized by A, we have that W is invariant under
the action of A. Therefore

W = ⊕λ∈Λ(W ∩ Vλ).
Suppose that there exists w ∈ W ∩Vλ\{0} for some λ ∈ Λ0∪Λ−. For any g ∈ P−,

we have aigai
−1 → g0 for some g0 ∈ P−. Therefore as i→∞,

ai(gw) = aigai
−1(aiw)→ c(g0w) for some c ≥ 0.

Hence P−w ⊂ ⊕λ∈Λ0∪Λ−Vλ. Now U+w = w and by remark 5.9 P−U+ is open in G.
Therefore G ·w ⊂ ⊕λ∈Λ0∪Λ−Vλ. Since G is semisimple and V is irreducible, Λ = Λ0.
Therefore there exists M > 0 such that supi∈N ‖aiv‖ ≤M · ‖v‖ for all v ∈ V .

Now for any relatively compact neighbourhood Ω of U+ and any v ∈ Vλ, there
exists a compact ball B ⊂ V such that for all i ∈ N,

B ⊃ aiΩ · v = (aiΩai
−1)ai · v = λ(ai)(aiΩai

−1)v.

Since λ(ai)→ c for some c > 0 and ∪i∈NaiΩai−1 = U+, we have U+ ·v ⊂ c−1B. Since
U+ acts on V by unipotent linear transformations, we obtain that U+ · v = v. Thus
U+ acts trivially on V . Since the kernel of G action on V is a normal subgroup of G
containing U+, it is equal to G by our assumption. This contradicts our hypothesis
in the lemma that the action of G is nontrivial. This proves that W ⊂

∑
λ∈Λ+

Vλ and
the conclusion of the lemma follows. �

Corollary 5.11 Let the notation be as in theorem 5.1. Consider a representation
of G on a finite dimensional real vector space V equipped with a Euclidean norm.
Suppose that the action of G is nontrivial and irreducible. Let {vi} ⊂ V be a sequence
which is bounded away from the origin. Then for any neighbourhood Ω of e in U+,

sup
ω∈Ω
‖aiω · vi‖ → ∞ as i→∞.

Proof. Let W = V U+
. By lemma 5.8, there exists c > 0 such that for all i ∈ N,

sup
ω∈Ω
‖pW (ω · vi)‖ ≥ c‖vi‖ ≥ c · inf

i∈N
‖vi‖.

Since infi∈N ‖vi‖ > 0, by lemma 5.10,

sup
ω∈Ω
‖ai · ωvi‖ ≥ sup

ω∈Ω
‖ai · pW (ω · vi)‖ → ∞ as i→∞.

�
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5.3 Proofs of the main results

Translates of horospherical orbits

Proof of theorem 5.1. First note that there is no loss of generality in passing to a
subsequence of {ai}, whenever convenient.

Let u+ denote the Lie algebra of U+. Since u+ is a nilpotent Lie algebra, we
can choose a basis {b1, . . . ,bq} for it such that [bi,bj] ∈ R-span{bk : k > i, j}.
Consider the map Θ : Rq → U+ defined by Θ(t1, . . . , tq) = exp(tqbq) · · · exp(t1b1) for
all (t1, . . . , tq) ∈ Rq.

The result for general open set Ω ⊂ U+ follows if we prove it for Ω = Θ(B) for
every bounded open convex set B ⊂ Rq. Due to our choice of the basis of u+, there
is a constant multiple of the Lebesgue measure on Rq such that if λ is its restriction
to B then µΩ = π∗(Θ∗(λ)) .

We first claim that given ε > 0 there exists a compact set K ⊂ L/Λ such that

(aiµΩ)(K) > 1− ε for all i ∈ N.

Put Θi = ai · Θ : Rq → G for each i ∈ N. Then there exists d ∈ N such that
Θi ∈ Pd,q(G) for all i ∈ N. If the claim fails to hold, then by theorem 1.14, after
passing to a subsequence, there exists a representation of G on a finite dimensional
normed linear space V of G and a nonzero vector p ∈ V such that,

sup
ω∈Ω
‖aiω · p‖ → 0 as i→∞.

Decomposing V into G-irreducible components and noting that the projection of Ωp
is zero on the space of G-fixed vectors, we see that this contradicts corollary 5.11.
Thus the claim is proved.

