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Introduction

Let G be a connected Lie group and I' be a lattice in G; that is, I' is a discrete
subgroup of G such that the quotient space X = G//T", called a homogeneous space of
GG, admits a finite G-invariant measure. The actions of subgroups of G on X form a
natural class of dynamical systems referred to as flows on homogeneous spaces.

For a closed subgroup F' of G and a point z € X, if the orbit Y = Fx is closed
and admits a finite F-invariant measure, say u, then Y is called a homogeneous subset
of X and p is called a homogeneous measure on X.

A subgroup U of G is said to be unipotent if for every u € U, the adjoint automor-
phism Adu of the Lie algebra of G has all eigenvalues equal to 1. The flows defined
by the actions of unipotent subgroups are called unipotent flows.

The dynamical behaviour of unipotent flows and its connection with problems
in Diophantine approximation have generated a great deal of interest in the study of
unipotent flows. In an attempt to deal with a long standing conjecture due to Oppen-
heim, on values of quadratic forms at integral points, through the study of subgroup
actions on homogeneous spaces, Raghunathan conjectured that the closures of orbits
of unipotent flows are homogeneous sets. For horospherical flows the latter conjecture
was shown to be true by Dani [6]. Later Margulis [21] settled the Oppenheim’s con-
jecture by verifying a special case of Raghunathan’s conjecture. The reader is referred
to the survey articles by Dani [4, 10], Margulis [20, 22], and Ratner [27, 32, 33] for
the past and the recent developements in the area.

In a remarkable acheivement recently the Raghunathan’s conjecture was fully
proved by Ratner [31]. A major component of her proof [30] involves the following
classification of invariant measures.

Theorem A (Description of invariant measures) Any Borel probability measure in-
variant and ergodic under under a unipotent flow is a homogeneous measure.

In fact, let L be a subgroup of G which is generated by the unipotent one-parameter
subgroups of G contained in it. Then every L-invariant and L-ergodic Borel probability
measure on X s a homogeneous measure.

Using this classification, Ratner [31] proved the following result, which in partic-
ular settles Raghunathan’s conjecture.

A curve ¢ : [0,00) — X is said to be uniformly distributed with respect to a
probability measure p on X, if for every bounded continuous function f on X,

jim | ety i = | ran



Theorem B (Limit distributions of trajectories) Let u : R — G be a unipotent one-
parameter subgroup. Then for any x € X, the trajectory {u(t)x : t > 0} is uniformly
distributed with respect to a homogeneous measure p on X such that x € supp(p). In
particular, {u(t)x : t > 0} is a homogeneous subset of X .

One also deduces the following generalization of Raghunathan’s conjecture from
this result.

Theorem C (Closures of orbits) Let L be a subgroup of G which is generated by the
unipotent one-parameter subgroups of G contained in it. Then the closure of any orbit
of L in X is a homogeneous set.

For semisimple groups G of R-rank 1, the present author [35] had independently
derived theorem B from theorem A, using the approach of [15, 12].

In this thesis we take a closer look at the space of ergodic invariant measures in the
context of theorem A, obtain new results in dynamics of polynomial trajectories on
homogeneous spaces of linear Lie groups, and classify topological factors of G-actions
on Y x G/P, where G is a simple Lie group of R-rank > 2 with finite center, P is
a parabolic subgroup of GG, and Y is a homogeneous space of a Lie group containing
G. The technique is motivated by the work of Dani and Margulis [14]. The details of
the main results are described below, chapterwise.

Chapter 1 is devoted to certain growth properties of polynomials of several vari-
ables; we extend a theorem of Dani and Margulis [13, Theorem 1] proved for unipotent
one-parameter subgroups.

In Chapter 2 theorem A is applied to show that the finite invariant measures of a
unipotent flow other than the G-invariant ones are supported on the image in X of
a countable union of certain algebraic subvarieties of G. We develop a ‘linerization
procedure” which allows us to study the behaviour of ‘polynomial trajectories’ near
the images of these algebraic subvarieties in X. The results proved in the subsequent
chapters are deduced from the technical results proved in this chapter.

In Chapter 3 we obtain the following result on the space of ergodic invariant mea-
sures of unipotent flows. Let U(X) denote the space of all Borel probability measures
1 on X such that p is invariant and ergodic with respect to the action of a unipo-
tent one-parameter subgroup of G. By theorem A, U(X) consists of homogeneous
measures.

Theorem 0.1 The space U(X) is closed in the space of all Borel probability measures
on X. More precisely, if {u;} C U(X) is a sequence converging weakly to a Borel
probability measure p on X then p € U(X) and there exists a sequence g; — e such
that g; - supp(p;) C supp(u) for all but finitely many i’s.

In view of a theorem of Dani and Margulis [14, Theorem 6.1] the above result
implies the following.

Corollary 0.2 Given a compact set C C X, the set {u € U(X) : supp(p) N C # 0}
18 compact.



In Chapter 4 we obtain the following results on limit distributions of polynomial
trajectories on homogeneous spaces.

A map © : R* — SL,(R) is called a polynomial map if every matrix coefficient of
© is a polynomial on R¥. A polynomial map © : R¥ — SL,(R) is said to be of split
type if O(ty, ... 1) = Op(ty) - 01(t1), V(t1, ..., tx) € R* where 6, : R — SL,(R) are
polynomial maps.

Theorem 0.3 Suppose that G is a closed subgroup of SL,(R) and let © : RF — G
be a polynomial map with ©(0) = e. Then for any v € X, there exists a measure
p € U(X) such that x € supp(p) and for any sequence {B;} of balls in R* centered
at 0 with radius(B;) — oo and any f € Cp(X),

im — [ O dt = / fdu.

i—oo VOl(B;) Jyep,

In particular, {O(t)x : t € RF} = Fa, where F={g€ G:g-pu=p}.
Further, if we assume that © is of split type, the above result also holds for any
sequence of bozes B; = [O,Ti(l)] X - x [0, Ti(k)] C R* with each Tl-(l) — 0.

Note that a unipotent one-parameter subgroup of SL,(R) is a polynomial map.
Thus theorem 0.3 generalizes theorem B. We deduce the following result on limit dis-
tributions of orbits of higher dimensional unipotent flows, solving a problem proposed
by Ratner in [31, p.236] and [32, Problem 2].

Corollary 0.4 Let N be a simply connected unipotent subgroup of G. Let © : RF —
N be a map defined by O(tq, ..., tx) = (exptgby) - - (exptiby), where {by,...,b;} is a
basis of the Lie algebra of N such that under © the Lebesque measure on RF projects
to a Haar measure A on N; (such bases always exist). Then for any v € X, there
exists a measure i € U(X) such that x € supp(u) and for any f € Cy(X),

1
lim / f(hx d)\h—/fdu.
S1yeeny S —00 )\(@([0, Sﬂ X o+ X [O, Sk])) he®([0,s1]%-+-x[0,s]) ( ) ( )

The next result is a uniform version of theorem 0.3 and it generalizes [14, Theo-
rem 3| proved for one-parameter unipotent subgroups.

Theorem 0.5 Let © : R¥ — G C SL,(R) be a polynomial map with ©(0) = 0.
Let a compact set K C X, a function f € Cp(X), and an € > 0 be given. Then
there exist finitely many closed subgroups Hy, ..., H, of G, with each orbit H;I' being
homogeneous in X, and compact sets

C;c{geG:0RNgcCgH;}, j=1,...,m

such that the following holds: For any compact set K1 C K \ U;:1 C;I' there exists
To > 0 such that for any x € K, and any ball B in R centered at 0 with Radius(B) >

TO;
1
i | sewa = [ e
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where g is the G-invariant probability measrue on X .
Further if we assume that © is of split type, then the above result holds for any
box B = [0,5W] x --- x [0, s®] with each s > Tp.

In Chapter 5, we prove certain results about actions of semisimple groups G on
homogeneous spaces of larger Lie groups. These results were known earlier only for
the actions of G on its own homogeneous spaces.

Theorem 0.6 Let L be a Lie group, A a lattice in L, m : L — L/A the natural
quotient map, and py the L-invariant probability measure on L/A. Let a € G be
a semisimple element and U = {u € G : lim, . a "ua” = e} be the associated
horospherical subgroup. Let ) be a relatively compact neighbourhood of e in U such
that w is injective on Q. Let ug be the probability measure on w(§2) which is the image
of the restriction of a Haar measure on U to §). Assume that w(G4) is dense in L/A
for any normal subgroup Gy of G containing U. Then the sequence of measures a™- i
converges weakly to pr. In particular, m({a™ :n € N} -U) is dense in L/A.

