
LIMITS OF TRANSLATES OF DIVERGENT GEODESICS

AND INTEGRAL POINTS ON ONE-SHEETED

HYPERBOLOIDS

HEE OH AND NIMISH A. SHAH

Abstract. For any non-uniform lattice Γ in SL2(R), we describe the
limit distribution of orthogonal translates of a divergent geodesic in
Γ\SL2(R). As an application, for a quadratic form Q of signature (2, 1),
a lattice Γ in its isometry group, and v0 ∈ R3 with Q(v0) > 0, we com-
pute the asymptotic (with a logarithmic error term) of the number of
points in a discrete orbit v0Γ of norm at most T , when the stabilizer of v0
in Γ is finite. Our result in particular implies that for any non-zero inte-
ger d, the smoothed count for number of integral binary quadratic forms
with discriminant d2 and with coefficients bounded by T is asymptotic
to c · T log T + O(T ).

1. Introduction

1.1. Motivation. Let Q ∈ Z[x1, · · · , xn] be a homogeneous polynomial and
set Vm := {x ∈ Rn : Q(x) = m} for an integer m. It is a fundamental
problem to understand the set Vm(Z) = {x ∈ Zn : Q(x) = m} of integral
solutions.

In particular, we are interested in the asymptotic of the number N(T ) :=
#{x ∈ Vm(Z) : ‖x‖ < T} as T →∞, where ‖ · ‖ is a fixed norm on Rn.

The answer to this question depends quite heavily on the geometry of the
ambient space Vm. We suppose that the variety Vm is homogeneous, i.e.,
there exist a connected semisimple real algebraic group G defined over Q
and a Q-rational representation ι : G → SLn such that Vm = v0.ι(G) for
some non-zero v0 ∈ Qn.

Let Γ < G(Q) be a subgroup commensurable withG(Z) preserving Vm(Z).
Since Vm is Zariski closed, by Borel and Harish-Chandra [3, Theorems 6.9
and 7.8], the co-volume of Γ in G is finite and there are only finitely many
Γ-orbits in Vm(Z). Hence understanding the asymptotic of N(T ) is reduced
to the orbital counting problem of estimating #(v0Γ ∩ BT ) for BT = {x ∈
Vm : ‖x‖ < T} and v0 ∈ Vm(Z).
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Theorem 1.1 (Duke-Rudnick-Sarnak [10]). Set H to be the stabilizer sub-
group of v0 in G. Suppose that H is a symmetric subgroup of G. If the
volume of (H ∩ Γ)\H is finite, i.e., if H ∩ Γ is a lattice in H, we have, as
T →∞,

#(v0Γ ∩BT ) ∼ volH(H ∩ Γ\H)

volG(Γ\G)
volH\G(BT ),

that is, the ratio of both the sides converges to 1 as T → ∞, where the
volumes on H, G and v0G ' H\G are computed with respect to invariant
measures chosen compatibly; that is, d volG = d volH ×d volH\G locally.

A simpler proof of this result using mixing of geodesic flow was given by
Eskin and McMullen [11]. When H is any maximal reductive Q-subgroup
with vol((H ∩ Γ)\H) < ∞, the same conclusion was obtained by Eskin,
Mozes and Shah in [12] using Ratner’s description [17] of measures invariant
under unipotent flows. An effective version of Theorem 1.1 has also been
obtained in [10] for (H ∩ Γ)\H compact and in [2] in general.

In view of the the main term of the asymptotic, it is crucial to assume
that vol(H ∩ Γ\H) < ∞ in Theorem 1.1. The main aim of this paper is
to break this barrier and investigate the counting problem in the case when
vol(H ∩ Γ\H) =∞.

If H is a semisimple Lie group with no compact factors in a semisimple
Lie group G, then any closed Γ\ΓH in Γ\G must be of finite volume by
Dani [6] and Margulis [16] (see also [20]).