Now by passing to a subseqnence we may assume that the sequence ai·µΩ converges
to a probability measure µ on L/Λ.

Clearly µ is U+ invariant. Therefore by proposition 2.22, there exists a closed
subgroup H in the collection H associated to L/Λ in place of G/Γ there, such that

µ(π(S(H,U+)) = 0 and µ(π(N(H,U+))) > 0.

Let a compact set C ⊂ N(H,U+) \ S(H,U+) be such that ε := µ(π(C)) > 0.

Let the finite dimensional vector space V with a Euclidean norm and a unit vector
pH ∈ V be as described in notation 1.13, for L in place ofG there. LetK be a compact
neighbourhood of π(C) in L/Λ. We apply proposition 2.31 for ε > 0 and d ∈ N
as above, and obtain compact sets D ⊂ V (H,U+) and S1 ⊂ S(H,U+) as in that
proposition. Since π(C) ∩ π(S(H,U+)) = ∅, there exists a compact neighbourhood
Z of π(C) contained in (L/Λ) \ π(S1). Let Φ be a relatively compact neighbourhood
of D in V . Now for each i ∈ N, applying the proposition to Θi in place of Θ and
x = π(e), we can easily see that the first and the last possibilities of its conclusion
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do not hold. Therefore we conclue that for each i ∈ N, there exists vi ∈ Λ · pH such
that

aiΘ(B) · vi ⊂ Φ.

Since the orbit Λ · pH is discrete, by corollary 5.11 applied to each irreducible com-
ponent of V for the G action, the set {vi}i∈N is finite and it consists of fixed points.
Moreover, by passing to a subsequence, there exists γ ∈ Λ such that vi = γ · pH for
all i ∈ N, and

G · γ · pH = γ · pH .
Therefore, G ⊂ γN1

L(H)γ−1. But π(N1
L(H)) is closed in L/Λ and π(G) is dense in

L/Λ. Therefore we conclude that H is a normal subgroup of L. Since N(H,U+) ⊃
C 6= ∅, this implies in particular that U+ is contained in H. Thus U+ ⊂ G ∩H and
G ∩ H is normal in G. Therefore by our hypothesis in the theorem G ∩ H = G, or
in other words G ⊂ H. Again since π(G) is dense in L/Λ, we have H = L. Hence
µ(π(S(L,U+))) = 0. Therefore by proposition 2.22, we have that µ is L-invariant. �

Translates of orbits of symmetric subgroups

Proof of corollary 5.3. Note that without loss of generality we may replace the
sequence {gi} by a subsequence, whenever necessary. Let G1 be a minimal normal
connected subgroup of G such that the image of a subsequece of {gi} in G/(G1S)
is contained in a compact subset. Therefore replacing the sequence {gi} by a subse-
quence, then modifying it from left by multiplications with elements from a compact
set, and from right by multiplications with elements of S, without loss of generality
we may assume that the sequence {gi} is contained in G1.

Let σ be an involution of G such that S = {g ∈ G : σ(g) = g}0. Note that G1

is stable under σ. Put S1 = (S ∩ G1)0. Then S1 is the component of identity of the
symmetric subgroup of G1 associated to the restriction of σ to G1.

Using the results in [34, Section 7.1] one can deduce the following. There exits
a Cartan involution θ of G1 commuting with σ, a maximal R-split torus A of G1, a
subtorus B of A and a system of potitive roots on A for G1, such that the torus A
is invariant under θ and σ, θ(a) = a−1 for any a ∈ A and B = {b ∈ A : σ(b) = b−1}.
Let ∆ denote the system of simple roots on A. Put

∆B = {α ∈ ∆ : α|B 6= 1}.

Then ∆B is a system simple roots on B for G1. Let A
+

(respectively B
+

) denote the
closure of the positive Weyl chember in A (respectively B). Let K1 be the maximal

compact subgroup of G1 associated to θ. We have a decomposition G1 = K1B
+
S1.