The fixed point set of an involution (an automorphism of order 2) of a semisimple
group G is said to be symmetric subgroup of G. For example, SO(n) is the fixed
point set of the involution of SL,(R) given by g — ‘=1

Corollary 0.7 Let L, A, 7, and py, be as in theorem 0.6. Let G be connected semisim-
ple Lie subgroup of L with finite center. Let H be a symmetric subgroup of G such
that the orbit m(H) admits a (unique) H-invariant probability measure, say pg. Let
{gi} be a sequence in G. Suppose that w(Gy) is dense in L/ for any closed connected
normal subgroup Gy of G such that the image of {g;} in G/(G1H) has a convergent
subsequence. Then the sequence of measures g; - gy converges weakly to jiy,.

This result generalises a theorem of Duke, Rudnik and Sarnak [16] (cf. Eskin and
McMullen [17]), where the case of L = G is considered.

We also apply the results to study equivariant maps and address a question raised
by Stuck and Zimmer [39, Problem C]. The following result is obtained in this respect.

Corollary 0.8 Let L be a Lie group and A a lattice in L, G a connected semisimple
Lie subgroup of L with finite center. Suppose that the action of Gy on X = L/A is
minimal for any closed connected normal subgroup Gy of G such that R-rank(G/G1) <
1. Let P be a parabolic subgroup of G, Y a Hausdorff space with a continuous G-
action, and X x G/P —Y — X continuous surjective G-equivariat maps such that
the composition is the projection on X. Then Y is G-equivariantly homeomorphic to
X x G/P' for some parabolic subgroup P’ of G containing P.

This result extends a theorem of Dani [7], where the special case of L = G is
proved.



Chapter 1

Polynomials and returning to
compact sets

1.1 Growth properties of polynomial functions

Certain growth properties of polynomials of bounded degrees observed by Margulis
in [19] have played a key role in understanding the dynamics of individual orbits
of unipotent flows. Here we generalize these properties for polynomials of several
variables.

Notation 1.1 For d € N, let P; denote the space of real polynomials of degree at
most d.
Fix d € N. By Lagrange’s interpolation formula, for any ¢y < t; < ... < t4, any

fePy,andt € R,
d t—t
S P )

=0

For any measurale set £ C R", the Lebesgue measure of F is denoted by |E)|.

Lemma 1.2 There exists a constant M > 0 such that for any nonempty bounded
open interval I C R and any [ € Py,

1] - sup
tel

r0| <21 swpls(o),

tel

Lemma 1.3 There exists a constant M > 1 such that for any nonempty bounded
open intervals I C J in R and a function f € Py,

d

1
t) < M-
T A e

suplf( )l

Proofs of lemma 1.2 and lemma 1.3: By a linear change of variable we may assume
that 7 = (0,1). Put t; =i/d fori=0,...,d. Put Pk(t):H#kt =0,...,d.

5



By equation 1.1,

dt dt
k=0
Now
d
sup{ %Pk(t)’ te(0,1), k=0, ..,d} < g4t
Therefore
d
up Ef(t)‘ < (d+ DA™ sup (1)
te(0,1) te(0,1)

This proves lemma 1.2.
Also sup{|Py(t)| : t € J, k =0,...,n} < (d|J]|)? Therefore by equation 1.1, we
have supt € J|f(t)| < ((d+ 1)d*)|J|? - sup;c(1y | f(t)]. This proves lemma 1.3. O

Lemma 1.4 There exists a constant M > 1 such that for any € > 0, a bounded
interval J C R and [ € Py, if we put

E={seJ:[f(s)] < (Ed/M)'ilelglf(f)|},
then |E| <e€-|J|.

Proof. The set E has at most d; = [(d + 2)/2] components. Let M; be the M as in
lemma 1.3. Put M = M;d{. For each component I of E, apply lemma 1.3. Then

sup £ < M- 2 (£ L up 1 00)
te}fj = |I]4 M te? .

Therefore |I| < (¢/dy)|J|, and hence |E| < e-|J]. O

Notation 1.5 Fix d,m € N. Let P;,, denote the space of real polynomials of degree
d in m variables.

Let S™ denote the unit ball in R™ around 0. For any open convex set B C R™,
to € B, and v € §™, put

Byt, ={t>0:tv+ty € B}.

Lemma 1.6 There exists a constant M > 1 such that for any bounded open convex
sets DC BCR™, to €D, and f € Py,

md
sup £(6) < M ( sup [Bual/IDv] ) -sup (6]
S

teB vesm

Proof. For any v € S™, the function t — f(tv + o) is in P(na). Therefore the result
follows from lemma 1.3. U



Lemma 1.7 Given M > 1 there exists A > 1 such that for any f € Pam and a
bounded open convex set B, there exist an open convexr set D C B and to € D such
that

sup |Byitol|/|Dvito] <A and sup|f(t)] < M - inf |f(2)]. (1.2)
vesm teB teD

Proof. Let 1 < M’ < M and A\ = 2M;/(1 — M'™') > 1, where M, is a constant
such that the contention of lemma 1.2 holds for all f € P4,,). Let tg € B such that
|f(to)] > (M'/M)supsep | f(t)]. For every v € S™, define ¢, (t) = f(tv+ty), Vt € R.
Then ¢, € P(nay and hence

d¢v 2]\41
0| < Sl e

sup
ter,tO

Then for any 0 < ¢t < A7By,|, we get

bul0) + 1 2001

|¢V(t)‘ = dt
> (1—2M A )| f(to)]

(1/M")|f(to)]-

Hence, if we put
D = UVES'm [07 A_le,to)V + t07

then D is an open convex subset of B and equation 1.2 holds. 0

1.2 Condition for returning to compact sets

In this section we extend an important result of Dani and Margulis [13] about large
compact sets in finite volume homogeneous spaces, having relative measures close to
1 with respect to trajectories of unipotent flows.

First we describe some elementary results, which will also be used again at a latter
stage. The results are therefore presented in a form more technical than is necessary
for the immediate purpose.

Notation 1.8 For any set £ C R and m € N, define E™ := {s" : s € E'}.

Lemma 1.9 Let E and F be Borel measurable subsets of a bounded interval I C
[0,00) and m € N be such that for some €1, €3 € (0,1/m),

|E| <e - |I| and |F|>(1—e)-|1].

Then
|Em‘ S (mel)(l — m€2)_1 . |Fm‘



Proof. Suppose that I = [a, b], where 0 < a < b. Then
bm
) = [ xenlt)d

b
= m-/ xe(s)s" ' ds

< m-|Ep"?
< m-|E|(0™ —a™)/(b—a)
< (me)- I, (1.3)
Similarly, we have
[F7 = [ = [(I\ F)" = (1 —mea) - [I™]. (1.4)
The lemma follows from eqgs. 1.3 and 1.4. 0

Lemma 1.10 Let B be a bounded open convex subset of R™. Fixto € B. Let E and
F' be measurable subsets of B. Suppose there are a subset D C B, containing E and
F, and €1,€e2 € (0,1/m) such that, for every x € S™, the set Dyy, is open in [0, 00),
and for every connected component I of Dxy,, we have

|Exto NI <€ -|I| and [Fxg, NI > (1—€)- 1]

Then
IE| < (mey) (1 — mes) ™" - | .

Proof. Let o denote the rotation invariant measure on S™ such that the volume of
the unit ball in R™ is ¢(S™)/m. Using polar decomposition of B at the pole tg, we
have

|Bx,t0|
|E| = / da(x)-/ XExytD(t)tm_ldt
xesm 0
|Bx7t0|m
= (1/m)/ da(x)-/ XEx’tO(tl/m)dt
xeSsm 0
= (/m) [ 1B, ldox)
xeSsm

< (me)(1—me) - (m) [ |FR o

xesm

= (me)(1 —mey)~ ' |F|,
where the inequality follows from lemma 1.9. This completes the proof. U

Notation 1.11 Let G be a Lie group and g the Lie algebra associated to G. For
d,m € N, let Pynm(G) denote the set of continuous maps © : R™ — G such that for
all c,a € R™ and X € g, the map

teR—AdoO(tc+a)(X)eg

8



is a polynomial of degree at most d in each co-ordinate of g (with respect to any
basis). B

We shall write Py(G) for the set Py1(G). Note that if § € Py(G) is a group
homomorphism then 6 is a Ad-unipotent one-parameter subgroup of G, and conversely
any Ad-unipotent one-parameter subgroup 6 belongs to Py(G), where d = dim G — 1.