If Q is a quadratic form of signature (p, q) with p + q ≥ 3, p ≥ q and
G is the special orthogonal group of Q, the case of vol(H ∩ Γ\H) = ∞ for
H = StabG(v0) arises only when (p, q) = (2, 1) and Q(v0) = m > 0, that is,
when the variety Vm = {x ∈ R3 : Q(x) = m} is a one-sheeted hyperboloid.
To prove this claim, note that any non-compact stabilizer H of v0 ∈ Rn in
G is either locally isomorphic to SO(p − 1, q), SO(p, q − 1) or a compact
extension of a horospherical subgroup. Except for the case of SO(1, 1) the
groups SO(p− 1, q) and SO(p, q − 1) are compact or semi-simple. Also any
closed orbit of a compact extension of a horospherical subgroup in Γ\G is
compact (cf. [8]). Therefore in view the above remarks it follows that the
case of vol(H ∩Γ\H) =∞ arises only when H ' SO(1, 1); hence n = 3 and
Q(v0) > 0.

In the next subsection, we state our main theorem in a greater generality,
not necessarily in the arithmetic situation.

1.2. Counting integral points on a one-sheeted hyperboloid. Let
Q(x1, x2, x3) be an real quadratic form of signature (2, 1). Denote by G the
identity component of the special orthogonal group SOQ(R). Let Γ < G be
a lattice and v0 ∈ R3 be such that Q(v0) > 0 and the orbit v0Γ is discrete.
As before, we fix a norm ‖ · ‖ on R3 and set BT := {x ∈ v0G : ‖w‖ < T}.

To present our theorem with a best possible error term, we consider the
following smoothed counting function: fixing a non-negative function ψ ∈
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C∞c (G) with integral one, let

ÑT :=
∑
v∈v0Γ

(χBT ∗ ψ)(v)

where χBT ∗ ψ(x) =
∫
G χBT (xg)ψ(g) dg, x ∈ v0G, is the convolution of the

characteristic function of BT and ψ. Note that ÑT � #(v0Γ ∩ BT ) in the
sense that their ratio is in between two uniform constants for all sufficiently
large T � 1.

Denoting byH ' SO(1, 1)◦ the identity component of the one-dimensional
stabilizer subgroup of v0 in G, note that vol(H ∩ Γ\H) < ∞ if and only if
H ∩ Γ is infinite. In order to state our theorem, we write H as a one-
parameter subgroup {h(s) : s ∈ R} so that the Lebesgue measure ds defines

the Haar measure on H:
∫ log T
− log T ds = volH({h(s) : |s| < log T}).

Theorem 1.2. If the volume of (H∩Γ)\H is infinite, we have the following:

(1) For T � 1,

NT =
2 log T · volH\G(BT )

volG(Γ\G)
(1 +O((log T )−0.25)),

where d volG = ds× d volH\G locally.
(2) For T � 1,

ÑT = c · T log T +O(T ),

where c = limT→∞
2 volH\G(BT )

T volG(Γ\G) .

We note that when vol(H ∩Γ\H) <∞, ÑT = c ·T +O(Tα) for 0 < α < 1
is obtained in [10]. We believe, as suggested by Z. Rudnick to us, that

ÑT = c · T log T + c′ · T + O(Tα) for some c′ > 0 and 0 < α < 1 and hence

the order of the second term for ÑT cannot be improved.
Theorem 1.2 can be generalized to the orbital counting for more general

representations of SL2(R) (see section 6).

Remark 1.3. In the case when Q = x2
1 + x2

2 − d2x2
3 for d ∈ Z, v0 = (1, 0, 0),

and Γ = SOQ(Z), it was pointed out in [10] that an elementary number
theoretic computation of [19] leads to the asymptotic

#{(x1, x2, x3) ∈ v0Γ :
√
x2

1 + x2
2 + d2x2

3 < T} = c ·T log T +O(T log(log T )).

However this deduction seems to work only for this very special case; for
instance, we are not aware of any other approach than ours which can deal
with non-arithmetic situations.