In view of this decomposition, in proving the corollary, without loss of generality

we may assume that gi = bi ∈ B
+

for all i ∈ N. By passing to a subsequence, we
may assume that {bi}i∈N has no convergent subsequence and for any α ∈ ∆, either
supi∈N α(bi) <∞ or α(bi)→∞ as i→∞. Let

Φ = {α ∈ ∆ : α(bi)→∞}.
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Then Φ 6= ∅. Let P+ be the standard parabolic subgroup associated to the set of
roots ∆ \ Φ. Then the unipotent radical of P+ is given by

U+ = {g ∈ G1 : bi
−1gbi → e as i→∞}.

Let P− be the standard opposite parabolic subgroup for P+ and U− be the unipotent
radical of P−.

Let F be the smallest closed normal subgroup of G1 containing U+. By the min-
imality of G1, if F 6= G1, the image of the sequence {bi} in G1/F has no convergent
subsequence. But then the image of U+ in G1/F is noncompact, which is a contra-
diction. Therefore F = G1.

Note that σ(P+) = P− and σ(U+) = U−. Let Z = P+ ∩ P−. Let g
1
, s1, u+, u−,

and z denote the Lie algebras associated to the Lie groups G1, S1, U+, U−, and Z,
respectively. We have that

g
1

= u− ⊕ z⊕ u+.

Note that for any X ∈ u+, we have σ(X) ∈ u− and X + σ(X) ∈ s1. Therefore

g
1

= u− + z + s1.

Let Ω−, Ω0, Ω+, and Φ1 be neighbourhoods of identity respectively in U−, Z,
U+, and S1. We may assume that these neighbourhoods are small enough so that
π is injective on Ω−Ω0Ω+ and Ω−Ω0Φ1. Let ν−, ν0, ν+, and µ1 be the probability
measures obtained by restricting the corresponding Haar measures for the groups U−,
Z, U+, and S1 to the sets Ω−, Ω0, Ω+, and Φ1, respectively.

Let m : G × G × G → G be the map given by m(g1, g2, g3) = g1g2g3 for all
g1, g2, g3 ∈ G. Put Ω1 = m(Ω−×Ω0×Φ1) and consider on it the probability measure
λ1 = m∗(ν

− × ν0 × µ1).
On Ω1 we define a probability measure λ2 such that for any f ∈ Cc(Ω1), we have∫

ω∈Ω1

f(ω) dλ2(ω)

= c ·
∫

(v1,v2)∈Ω−×Ω0

d(ν− × ν0)(v1, v2)

∫
v3∈((v1v2)−1Ω1∩U+)

f(v1v2v3) dν+(v3),

where c > 0 is a constant independent of f .
We note that that λ1 and λ2 are absolutely continuous with respect to each other

and there are constants c1 > 0 and c2 > 1 such that for all Borel measurable subset
E ⊂ Ω1, we have

c1λ1(E) ≤ λ2(E) ≤ c2λ1(E). (5.3)

First we claim that
bi · π∗(λ2)→ µL as i→∞. (5.4)

To prove this, let f ∈ Cc(L/Λ). Then∫
(v1,v2)∈Ω−×Ω0

d(ν− × ν0)(v1, v2) ·
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·
∫
v3∈((v1v2)−1Ω1∩U+)

f(biπ(v1v2v3)) dν+(v3)

=

∫
(v1,v2)∈Ω−×Ω0

d(ν− × ν0)(v1, v2) ·

·
∫
v3∈((v1v2)−1Ω1∩U+)

f((bi(v1v2)bi
−1) · biπ(v3)) dν+(v3).

For any v1, v2 ∈ Ω− × Ω0, as i → ∞, bi(v1v2)gi
−1 → v′ for some v′ ∈ Ω0. By

theorem 5.1, for any open set Ψ in U+,∫
v∈Ψ

f(biπ(v3)) dν+(v)→
∫
f dµL as i→∞.

Therefore

lim
i→∞

∫
v∈Ω1

f(biπ(v)) dλ2(v)

= c(

∫
f dµL)

∫
(v1,v2)∈Ω−×Ω+

ν+((v1v2)−1Ω1 ∩ U+) d(ν− × ν0)(v1, v2)

=

∫
f dµL.