Theorem 1.12 Let G be a Lie group and I' a lattice in G. Then given a compact
set C C GJT', an € > 0, and a d € N, there exists a compact subset K C G/T" with
the following property: For any x € G/I', any © € Pym(G) and any bounded open
convex set B C R™, one of the following conditions hold:

1 LHte B:Ot)re K} = (1),
2. 9(B)xnNC=0.

Proof. In [14, Theorem 6.1], the result is stated for a one-parameter Ad-unipotent
subgroup u : R — G, in the place of © as above. The proof uses only the property
that u € Py(G) for d = dim G — 1, rather than the condition that u is a one-parameter
subgroup. Hence essentially the same proof applies for all 6 € P;(G).

Now choose a compact set K such that the conclusion of the theorem is valid for
¢/m in place of € and 6 € Py(G) in place of ©.

Let B be as in the hypotheis. Suppose that condition (2) does not hold. Then
there exists tg € B such that O(ty)z € C. Define

E={teB:0(t)z € K}.
Fix x € S™. Define a map 0(t) = O(tx+t,) for allt € R. Then 6 € P,;(G). Therefore
Bl = {t € Bagy £ 0(t)2 & K} < (¢/m) - | B
Therefore by lemma 1.10, for F = D = B, ¢; = ¢/m, and €; = 0, we get
|E| <e-|B|.
This completes the proof. 0

The usefulness of the above result is enhanced by the following theorem which
provides an algebraic condition as an alternative to the possibility ©(B)x N C = ().

Notation 1.13 Let G be a connected Lie group and g denote the Lie algebra asso-
ciated to G. Let V = @Zinlg NE g, the direct sum of exterior powers of g, and consider

the linear G-action on V' via the representation @?;nfg/\l Ad, the direct sum of exterior
powers of the adjoint representation of G on g.

Fix any euclidean norm on g and let B :_{el, ..., €dimg} denote an orthonormal
basis of g. There is a unique euclidean norm || - || on V' such that the associated basis
of V given by

{eg, Noo-ne 1< <. <, <dimg,r=1,...,dimg}

is orthonormal. This norm is independent of the choice of B.
To any Lie subgroup W of G and the associated Lie subalgebra w of g we associate
a unit-norm vector py € A ¥w € V.



Theorem 1.14 Let G be a connected Lie group, I' a lattice in G, and 7 : G — G /T’
the quotient map. Let M be the smallest closed normal subgroup of G such that
G = G/M is a semisimple group with trivial center and no compact factors. Let
q : G — G be the quotient homomorphism. Then there exist finitely many closed
subgroups Wy,..., W, of G such that each W; is of the form ¢ *(U;) with U; for
the unipotent radical of a maximal parabolic subgroup of G, w(W;) is compact and
the following holds: Given d,m € N and reals a,e > 0, there exists a compact set
C C G/T such that for any v € G/I', © € Pyn(G), and a bounded open convex set
B C R™, one of the following conditions is satisfied:

1. {te B:O(t)x e C} > (1—¢)B|.

2. There exist g € 7' (x) and i € {1,...,r} such that

sup [|©(t)g - pw,|| < a.
teB

Proof. By Auslander’s theorem [26, 8.24] and Borel’s density theorem [26, 5.24], T =
q(T') is a lattice in G and the fibres of the map g : G/T' — G/T are compact M-orbits.
Therefore to prove this result, without loss of generality, we may assume that G = G.

Then there are finitely many normal connected subgroups Gy, ..., G, of G such
that G = G x --- X G, and each I'; = G; N T is an irreducible lattice in G; (see [26,
5.22]). Therefore without loss of generality we may replace I' by its finite-index
subgroup I'y x - -+ x I'.. In order to prove the theorem for G, it is enough to prove it
for each G; separately. Thus without loss of generality we may assume that I' is an
irreducible lattice.

Then by the arithmeticity theorem of Margulis [23, 40], if R-rank of G is at least
2 then I' is an arithmetic lattice. That is, there exist a semisimple algebraic group G
defined over Q and a surjective homomorphism p : G(R)? — G with compact kernel
such that for A = G(Z) N G(R)° the subgroup I' N p(A) is a subgroup of finite index
in both I and p(A). Again in this case without loss of generality we may replace G
by G(R)? and T by A.

We shall prove the result by considering the cases of (1) arithmatic lattices, and
(2) G of R-rank 1, separately.

1.2.1 Case of arithmetic lattices

Let G = G(R)" for a semisimple algebraic group G defined over Q. Let I' = G(Z)NG
and 7 : G — G/I" be the natural quotient map. Let r be the Q-rank of G. We can
assume that r > 1, since otherwise by Godement’s compactness criterion (see [1,
Theorem 8.4]), G/I" is cocompact and the results of this section are trivial.

Let P denote a minimal Q-parabolic subgroup of G. Then by [1, Theorem 15.6],
there exists a finite set F' C G(Q) such that

G(Q) = P(Q)-F T.

Let S be a maximal Q-split torus of G contained in P. The subgroup P determines
an order on the set of Q-roots of S. Let A = {ay,...,a.} be the corresponding

10



system of simple Q-roots. Take i € {1,...,r}. Let P; denote the standard maximal
parabolic subgroup associated to the set of simple roots A\ {«a;}. Let U; be the
unipotent radical of P; and put U; = U;(R). Then for any g € P;(R), we have

g - Py, = det(Adgly,) - Pu,-
Define a function d; : G — R* as

2 Vg ed.

di(9) = llg - pu,

Theorem 1.15 Given d,m € N and a > 0 there exists a compact set C C G/T’
such that for any bounded open convexr set B C R™ and any © € Py,,(G), one of the
following conditions is satisfied:

1. There exists i € {1,...,r} and A\ € FT' such that

d;(O(6)A") = o)A - py [ <a, Vte€ B.

2. 7(O(B))NC # 0.

To prove this result we need to set up some more notation and recall a result from
[13].
For I C {1,...,r}, put J={1,...,r} \ I. Define

P, = (P
el

Q = {geP:di(g)=1,Viel}

Note that P N Q; is a minimal Q-parabolic subgroup of Q;. Therefore by |1,
Theorem 15.6], there exists a finite set F; C Q;(Q) such that

Q:(Q) = (PNQ)QF(T'NQrR)). (1.5)

We define
A =T NQF,

where Q; = Q;(R). Note that Py = Qp = G and A()) = TF~L.

Lemma 1.16 Let j € {1,...,r}, I C{1,...,r}\{j}, and I' =1 U{j}. Then there
exists a finite set E C P(Q) such that

ADA(I") Cc A(D)E.
Proof. By definition
ADANI) = (Q;ND)F - (Qp D) Fpt.
There exists a finite set L C Q;(Q) such that

F[_I(Q]/ ﬂF) C F]_l(Q[ ﬂF) C (Q[ ﬂF)L
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Now by eq. 1.5, there exists a finite set F; C (P N Q;)(Q) such that

(LFp Y ' Cc By F (T NQy).

Now
MDA € (@A) (LE )
C (QINT)F B
— A(DE,
where F = E,7! C P(Q). O

Notation 1.17 Let Z be the collection of all permutations of elements of subsets of
{1,...,r}. Let I = (i1,...,i,) € Z. Then by lemma 1.16 there exists a finite set
L(I) € G(Q) such that

ADA({ir}) - Alfir, . ip1}) = TL(D).

We define L(0) = {e}.
For positive reals 0 < a < b and o > 0, and any A € I'L([), define

Weaan(I,A)={9€G : a<di(g\) <b, Vieland
di(gA\0) >, Vje{l,....,r}\ I, V0 e A(l)}.

Note that for any v € T,
Wean(I,AN) = Waap(L, Ay

Define the following subsets of G/I':

WaasD) = |J #(WTN)= | =(W(T,N).