This proves the claim.
By passing to a subsequence, we may assume that

bi · π∗(λ1)→ λ′, as i→∞, (5.5)

in the space of probability measures on the one-point compactification of L/Λ.
By eq. 5.3, for any continuous function f on the one-point compactification of

L/Λ, we have that

c1

∫
L/Λ

f d(bi · π∗(λ1)) ≤
∫
L/Λ

f d(bi · π∗(λ2)) ≤ c2

∫
L/Λ

f d(bi · π∗(λ1))

for all i ∈ N. And hence as i→∞, by equations 5.4 and 5.5, we get

c1

∫
L/Λ

f dλ′ ≤
∫
L/Λ

f dµL ≤ c2

∫
L/Λ

f dλ′.

Thus λ′ is a probability measure on L/Λ and it is absolutely continuous with respect
to µL. Also there exists a relatively compact neighbourhood Ψ1 of e in Z and a
probability measure ν0

1 on Ψ1 which is the restriction of a haar measure on Z such
that as i→∞,

Ibi(Ω
0)→ Ψ1 and (Ibi)∗(ν

0)→ ν0
1 ,

where Ib denotes the inner conjugation by an element b on G1. Also as i→∞,

Ibi(Ω
−)→ {e} and (Ibi)∗(ν

−)→ δ{e},
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where δ{e} denotes the probability measure supported at the identity. Therefore, by
passing to a subsequence, we have that

bi · π∗(µ1)→ η as i→∞,

where η is a probability measure on L/Λ such that for any f ∈ Cc(L/Λ),∫
f dλ′ =

∫
v∈Ψ1

dν0
1(v)

∫
f(vx) dη(x).

Next we claim that η is U+-invariant. To see this, let u = exp(X) for some
X ∈ u+. Put Xi = Ad(bi

−1)X and hi = exp(Xi + σ(Xi)) ∈ S1 for all i ∈ N. Then
hi → e as i→∞ and u = bihibi

−1 for all i ∈ N. For any f ∈ Cc(L/Λ), we have∣∣∣∣∫
L/Λ

f(x) dπ∗(µ1)(x)−
∫
L/Λ

f(hix) dπ∗(µ1)(x)

∣∣∣∣ ≤ εi · sup |f |,

where εi depends only on hi, and ε→ 0 as hi → e. Let i ∈ N. Applying this equation
for fi(x) := f(bix) for all x ∈ L/Λ, we get∣∣∣∣∫

L/Λ

f(bix) dπ∗(µ1)(x)−
∫
L/Λ

f((bihibi
−1)(bix)) dπ∗(µ1)(x)

∣∣∣∣ ≤ εi · sup |f |.

We have that bi · π∗(µ1) → η weakly as i → ∞, bihibi
−1 = u for all i ∈ N, and f is

uniformly continuous. Therefore∫
L/Λ

f(x) η(x) =

∫
L/Λ

f(ux) dη(x).

Thus η is invariant under the action of U+.
Since π(G1) is dense in L/Λ, by the Mautner’s phenomenon described as in Sec-

tion 2.1, we have that U+ acts ergodically on L/Λ with respect to µL.
Since Z normalilzes U+, we have that v · η is U+-invariant for all v ∈ Z. Hence

λ′ is U+-invariant. Since λ′ is absolutely continuous with respect to µL, we have that
U+ acts ergodically with respect to λ′. Therefore v · η = µL for almost all v ∈ Ψ1.
But µL being Z-invariant, we have that η = µL. That is,

bi · π∗(µ1)→ µL as i→∞.

There exists a normal subgroup S2 of S such that S = S2S1 and {bi : i ∈ N} ⊂
ZG(S2). Let Ψ2 be a relatively compact open neighbourhood of e in S2 such that π is
injective on Ψ = Ψ2Ψ1. Let µ2 denote the probability measure which is the restriction
of a Haar measure on S2 to Ψ2. Then µ = µ2×µ1 is the restriction of a Haar measure
on S to Ψ. Also we have that

bi · π∗(µ)→ µL as i→∞.

Considering small neighbourhoods like Ψ associated to different points in π(S), we
see that bi ·µS → µL as i→∞. Since we had seen that we may assume gi = bi ∈ B+,
this shows that gi · µS → µL as i→∞. �
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Continuous G-equivariant factors

First we extract the following result from [7, Section 2].

Proposition 5.12 (Dani) Let G be a semisimple group with finite center and R-
rank(G) ≥ 2. Let P be a parabolic subgroup of G. Then given g ∈ G \ P , there exist
k ∈ N (k < R-rank(G)), elements g1, . . . , gk+1 in G, and unipotent one-parameter
subgroups {u1(t)}, . . . , {uk(t)} of G contained in P such that the following holds:

1. g1 = g, gk 6∈ P , and gk+1 = e.

2. For each i = 1, . . . , k, we have

ui(t)giP → gi+1P in G/P as t→∞.

3. For an Ad-semisimple element a ∈ G, and the associated expanding horospher-
ical subgroup

U+ := {u ∈ G : a−nuan → e as n→∞},

we have
< a > ·U+ ⊂ gkPgk

−1 ∩ P.

Moreover if G1 is the smallest normal subgroup of G containing U+, then R-
rank(G/G1) ≤ 1.

Proof. Apply [7, Corollary 2.3] iteratively. Also use the proofs of [7, Corollary 2.6
and Lemma 2.7]. �

Proposition 5.13 Let the notation and assumptions be as in theorem 5.4. Let x, y ∈
L/Λ and g ∈ G. If φ(x, gP ) = φ(y, P ), then the following holds:

1. φ(x, P ) = φ(x, gP ).

2. If g 6∈ P then there exists a parabolic subgroup Q containing {g} ∪ P such that
φ(z, P ) = φ(z, qP ) for all z ∈ Gx and q ∈ Q.

Proof. Let k ∈ N, elements g1, . . . , gk+1 in G, unipotent one-parameter subgroups
{u1(t)}, . . . , {uk(t)} contained in P , and an Ad-semisimple element a of G and the
associated expanding horospherical subgroup U+ be as in proposition 5.12. For each
i = 1, . . . , k, Ratner’s theorem applied to the diagonal action of {ui(t)} on L/Λ×L/Λ,
there exists a sequence tn → ∞ such that (ui(tn)x, ui(tn)y) → (x, y) as n → ∞.
Therefore, for any i ∈ {1, . . . , k}, if φ(x, giP ) = φ(y, P ) then

φ(ui(tn)x, ui(tn)giP ) = φ(ui(tn)y, P ), ∀n ∈ N.

Taking the limit as n → ∞, we get that φ(x, gi+1P ) = φ(y, P ). Since g1 = g, by
induction on i, we get that φ(x, giP ) = φ(y, P ) for all 1 ≤ i ≤ k + 1. Since gk+1 = e,
we have that condition (1) of the present proposition holds.
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In particular, we have

φ(x, gkP ) = φ(y, P ) = φ(x, P ).

Since F =< a > ·U+ ⊂ gkPgk
−1 ∩ P , we have that

φ(fx, gkP ) = φ(fx, P ), ∀f ∈ F.

Let G1 be the smallest closed normal subgroup of G containing U+. Then R-
rank(G/G1) ≤ 1. Therefore by our hypothesis in theorem 5.4, G1x = Gx. By
Ratner’s theorem Gx is an orbit of a closed subgroup of L containing G. Applying
theorem 5.1 to that subgroup in place of L there, we see that we have Fx = Gx.
Thus

φ(z, gkP ) = φ(z, P ), ∀z ∈ G1x = Gx.

Put
Q = {h ∈ G : φ(z, fhP ) = φ(z, fP ), ∀z ∈ Gx, ∀f ∈ G}. (5.6)

Then Q is a closed subgroup of G containing P ∪ {gk}. Since gk 6∈ P ,

Q 6= P. (5.7)

Now if g 6∈ Q, then replacing P by Q and L/Λ by Gx, we repeat the above
argument. Note that by definition the new set given by equation 5.6 still turns out to
be same as Q. This fact contradicts the new equation 5.7. This completes the proof
of (2). �

Proof of theorem 5.4. Define the equivalence relation

R = {(x, y) ∈ L/Λ× L/Λ : φ(x, gP ) = φ(y, gP ) for some g ∈ G}

on L/Λ. Clearly R is a closed G-invariant subset of L/Λ× L/Λ. Let X be the space
of equivalence classes of R and let φ1 : L/Λ → X be the map taking any element
of L/Λ to its equivalence class. Equip X with the quotient topology. Then X is a
locally compact Hausdorff space.

For any x ∈ L/Λ, put

Q(x) = {h ∈ G : φ(x, gP ) = φ(x, ghP ), ∀g ∈ G}.