AeL(I) AeTL(I)

Proposition 1.18 (Dani and Margulis [13, Proposition 1.8]) The set W, ap(I) is
compact.

Notation 1.19 Fix d,m € N. The map V 3 v — ||v||? is a polynomial function on
V. Therefore there exists d' € N such that for any i € {1,...,7}, ¢ € Pymn(G) and
g € G, the map f: R™ — R defined as f(t) = d;(é(t)g), Vt € R™, is in Py, (G).

Let B be an open convex subset of R™ and © € P,,,,(G). When condition (1)
in theorem 1.15 fails to hold, using the following proposition we shall find constants
0 <a<band o > 0 (independent of © and B), I € Z, and t € B such that
7(O(t)) € Wans(T).

Proposition 1.20 (cf.[13]) Let o > 0 and D C R™ be a bounded open convex subset.
Suppose a family F C Py .m(G) satisfies the following conditions:
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1. For anyt € D and any 3 > 0,
#Lf € Ff(t)] <} < oo

2. For every f € F,
sup [ f(t)] > o
teD

Then one of the following conditions is satisfied:
(a) |f(to)] > a for all f € F and ty € D.

(b) There exist an open convexr subset Dy C D and fy € F such that the following
holds:

(i) fo(D1) C ()2, ).
(ii) For all f € F,
sup [f(t)] > /M,

teDq

where M > 1 is a constant depending only on d' and m.

Proof. 1f (a) does not hold then by condition (1), there exists tg € D and a finite set
Fi1 C F such that |f(tg)| > « for all f € F\ Fy. There exists s € (0,1) such that if
we put £ = {(1—s)tg+sv:v € D} then F is an open convex subset of D containing
to and the following holds:

(1) supeep |f(t)] =, Vf € Fi, and

(2) there exists fo € Fy such that supcp |fo(t)| = a.

By lemma 1.7, there exists a constant A > 1 (depending only on d’ and m) and
an open convex subset Dy of F containing ty such that

|Ev7t0|

— <\, Vves"
[(D)v.to

and
inf [fo(t)] > /2.

teD,

Now by lemma 1.6, there exists a constant M > 1 (depending only on A, d’ and m)
such that for any f € F we have

sup [f(t)] = /M.

teD,

This completes the proof. O

Proof of theorem 1.15. Let a > 0 be given. Let B C R™ be a bounded open
convex set and let © € Py, (G). Suppose that the condition (1) of the theorem fails
to hold.
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By a stepwise construction we shall obtain I € Z, A\ € I'L;, and constants 0 <
a; < by and ay > 0 depending only on [ and « such that

W(G(B)) n W(Wababbl([? /\)) 7é 0.

In view of proposition 1.18 this will imply that the second condition of the theorem
holds.

First note the following procedure: Suppose [ € Z, A € I'L;, an open convex set
D C R™, and constants 0 < ay < by are such that

(A) dz(@<B)/\) C (a[,b]), Vi el

Let F(I,)) denote the family of all functions f : R™ — R of the form f(t) =
d;(O(t)\d) for all t € R™, where § € A(/) and j € J = {1,...,r} \ I. Suppose
further that for some a; > 0, we have

(B) flelg|f(t)| >, VfEF(A).

Observe that condition (1) of proposition 1.20 is satisfied for the family F(I,\),
because the set I' - L;A(]) - p; is discrete in V' for every j € J. The condition (2)
of proposition 1.20 follows from the condition (B) as above. Therefore due to the
proposition, one of the following holds:

(a) There exists to € D such that d;(©(tg)A\d) > oy for all # € A(I) and all j € J.

In this case by condition (A) we have O(to)I' € Wy, 4,5, (I). We fix this [ € 7,
to € B, and constants 0 < ay < by and a; > 0 and stop the procedure.

(b) There exist jo € J, 6y € A(I), and an open convex subset D; C D such that
the following holds:

(l) d]()(@(Dl))\eo) C (Oé[/Q,Oq).
(ii) For all 8 € A(I) and j € J,
sup d;(0AO(t)) > a; /M.

teD,

In this case, let I; = IUjgy, and A\; = Ay. We will now show that conditions (A)
and (B) are satisfied for Dy, I; and A, with suitable constants ar,,b,, and ay,.
Since d;(gby) = di(g), Vi € I and Vg € G, condition (A) is satisfied with
ar, = ay/2 and by, = ay.

By lemma 1.16, there exists a finite set £ C P(Q) (depending only on I and
Jo) such that for any 0 € A(J U {jo}), there exists ¢ € A(I) and § € E such
that 60 = 0'5. Hence for every j € J\ {jo},

sup d;(O(t)\0) = supd;(O(t)A\dy0)

teD,

sup d;(©(t)\0'9)
(BN - d;(0)
> ar/M-p,



where = minsep d;(6) > 0 depends only on I and jy. Therefore condition (B)
is also satisfied for the family F(I;, A1) and oy, = Say;/M > 0.

This completes the description of our procedure.

To prove the theorem, we start with I = (), A = e, and D = B. Then condition (A)
is vacuously satisfied. We can assume that condition (1) in the statement of the
theorem does not hold. Then condition (B) is satisfied for F(0), e).

We can repeatedly apply the above procedure till we get I, A € I'L;, and constants
0 < ay < by and oy > 0 such that d;(©(B)\0) > ay for all € A(I); at which step we
are through. Since the cardinality of I increases each time we apply the procedure,
it must stop after at most r steps. This completes the proof. 0

Now in the arithmetic case the theorem 1.14 is obtained by combining theorem 1.12
with theorem 1.15.

1.2.2 Case of semisimple Lie groups of R-rank 1

Let G be a connected semisimple Lie group of R-rank 1, I' a lattice in G, and 7 :
G — G/T the quotient map. Let A be a maximal R-split torus in G and P a minimal
parabolic subgroup of G containing A. Let U be the unipotent radical of P. Let K
be a maximal compact subgroup of GG such that the Cartan involution of GG associated
to K preserves A. Let M = Z5(A) N K. Then we have the decompositions G = K P
and P = MAU.

Let g denote the Lie algebra of G and u the Lie subalgebra of g associated to
U. Fix an AdK-invariant norm on g and consider the associated norm on V as
described in notation 1.13. The norm on V is now K-invariant. We define a function
d:G— R* as

d(g) = llg-pul®>, Vged.

In view of the decomposition G = K P, we have that
g-pu = det(Adgly) - pu, Vg€ P,

and
g -pv ==*xpy, Vge MU.

For n > 0, define S, = {g € G : 0 < d(g9) < n}. By [18, Theorems 0.6-0.7] we
have the following.

Proposition 1.21 There exists a finite subset F' of G such that the following holds:
1. For every f € F, the orbit Un(f) = U/(fTf~'NU) is compact.
2. For anyn >0, the set (G/T") \ n(S,F) is compact.

3. There exists nyg > 0 such that for any fi, fo € F and g1, 92 € Sy, if m1(g1f1) =
7(g2f2) then f1 = fo and g1_1gz € MU.

In particular, for any g € G, if there are v1,7v2 € ' and fi, fo € F such that
d(gvifi™') < mo fori = 1,2, then fi = f; and i fi™' - pu = £72fo 'pu; in
particular, d(gy1fi~") = d(gy2fa™").
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The next result is an analogue of theorem 1.15 in the rank 1 case.

Theorem 1.22 For any connected set C' C G, one of the following conditions is
satisfied:

1. There exists A € FT' such that
|gA™" - pull® <m/2, VgeC.
2. W(C) gZ Tr(S'fIO/QF)'

Proof. Suppose that (1) and (2) do not hold. Then there exist g1,g> € C and Ay, Ay €
FT such that d(gl/\lil) < 7]0/2, d<g2>\171) = 770/2, and d(gQ}\Qil) < 7’]0/2 This

contradicts part (2) of proposition 1.21. O
Now in the rank-1 case, the theorem 1.14 is deduced from theorem 1.12 and
theorem 1.22. As indicated before this completes the proof. OJ
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Chapter 2

Invariant measures of unipotent
flows and behaviour of polynomial
trajectories near their supports

In technical terms this chapter is the core the thesis. We describe here a method
for investigating dynamics of individual trajectories of unipotent flows, and more
generally, ‘polynomial trajectories’” on homogeneous spaces. This uses crucially the
homogeneity of ergodic invariant measures for unipotent flows proved by Ratner.
The remaining chapters of the thesis show how the method can be applied in various
situations.

2.1 Finite volume, ergodicity and Zariski density
First observe the following.

Lemma 2.1 Let F be a locally compact Hausdorff second countable group acting
continuously on a locally compact Hausdorff second countable space X. For a point
x € X define F, = {g € F : gx = x}. Consider the map ¢ : F/F, — X, defined by
o(gF,) = gx for all g € F. Then the orbit Fx is closed if and only if the map ¢ is
proper. In particular, F'x is F'-equivariantly homeomorphic to the homogeneous space

F/F,.

Lemma 2.2 Let G be locally compact Hausdorff second countable group and I' a
discrete subgroup of G. Let F' and H be cloded subgroups of G. Let Zy and Zy be
closed orbits of F' and H respectively in G/T", and put Z = Z1 N Zy. Then every orbit
of FN H in Z is both open and closed in Z. In particular, for any subgroup L of G
and any point © € G/T, there exists the smallest closed subgroup F' of G containing
L such that the orbit F'x s closed.

Proof. Let z € Z. Then Fz = Z; and Hz = Zy are closed. Therefore F'/F, ~ Fz and
H/H, ~ Hz. Also G, F, and H, are discrete. Therefore there exists a neighbourhood
Q of the identity e in G such that QO ' NG, = {e}, (F2NQz) = (FNQ)z and
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(HzNQz) = (HNQ)z This implies that (FzN HzNQz) = (FNHNQ)z Hence
(FNH)zisopenin FzNHz = Z for every z € Z. Now (F'N H)z is closed, because
its complement in Z is the union of open F'N H orbits in Z and Z is closed. U

Notation 2.3 Let G be a connected Lie group, I' a lattice in G, X = G/T', and
L a subgroup such that the unipotent one-parameter subgroup of G contained in L
generate L.

Our aim in this section is to prove the following:

Theorem 2.4 For x € X let F' be the smallest subgroup of G such that L C F' and
Fz 1s closed. Then the following holds.

1. The stabilizer F, is a lattice in F.

2. A unipotent one-parameter subgroup of G contained in L acts ergodically on Fx
with respect to the F-invariant probability measure.

3. Let p : F — GL(V) be a finite dimensional representation such that p(L) is
generated by one-parameter groups of unipotent transformations on V. Then
p(Fy) is Zariski dense in p(F).

We recall some preliminaries and a result due to Margulis before going to the
proof of the theorem.

Definition 2.5 A subgroup H of G is said to have property-D if for every locally
finite H-invariant measure o on X, there exist measurable H-invariant subsets X;,
i € N such that 0(X;) < oo for all i € N and X = J,on Xi-

In particular if H has property-D then every locally finite H-ergodic and H -
wmvariant measure on X is finite.

Proposition 2.6 [5, Theorem 4.3]. Any unipotent subgroup U C G has property-D.
[

Definition 2.7 Let F' be a topological group, H C F and L C F. We say that the
triple (F, H, L) has the Mautner property if the following condition is satisfied: for
any continuous unitary representation of F' on a Hilbert space H, if a vector & € 'H
1s fized by L then it is also fixed by H.

The following Proposition is a slight modification of Theorem 1.1 in [24].

Proposition 2.8 Let F' be a Lie group and L be a subgroup such that the unipotent
one-parameter subgroups contained in L generate L. Then there exists a closed normal
subgroup H of F such that (i) L C H and (i) the triple (F, H, L) has the Mautner

property.
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Proof. Let U be a unipotent one-parameter subgroup contained in L. By Theorem
1.1 of [24], there exists a normal subgroup Hy C F such that (a) (F, Hy,U) has
the Mautner property and (b) the image of Ad(U) in the automorphism group of
the Lie algebra of F'/Hy is relatively compact. For each u € U, Adu is a unipotent
transformation of the Lie algebra of F', therefore the image of U in F'/Hy is in the
center. Hence the group UHy is normal in F' and (F,UHy,U) has the Mautner
property.

Let Uy, ..., U, be unipotent one-parameter subgroups of G which generate L. Let
H,,..., H, be normal subgroups of F such that U; C H; and the triples (F, H;, U;)
have the Mautner property for all 1 < i < n. Then H = H;--- H, satisfies the
conditions (i) and (ii). O

The proof of theorem 2.4 depends on the following observation by Margulis.

Lemma 2.9 [20, Remarks 3.12]. Suppose H C G admits a Levi decomposition H =
S - N, where S is a semisimple group without compact factors and N is the unipotent
radical of H. Then H has property-D.

Proof. Let o be a locally finite H invariant measure on X. We consider the left regular
unitary representation on £2(X, o).

Let W be a maximal unipotent subgroup of S. Then W-N is a unipotent subgroup
of G. By proposition 2.6 there exists a measurable W - N invariant partition {X;}en
of X such that o(X;) < oo for all i € N. If x; denotes the characteristic function
of X; then x; is a W - N invariant function in £?(X,0). By proposition 2.8 there
exists a normal subgroup @ of G containing W - N such that y; is @) invariant for all
1 € N. Since S is semisimple group without compact factors, S C ). Hence X; is H
invariant for all © € N. This completes the proof. O

Now we discuss the group theoretic structure of a closed subgroup generated by
unipotent one-parameter subgroups.

Lemma 2.10 Let H C G be a closed subgroup such that the unipotent one-parameter
subgroups of G contained in H generate H. Then H admits a Levi decomposition
H = S - N, where S is a semisimple group with no compact factors and N is the
unipotent radical of H.

Proof. 1t is enough to prove the lemma for the adjoint group of G. Therefore we may
assume that G C GL(n,R) and its unipotent elements are unipotent linear transfor-
mations. By Levi decomposition H = S+ R, where S is a connected semisimple group
and R is the radical of H. Suppose H; is a normal subgroup of H containing R such
that H/H; is a compact semisimple group. Note that under a surjective morphism a
unipotent element projects to a unipotent element. Since compact semisimple groups
contain no nontrivial unipotent elements, by hypothesis H = H;. This shows that S
has no compact factors.

To prove the other part we argue as follows; we refer the reader to [26, Prelimi-
naries 2] for the results used in the the argument.

Let H be the smallest algebraic R-subgroup of GL(n,C) containing H. Let
N be the unipotent radical of H. By Levi decomposition there exists a connected
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semisimple R-subgroup S C H such that S - N is a normal subgroup of H and
T = H/(S-N) is an algebraic R-torus. Now the projection of any unipotent element
of H in T is unipotent. But any algebraic torus contains only semisimple elements.
Hence by hypothesis H C S - N. By minimality of H, H=S - N.

Since H normalizes the Lie subalgebra r corresponding to its radical R, by defini-
tion H normalizes r ® C. Hence R is contained in the radical of H. Since the radical
of H is unipotent, R consists of unipotent linear transformations. This completes the
proof. O

Lemma 2.11 Let L be as in notation 2.3. Suppose that L acts ergodically on X
with respect to a probability measure v. Then L contains a unipotent one-parameter
subgroup of G acting ergodically on the measure space (X,v).

Proof. Let N be the radical of L. Then L = S - N, where S is a semisimple group
with no compact factors and N is a unipotent subgroup of G. Let U; be a unipotent
one-parameter subgroup of S such that no proper normal subgroup of S contains U.
Then W = Uy N is a unipotent subgroup of GG, and it is not contained in any proper
normal subgroup of L. Therefore by Mautner’s phenomenon, W acts ergodically with
respect to v, (see [24, Theorem 1.1] and [22]). Now by [8, Proposition 2.2], there exists
a one-parameter subgroup of N which acts ergodically on X with respect to v. [

Proposition 2.12 Let F' be a connected Lie group, A be a closed nonconnected sub-
group of F and U = {u;}cr be a one-parameter subgroup of F such that UA = F.
Let p: F — GL(E) be a finite dimensional representation of F such that p(U) con-
sists of unipotent linear transformations of E. Then every A-stable subspace of E is
also F-stable.