Observe that Q(x) is a closed subgroup of G containing P and for any y ∈ Gx, we
have Q(y) ⊃ Q(x). Let x0 ∈ L/Λ such that Gx = L/Λ and put Q = Q(x0). Then
Q(y) ⊃ Q for all y ∈ L/Λ. Since Q is a parabolic subgroup of G, there are only
finitely many closed subgroups of G containing Q. Therefore the set XQ := {x ∈
L/Λ : Q(x) = Q} is open in L/Λ. Also XQ is nonempty and G-invariant. Now since
G acts ergodically on L/Λ, the set L/Λ \XQ is closed and nowhere dense.

Note that for any x, y ∈ L/Λ, if φ1(x) = φ1(y) then by proposition 5.13, we have
that Q(x) = Q(y). Let ρ : L/Λ × G/P → X × G/Q be the (G-equivariant) map
defined by ρ(x, gP ) = (φ1(x), gQ) for all x ∈ L/Λ and g ∈ G. Then there exists a
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uniquely defined map ψ : X × G/Q → Y such that φ = ψ ◦ ρ. It is straightforward
to verify that ψ is continuous and G-equivariant.

Take any x ∈ XQ, y ∈ L/Λ, and g, h ∈ G such that φ(x, ghP ) = φ(y, gP ). Then
φ1(y) = φ1(x), and hence h ∈ Q(y) = Q(x) = Q. This proves that ψ restricted to
φ1(XQ)×G/Q is injective and y ∈ XQ.

Now if Y is locally compact and φ is surjective, then using Baire’s catetory theorem
for Hausdorff locally compact spaces, one can show that φ is an open map. This
completes the proof of the theorem. �

Proof of theorem 5.6. Define Λ1 = {h ∈ L : φ(ghΛ) = φ(gΛ), ∀g ∈ L}. Then Λ1 is a
closed subgroup of L containing Λ. Since G-acts ergodically on L/Λ, by theorem 2.4,
Ad(Λ) is Zariski dense in Ad(L). Therefore Λ0

1 is a normal subgroup of L. Let Λ′1 be
the largest subgroup of Λ1 which is normal in L. Therefore replaning L by L/Λ′1 and
Λ by Λ1/Λ

′
1, without loss of generality we may assume that Λ1 = Λ.

Define the equivalence relation

R = {(x, y) ∈ L/Λ× L/Λ : φ(x) = φ(y)}

on L/Λ. Then R is a closed and ∆(G)-invariant, where ∆ : L → L × L denotes the
diagonal imbedding of L in L× L.

Let

K = {τ ∈ Aff(L/Λ : (z, τ(z)) ∈ R and τ(gz) = gτ(z)∀z ∈ L/Λ and ∀g ∈ L}

Let X1 = {x ∈ L/Λ : Gx = L/Λ}. Then X1 is dense in L/Λ.

Claim 5.13.1 Let (x, y) ∈ R. If x ∈ X1 then y ∈ X1 and there exists τ ∈ K such
that y = τ(x) and

∆(G)(x, y) = {(z, τ(z)) : z ∈ L/Λ} ⊂ R.

To prove the claim, we apply Ratner’s theorem and obtain a closed subgroup F
of L × L containing ∆(G) such that ∆(G) · (x, y) = F · (x, y). Let pi : L × L → L
denote the projection on the i-th coordinate, where i = 1, 2. Since Gx = L/Λ, we
have that p1(F ) = L. Let N1 = p1(F ∩ ker(p2)). Then N1 is a normal subgroup
of p1(F ) = L and (N1z, w) ⊂ R for all (z, w) ∈ F · (x, y). Therefore N1 ⊂ Λ1,
and hence by our assumption in the first paragraph we have that N1 = {e}. Thus
F ∩ ker(p2) = N1 × {e} = {e}. In other words F ∼= p2(F ). Since p1(F ) = L, we
have dim(p2(F )) = dim(L). Now since L is connected, we have that p2(F ) = L.
Thus Gy = L/Λ. Now interchanging the roles of x and y in the above argument,
we conclude that F ∩ ker(p1) = {e}. Hence there exists σ ∈ Aut(L) such that
F = {(g, σ(g)) ∈ L× L : g ∈ L}.