Proof. Let W be A-stable subspace of E. Passing to a suitable exterior power of p,
we may assume that dim(7W) = 1. For any v € E\ {0}, let v € P*(E) denote the one-
dimensional subspace of F containing v. Let p : F' — PGL(FE) be the projective linear
representation of F' on the projective space P'(E) corresponding to p; that is, p(v) =
p(v) for all v € E'\ {0}. Let w € W\ {0}, and let ¢ : R — E be the map given by
o(t) = p(uy)w for all t € R. Fix an orthonormal basis {ej, ..., e,} of F with respect
to some inner product. Since p(U) consists of unipotent linear transformations, there
exist polynomials ¢1,. .., ¢, on R such that ¢(t) = Y"1, ¢;(t)e, for all t € R. Now
@i (t)) 25— p3(t) converges as t — oo for 1 < i < n. Hence lim; . (t)/|l¢(t)]| = p
for some p € F with unit norm.

Let A® denote the connected component of the identity in A. If F = UA then
F = UA" and there exists to € R\ {0} such that uz, € A for all k € N. Therefore
p(A)w = w and p(kty) = w for all k € N. Since ¢ is a polynomial function, it must
be constant. Thus p(F)w = w in this case.

Suppose F'\ UA # (). For any f € F'\ UA, there exist sequences {t;}ren C R,
and {0 }ren C A such that t, — oo and u, 0 — f as k — oo. For x € E '\ {0}, let
T denote its image in P'(E). Since p(A)w = w,

p(f)w = lim p(ue, 0p)w = lim p(uy, )w = lim ¢(ty) = p.

k—o00 k—o0 k—o00
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Now for any u € U, uf € F'\ UA. Therefore
p = pluf)w = p(u)(p(f)w) = p(u)p.

Thus p(U)p = p. By putting u = e we get that p = w. Therefore p(UA)w = w.
Hence p(F)w = w. This completes the proof. O
We also need the following lemma.

Lemma 2.13 Let F be a Lie group, A be a discrete subgroup of F' and H be a normal
subgroup of F such that HN = F. Then H acts ergodically on (F/A,0), where o is
a locally finite F-semi-invariant measure on F/A with the modular function of F as

its character (cf. [26, §1.4]).

Proof. The proof of Lemma 8.2 in [3] goes through as it is, if we replace £*(F/A, o)
by the space of locally integrable functions on (F'/A, o). O

Proof of theorem 2.4. By proposition 2.8 there exists a smallest closed normal sub-
group H of F' containing L such that the triple (F, H, L) has the Mautner property.

Since H is normal in F', HF, is a subgroup of F. If H; = HE, then H, D H
and Hiz is closed in Fx. By minimality of F' as in the hypothesis, H; = F. Hence
HF,=F.

Let H' be the closure of the group generated by all unipotent one-parameter
subgroups of G contained in H. Then L C H' and H’ in normal in F'. Therefore by
the hypothesis on H, H' = H.

Let o be a locally finite F-semi-invariant measure on F/F, with a character Ap,
where Ar is a modular function of F. If f is the Lie subalgebra corresponding to F'
then Ap(f) = |det(Adfl|¢)| for all f € F.

Since H is the closure of a subgroup generated by unipotent one-parameter sub-
groups, Ap(H) = 1. Therefore o is H-invariant. By lemma 2.13, H acts ergodically
on (F/F,,o). Since Fz is closed, the natural inclusion F//F, — X is proper. There-
fore we may treat o as a locally finite ergodic invariant measure of H on X. By
Lemmas 2.9 and 2.10, H has property-D. Hence o is finite. This proves part (1).

A finite F-semi-invariant measure ¢ must be F-invariant. Now by the Maut-
ner property of the triple (F, H, L), L also acts ergodically on (Fz,0). Hence by
lemma 2.11, there exists a one-parameter unipotent subgroup U of G contained in L
such that U acts ergodically on Fx. This proves part (2).

Ergodicity of the action implies, by Hedlund’s lemma, that U has a dense orbit
in Fx. Therefore replacing U by one of its conjugates in F', we may assume that
Uz = Fz. To prove part (3), we may assume that V = R”. Let d > 0. Let P,
be the finite dimensional vector space of real polynomials of degree < d defined on
M,,(R), the space of n x n matrices with real entries. Consider the representation
7 of GL(n,R) on P, defined as follows: for ¢ € GL,(R), p € P; and = € M(n,R),
we have (m(g)p)(z) = p(¢g~'x). Clearly n(g)p € P;. Since 7 : GL(n,R) — GL(P,)
is an algebraic morphism, 7 preserves algebraic unipotent subgroups. Thus 7 o p(U)
consists of unipotent linear transformations of P;. Define

In={pe€ P;i:p(p(d)) =0forall § e F,}.
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Then I; is a subspace of P;. Since F, is a group, F, stabilizes I;. Therefore by
proposition 2.12, for all f € F and p € I; we have w(p(f~'))p € I; and hence

p(p(f)) = [m(p(f~1))pl(e) = 0. Thus p(p(f)) =0 for all f € F and p € I,. Since this
happens for every d > 0, we conclude that p(F') is contained in the Zariski closure of

p(F,) in GL(n,R). This proves (3). O

2.2 Finite invariant measures of a unipotent flow

Let G be a Lie group, I' a discrete subgroup of G, X = G/T, and 7 : G — X
the quotient map. Let L be a subgroup of G generated by unipotent one-parameter
subgroups of G contained in L. Let Xy(L) be the set of all x € X such that there
exists a closed subgroup F' of G containing L such that the orbit Fx is closed and
admits a finite F-invariant measure.

For any = € X, let F'(x, L) denote the smallest closed subgroup F' of G containing
L such that the orbit F'x is closed; such a subgroup exists by lemma 2.2.

Remark 2.14 Let x € Xy(L). Then by proposition 2.12, F(z, L), is a lattice in
F(z,L) and Ad(F(z,L),) is Zariski dense in Ad(F'(z, L)), where Ad : G — Aut(g)
is the Adjoint representation.

Notation 2.15 Let H be the collection of all closed connected subgroups H of G
such that H NI is a lattice in H and Ad(H NT) is Zariski dense in Ad(H). Note
that by [26, Lemma 1.12], the orbit HT'/T" is closed.

Fix a (positive definite) inner product on g, and let ¢ be the induced Riemannian
metric on G which is invariant under all the right translations. Then o projects to a
unique Riemannian metric & on X such that the map 7 : G — X is locally isometric.
Now for any H € H the restriction of & on the submanifold 7(H) = HT'/T' determines
a smooth measure, which is H-invariant. We denote the total measure of this orbit
by vol, (w(H)).

It was proved by Ratner [30, Theorem 1] that the collection H is countable; also
compare [35, Lemma 5.2] and [14, Proposition 2.3]. We recall the following result,
which provides more precise information in this regard.

Proposition 2.16 ([14, Theorem 5.1]) For any ¢ > 0, the set
H.={H € H :vol,(n(H)) < ¢}

is finite. In particular, the collection H is countable.

Notation 2.17 For any H € H, define

N(H,L) = {g€G:LCgHg '} and
S(H,L) = U N(F,L).

FeH,FCH,F+H
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By remark 2.14, we have

Xo = |J #(N(H, L))
HeH

Lemma 2.18 Let g € G, H € H, and put x = 7(g). Then
gEN(H,L) < F(x,L) C gHg™*

and
g€ S(H,L) & F(z,L) C gHg " and dim F(x, L) < dimgHg™".

In other words,
g€ N(H,L)\ S(H,L) & F(x,L) = gHg™ .

In particular,

7(N(H,L)\ S(H,L)) =n(N(H,L))\ n(S(H, L)). (2.1)
Proof. The assertions easily follow from the definitions and theorem 2.4. 0
Notation 2.19 For any H € H, define

[H = {yHy':y€T}CH, and
[H] = {[H]: H € H}.

Lemma 2.20 For any Hy, Hy € H, the following holds:
1. [Hl] = [HQ] =4 TH1 = THQ.
2. [Hl] # {HQ] =4 TH1 N TH2 = 0.

In particular, the notation Tiy) := Ty is well defined, and X is the disjoint union of

{Tim : [H] € [H]}-

Proof. Suppose that [H;] = [Hs]. Let v € T be such that Hy = yH;y~'. Then for
any g € G and = 7(g), by lemma 2.18,

g€ N(L,Hy)\ S(L,Hy) & F(x,L)=gHyg ' = (97)Hi(g7)™"
& gy € N(L,Hy)\ S(L, Hy).

Hence Ty, = T4y,.

Suppose that there exists * € Ty, N Ty,. Then there exist g;,g2 € 7 '(x) such
that H; = g1 'F(z,L)g, and Hy = g5 'F(x,L)gs. Now g; = goy for some v € T.
Therefore Hy, = yvH,y~'. Hence [H;| = [H,).

From this discussion the statements (1) and (2) follow. O

Now we state the fundamental theorem due to Ratner describing ergodic invariant
measures for actions of the subgroups L on G/I' as above.
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Theorem 2.21 (Ratner [30]) Let p be an L-invariant and L-ergodic probability
measure on X. Let

F={9eG:g-p=p}

Then F acts transitively on supp(p); that is, pu is the unique F-invariant probability
measure on a closed F'-orbit.

Using this result we give a description of any finite L-invariant probability measure
on X.

Proposition 2.22 Let p be a L-invariant probability measure on X. For every [H] €
[H], let ) denote the restriction of i on Tigy. Then the following statements hold.

1. The measure g s L-invariant, and any L-ergodic component of g is of
the form g\, where g € N(H,L)\ S(H,L) and X is a H-invariant measure on
HT/T.

2. For Hy,Hy € H, if [H] # [H,)], then the measures g, and pip,) are mutually
singular.

3. For any measurable set A C X,

pA) = D pm(A).
]

[Hle[H

In particular, if p(r(S(G,L)) = 0 then T' is a lattice in G and u is the unique G-
wwvariant probability measure on X.

Proof. Since p and T are invariant under the action of L, so is yg). The collection,
{gn(H)NTy : g€ N(H,L)\ S(H,L)}

forms a measurable partition of Tjg) into L-invariant atoms. Hence any ergodic com-
ponent of pp), say v, is supported on a closed orbit of the form gm(H) for some
g € N(H,L). Now for every z € gn(H) NTg, we have that F(x, L) = gHg™'. Hence
by theorem 2.21, v is gH g '-invariant. Hence A = ¢~ 'v is an H-invariant measure
supported on m(H). This proves (1).
The statement (2) follows from lemma 2.20(2).
To prove part (3), let v € P(X) be any ergodic component of p. Let x € supp(v)
be such that the orbit Lz is dense in supp(v). By Ratner’s theorem, supp(v) = A(v)z.
Clearly, A(v)® = F(x,L). If we put H = g~ 'F(z, L)g for any g € 7~ !(z), then by
theorem 2.4, H € H. Now by lemma 2.18, we have that g € N(H, L)\ S(H, L). Also
note that v(m(S(H,L))) = 0. Therefore v(X \ Tjy;) = 0. This shows that v is an
ergodic component of jig). In view of statement (2), this implies the statement (3).
O
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2.3 Linear presentation of G-actions near singular
sets

Let V' be the representation of GG as described in notation 1.13. For H € H, let
nu : G — V be the map defined by ny(g) = gpy = (A*Adg)py for all g € G. Let
N¢(H) denotes the normalizer of H in G. Define

N&(H) =1y~ (pr) = {9 € No(H) : det(Adgln) = 1}.
Applying proposition 2.16 we deduce the following.

Theorem 2.23 ([14, Theorem 3.4|) The orbit U'py is closed, and hence discrete. In
particular, the following holds.

1. The map ¢ : G/T'y — G/T" x V defined by

¢(gl'u) = (n(g9),nu(9)), Vg€ G,
1S proper.
2. The orbit N;(H)T is closed in G/T.
3. For every x € G/T, the set ny(m~'(x)) of representatives of x in V is discrete.

4. For any compact set Z C G/T, the set ny(m—'(Z)) is closed in V.
Proof. First note that for any g € G,

llgp]| = Jacobian of the linear map : w € h — (Adg)w € (Adg)h
= vol,(gn(H))/vol,(m(H)). (2.2)

For any v € ', we have yw(H) = w(yH~~!). Therefore, for any ¢ > 0,

#inu(y) €V iy el [nua(y)ll <c}
< #{F €H:[F]=[H] vol,(n(F))/vol,(m(H)) < ¢}
< 00, due to proposition 2.16.

This shows that 7y (") is discrete in V, proving the main part of the theorem.
To prove statement (1), let K be a compact subset of G and D a compact subset
of V. Define

S={yeTl:ypye K ' D}.

Since K- D is compact and 1y (T") is discrete, the set Spy is finite. Since S C T’
and 'y, = 'y, the set ¢(5) is finite, where ¢ : G — G/I'y is the quotient map. Note
that

¢ (nm(K),D) C K¢ (n(e), K 'D) = Kq(S).

Therefore ¢(K, D) is compact in G/I'y. This completes the proof of statement (1).
The rest of the statements are easy consequences of statement (1). U
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Proposition 2.24 (cf. [14, Prop. 3.2]) Let V(H, L) be the linear span of ny(N(H, L))
in V. Then

Proof. For any 1 in the Lie algebra 1 of L, let a linear map ¢, : V' — V be defined as
¢(v)=1Avforall veV. Forany g e G,

gEN(H,L) < 1CAdg(h)
< 1(g) € kenern
< n(g) € Linear span of n(N(H, L).
U

Notation 2.25 Put I'y = Ng(H) NT'; then yn(H) = n(H). Therefore by equa-
tion 2.2, ypy = *py. In view of this we define V. = V/{Id,—Id}, if Typy =
{pu,—pnu}, and define V.=V if Cypy = pu. The action of G factors through
the quotient map from V onto V. Let py denote the image of py in V, and define
g G —V asfig(g) = gpy for all g € G. Now Ty = ijgy Y(py) NT. Let V(H, L)
denote the image of V(H, L) in V. Note that the inverse image of V(H,L) in V is
V(H,L).
For any subset Z of G/T, define

Rep(Z) :=={gpy €V : g € G,7(g) € Z}.

Proposition 2.26 Let H € H and D be a compact subset of V(H,L). Let K be a
compact subset of G/T'. Define

S(K,D) = {ze€ K :#(Rep(z)nD)>1}.
Then the following holds.
1. S(K, D)) is compact.

2. There exist m € N and F; € H, where F; C H and dimF; < dim H for
1 <@ <m, such that

S(K,D)C (6 Ne(F;, L)) .

3. Given any compact set Ky C K \ S(K, D), there exists a neighbourhood ® of
D in V such that for any x € K, the set Rep(x) N ® contains at most one
element.

Proof. By theorem 2.23, there exists a compact set C' C N(H, L) such that ¢(C) =
¢~1(K,D) C G/Ty. Put

cr=cn| |J oy

yEMly
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Then S(K, D) = 7(C*). Put A = (I'\Ty) N C~'C. Then

0*=0m<U C’v).

vEA

Since A is finite, C* is compact. This proves (1).

Let x € S(K,D). Then there exist ¢ € C* and v € A such that x = 7(c) and
¢y € C. Since C C N(H,L), we have ¢c"'Lc C yHvy™!. Let W be the subgroup
generated by all unipotent one-parameter subgroups contained in H N yH~~!. Put
F(v) = F(n(e), W); clearly F(v) = F(I', L) in the earlier notation. Then F(vy) € H,
F(y) c HNyH~y !, and ¢ € N(F(v), L). Since v & 'y, we have dim F'(y) < dim H.
Thus,

C" CUseaN(F(7), L).

This proves (2).

Let {®;};en be a decreasing sequence of relatively compact neighbourhoods of D
such that N;en®; = D. Let C; be a compact subset of G such that ¢(C;) = ¢~ (K, ®;).
Put A; = C;71C; N (T'\ T'y) and

C = CiN (Ureriry Ciy) = CiN (Uyea, Ciy) -

Put NienC; = C. Since ¢ is a proper map, we have ¢(C) = ¢ ' (K, D). Therefore
Nien4; = A. Since A, is finite for each 7 € N, there exists ¢; € N such that A; = A
for all ¢ > iy. Therefore, N;enC; = C*. Hence given a compact set Ky C K \ 7(C*),
there exists ig € N such that K; C K \ 7(Cy) for all ¢ > iy. Now the statement (3)
holds for & = ;. 0

2.4 Dynamics of polynomial trajectories near sin-
gular sets

The following growth property of polynomial maps has turned out to be of great
significance in the study of polynomial trajectories near affine algebraic varieties.