Thus (gx, σ(g)y) ∈ R for all g ∈ L. Now for any δ ∈ L, if δx = x, then
(gx, σ(g)σ(δ)y) ∈ R for all g ∈ L. Let h ∈ L such that y = hΛ. Then φ(σ(g)hΛ) =
φ(σ(g)σ(δ)h)Λ) for all g ∈ L. Since σ(L)h = L, we conclude that h−1σ(δ)h ∈ Λ1.
Now since Λ1 = Λ, we have that σ(δ)y = y. Therefore the map τ : L/Λ → L/Λ,
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given by τ(gx) = σ(g)y for all g ∈ L, is well defined. It is straightforward to verify
that τ ∈ Aff(L/Λ). Thus, F (x, y) = {(z, τ(z)) : z ∈ L/Λ}.

Since ∆(G) ⊂ F , we have that σ(g) = g for all g ∈ G, and hence τ(gz) = gz for
all g ∈ G. Therefore, τ ∈ K and the proof of the claim is complete.

Claim 5.13.2 The group K is compact.

We prove the claim as follows. Let µL denote the L-invariant probability measure
on L/Λ. Then µL(X1) = 1. For any x ∈ X1, if y ∈ K(x) then (x, y) ∈ R, and
by claim 5.13.1 there exists τ ∈ K such that y = τ(x). Thus K(x) is closed for all
x ∈ X1. Therefore by Hedlund’s Lemma and the ergodic decomposition of µL with
respect to the action of K on L/Λ, we have that almost all K-ergodic components are
suppoted on closed K-orbits. Thus for almost all x ∈ L/Λ, the orbit Kx supports a
K-invariant probability measure.

For any x ∈ L/Λ, put Kx = {τ ∈ K : τ(x) = x}. Let ξ : K/Kx → L/Λ be
the map defined by ξ(τKx) = τ(x) for all τ ∈ K. Then ξ is a continuous injective
K-equivariant map. Let x ∈ X1 be such that Kx supports a K-invariant probability
measure. Since ξ is injective, the measure can be lifted to a K-invariant probability
measure on K/Kx. Let τ ∈ Kx. Then for any g ∈ G, we have τ(gx) = gτ(x) = gx.
Now since Gx = L/Λ, we have that τ(y) = y for all y ∈ L/Λ. Hence Kx is the trivial
subgroup of Aff(L/Λ). Thus K admits a finite haar measure. Hence K is a compact
group and the claim is proved.

Let Ω be any neighbourhood of e in ZL(G). Put

R′ = {(x, y) ∈ R : y 6∈ K(Ωx)}.

Let Xc be the closure of the projection of R′ on the first factor of L/Λ × L/Λ. Put
X0 = (L/Λ) \Xc.

Claim 5.13.3 X1 ⊂ X0.

Suppose the claim does not hold. Then there exists a sequence {(xi, yi)} ⊂ R′

converging to (x, y) ∈ R with x ∈ X1. By claim 5.13.1, there exists τ ∈ K such that
y = τ(x). Therefore, after passing to a subsequence, there exists a sequence gi → e
in L such that yi = τ(gixi) for all i ∈ N. By the definition of R′, gi 6∈ Ω ⊂ ZL(G)
for all i ∈ N. Also (xi, gixi) ∈ R for all i ∈ N. By Ratner’s theorem, there exits
a ∆(G)-invariant ∆(G)-ergodic probability measure µi on L/Λ/ × L/Λ such that
∆(G)(xi, gixi) = suppµi. Let hi → e be a sequence in L such that xi = gix for all
i ∈ N. By corollary 3.2 and theorem 3.1, after passing to a subsequence, we may
assume that µi → µ in P(L/Λ×L/Λ) as i→∞ such that supp(µ) = F (x, x), where
F is a closed subgroup of L× L, and

(hi
−1, hi

−1gi
−1)∆(G)(hi, gihi) ⊂ F, ∀i ∈ N. (5.8)

In particular, F (x, x) ⊂ R and ∆(G) ⊂ F . Since x ∈ X1, we have that F ⊃ ∆(L).
By an argument as in the proof of claim 5.13.1, we conclude that F ∩ker(pi) = {e} for
i = 1, 2. Therefore F = ∆(L). Hence by equation 5.8, we conclude that gi ∈ ZL(G),
which is a contradiction. This completes the proof of the claim, and the proof of the
theorem. �
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