Proposition 2.27 ([14, Proposition 4.2]) Let a compact set C C V(H, L), an € > 0
and a d € N be given. Then there exists a larger compact set D C V(H, L) such
that the following property holds: for any neighbourhood ® of D in V there exists a
neighbourhood W of C in 'V such that for any 0 € Py(G), any w € V and any bounded
interval (a,b) of R, if O(a)w & ®, then

{t € (a,b) : 0(t)w € U}| < e-[{t € (a,b) : O(t)w € D}|. (2.3)
Proof. Let C be a finite collection of linear functionals on V' such that
V(H,L) = Ngecf(0).

For any f € C, 0 € P4(G) and w € V, the maps t — f(0(t) - w) and t — ||0(¢) - w||?
are in Py, for some d; € N depending on d and dim G.
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By lemma 1.4, there exists M > 1 such that for any bounded interval J and
Y € Py, we have

{teJ: |p@)] < (1/M) Sttelgli/}(t)l} <e-|J].

For R > 0, define B(R) = {w € V(H,L) : |[w||*> < R}. Let R > 0 be such that
C C B(R). Put )
D =V(H,L) N B(MR).
For ¢ > 0, let Z,(C) be the image of the set {w € V : |f(w)| < ¢, Vf € C}in V(H,L).
Now given a neighborhood ® of D, there exists ¢ > 0 such that Z.(C) N B(MR) C ®.
Put

U = Z,n(C) N B(R).

Then ¥ is a neighborhood of C' contained in ®.

Fix any w € V, let w denote its image in V(H,L). Let J be any connected
component of Ir. Suppose that #(a) - w ¢ ®. Then there exists a; € J such that
6(a;)-w & ®. Therefore either | fo(6(a;)-w)| > ¢ for some fy € Cor ||0(ar)-w|]* > MR.
Hence by the choice of M > 0, we have that

[{t € J:|f(6(t) - w)| < c/M and ||0(t) - w||* < R}| <e-|J|.

From this eq. 2.3 follows.
O

Proposition 2.28 Given a compact set C C N(H,L)\ S(H,L), an ¢ > 0, and a
d € N, there exists a neighbourhood 2 of w(C') in G /T such that for any 0 € Pq(G),
one of the following conditions is satisfied.

(i) There exists v € I' such that
T(O(R)) C 0(0)ym(NG(H)).

Moreover if m(6(0)) € C then v can be chosen to depend only on 0(0), rather
than the map 6.

(ii) There exists Ty > 0 such that for all T > Ty,

{t € (0,T) : m(0(t)) € QY| < eT.

Proof. Let a compact set D C V(H, L) be as in proposition 2.27, for ¢/2 in place
of e. Let K be any compact neighbourhood of 7(C') in G/I". By proposition 2.26,
we have 7(C') N S(K, D) = (). Let ©; be an open neighbourhood of 7(C) such that
Q, € K\ S(K, D). Again by proposition 2.26, there exists a neighborhood ® of D
such that for every = € 4, the set Rep(x) N ® contains at most one element.

By the choice of D there exists a neighborhood ¥ of C' contained in ® such that
eq. 2.3 holds for €/2 in place of €.
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Put

Q = {yeQ :Rep(y)NT #P} and
E = {teR:7n(0(t)x) € Q}. (2.4)

By the choice of ®, for every t € E, there exists a unique w; € I' - py such that
6(t) - wy € .

Suppose that for some s € E, there exists an unbounded interval J containing s
such that 0(.J) - wys C ®. Since 0 € Py(G), we have §(t) - w, = 0(0) - w, for all t € R.
Let v € T" such that wy = - py. Then condition (1) holds for ¢ = 0(0)y. Also
w; = W, for every t € F.

Therefore if condition (1) does not hold, then there exists Ty > 0 with the following
property: Take any 7' > Ty and put I = [0,7]. Then for any t € E N I, there exists
a largest open interval I(¢) C I containing ¢ such that

O(I(t))-wy C ®and O(1(t)) - w, & P. (2.5)

Put Z = {I(t) : t € ENI}. Then for any Iy € Z and s € I N E, we have
I(s) = I,. Therefore for any t1,to € E NI, if t; < ty then either I(t;) = I(t3) or
I(t1)NI(t3) C (t1,t2). Hence every t € I is contained in at most two distinct elements

of Z. Thus
S Inl <21, (2.6)

LEeT

Now by egs. 2.3 and 2.5, for any t € EN 1,
{s € I(t):0(s) -w, €V} < (e/2)-]I(t)]. (2.7)
Therefore by eqs. 2.6 and 2.7, we get
EnI<(e/2)- Y |nl <1,
LeT

This completes the proof. 0
The use of a result like proposition 2.28 is illustrated here by an alternate proof
of Ratner’s distribution rigidity theorem.

Theorem 2.29 (Ratner [31]) Let G be a Lie group and I' a lattice in G. Let U =
{u(t)} be a unipotent one-parameter subgroup of G and x € G/I". Then there exists
a closed subgroup F of G containing U such that the orbit Fx is closed, it admits a
finite F-invariant probability measure, say u, and the trajectory {u(t)x : t > 0} is
uniformly distributed with respect to p.

Proof. For T > 0, let vp € P(G/T") be such that for any bounded continuous function
fon G/T,

1 /T
o fdvp = T/o f(u(t)x) dt.
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Let T; — oo be any sequence in R such that vy, — v for some v € P(G/T' U {o0}) in
the weak* topology. In view of the theorem due to Dani and Margulis as stated in the
introduction, we have that v({cc}) = 0. Hence v € P(G/T). It is straightforward to
verify that v is U-invariant.

Now in view of lemma 2.20, let H € H be of smallest possible dimension such that
v 7 0. Let Cy be any compact subset of N(U, H)\ S(U, H) such that vy (7(Cy)) =
€ > 0. Then for any neighbourhood 2 of 7(C}), we have that vr,(€2) > € for all large
i € N. Apply proposition 2.28 for C' = C; and the € as above. Then the condition (2)
of the proposition fails to hold for {u(t)}, =, and any neighbourhood Q of = (C}).
Hence there exists g € 7~ !(z) such that g € C. Hence we have that g € N(U, H).
Therefore Ur C gHg 'z = g(HT/T).

If dim H < dim G, then the proof can be completed by an obvious inductive argu-
ment. Therefore we may assume that H = G. Hence v = vjg;. Now by lemma 2.20,
every ergodic component of vjg] is G-invariant. Hence v is G-invariant. Thus we
showed that every limit point of the set {vr : T > 0} in P(G/T'U {o0}) is the unique
G-invariant probability measure on G/I". This proves that vy — p as T — 0o, where
i is the G-invariant probability measure on G/T". This completes the proof. O

Now we generalize proposition 2.28 in the case of © € P,,,,(G) instead of 0 €
Pa1(G). Our proof of this generalization requires the following additional condition.

Assumption: G/I" admits a finite G-invariant measure.

Theorem 2.30 Given a compact set C; C N(H,L)\ S(H,L), ane >0, and d,m €
N, there ezists a neighbourhood Q0 of w(C) in G/ such that for any v € G/I'" and
any sequence ©; — Oqg in Py (G), one of the following conditions is satisfied.

(I) There exists g € 7 *(00(0)x) such that

Op(R™)z C gm(Ng(H)).

(1I) There exists a bounded open convex set B' C R™ and iy € N such that for all
bounded open convex subsets B of R™ containing B’ and all i > i,

1
EHt € B:0,(t)xr € Q}| <e.

We shall give a proof by induction on dim H. For this purpose we first need to
prove a stronger and technical version of it.

Proposition 2.31 Let € > 0, d € N, and a compact set K C G/I" be given. Let
C, be a compact subset of N(H,L). Then there exist compact sets D C V(H, L) and
S1 C UM Ng(F;, L), where m € N, and F; € H with F; C H and dim F; < dim H
for 1 < i < m, such that the following holds: Let a neighbourhood ® of D in V and
a compact set Z C K\ 7(Sy) be given. Then there ezists a neighbourhood Q of w(C})
in G/I' such that for any x € G/I', © € Pyn(G), and a bounded open conver set
B C R™, one of the following conditions is satisfied:
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(1) O(B)xnZ = 0.
(2) ©(B)v C ® for some v € Rep(x).
(3)

1
E’{t €EB:O(t)r e} <e.

First we de