1.3. Arithmetic case and Integral binary quadratic forms. In the
arithmetic case, Theorem 1.2 implies the following:

Corollary 1.4. Let Q(x1, x2, x3) be an integral quadratic form with signa-
ture (2, 1). Suppose that for some v0 ∈ Z3 with Q(v0) > 0, the stabilizer
subgroup of v0 is isotropic over Q.
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Then there exists c = c(‖ · ‖) > 0 such that as T →∞,

#{x ∈ Z3 : Q(x) = Q(v0), ‖x‖ < T} = c · T log T +O(T (log T )3/4).

For a binary quadratic form q(x, y) = ax2 + bxy + cy2, its discriminant
disc(q) is defined to be b2−4ac. The group SL2(R) acts on the space of binary
quadratic forms by (g.q)(x, y) = q((x, y)g) and preserves the discriminant.
For d ∈ Z, denote by Bd(Z) the space of integral binary quadratic forms
with discriminant d. Note that Bd(Z) 6= ∅ if and only if d congruent to 0 or
1 mod 4. Now d is a square if and only if the stabilizer of every q ∈ Bd(Z)
in SL2(Z) is infinite if and only if every q ∈ Bd(Z) is decomposable over Z.
(cf. [4]).

Therefore Theorem 1.2 implies the following:

Theorem 1.5. . For any non-zero square d ∈ Z, there exists c0 > 0 such
that

#{q ∈ Bd(Z) : disc(q) = d, ‖q‖ < T} = c0 · T log T +O(T (log T )3/4)

where ‖ax2 + bxy + cy2‖ = ‖(a, b, c)‖.

1.4. Orthogonal translates of a divergent geodesic. Let G = SL2(R)
and Γ be a non-uniform lattice in G. For s ∈ R, define

h(s) =
[

cosh(s/2) sinh(s/2)
sinh(s/2) cosh(s/2)

]
, a(s) =

[
es/2 0

0 e−s/2

]
(1.1)

and set H = {h(s) : s ∈ R}.
In the case when the orbit Γ\ΓH is closed and of finite length, the limiting

distribution of the translates Γ\ΓHa(T ) as T → ∞ is described by the
unique G-invariant probability measure dµ(g) = dg on Γ\G [10], that is, if
s0 is the period of Γ ∩H\H, then for any ψ ∈ Cc(Γ\G),

lim
T→±∞

1

s0

∫ s0

s=0
ψ(h(s)a(T ))ds =

∫
Γ\G

ψ dg.

Similarly, understanding the limit of the translates Γ\ΓHa(T ), when
Γ\ΓH is of infinite length, is the main new ingredient in our proofs of The-
orem 1.2.

Theorem 1.6. Let x0 ∈ Γ\G and suppose that x0h(s) diverges as s→ +∞,
that is, x0h(s) leaves every compact subset for all sufficiently large s � 1.
For a given compact subset Ω ⊂ Γ\G, there exists M = M(Ω, x0) > 0 such
that for any ψ ∈ C∞(Γ\G) with support in Ω, we have, as |T | → ∞,∫ ∞

0
ψ(x0h(s)a(T ))ds =

∫ |T |+M
0

ψ(x0h(s)a(T ))ds = |T |
∫
ψ dµ+O(1),

where the implied constant depends on x0, Ω and S†(ψ) = max{‖ψ‖C1 ,S1(ψ)};
here ‖ψ‖C1 denotes the C1-norm (see (3.3)) and S1(ψ) denotes the L2-
Sobolev norm of ψ of degree one (see (3.1)).
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Remark 1.7. Consider the hyperbolic plane H2. A parabolic fixed point
for Γ is a point in the geometric boundary ∂∞(H2) fixed by a parabolic
element of Γ. If F ⊂ H2 is a finite sided Dirichlet region for Γ, then the
parabolic fixed points of Γ are precisely the Γ-orbits of vertices of F ly-
ing in ∂∞(H2). Let π : G → H2 denote the orbit map g 7→ g(i). For
x0 = Γg0 ∈ Γ\G, the image π(g0H) is a geodesic in H2 with two endpoints
g0H(+∞) := lims→∞ π(g0h(s)) and g0H(−∞) := lims→−∞ π(g0h(s)) in
∂∞(H2). We remark that x0h(s) diverges as s → +∞ (resp. s → −∞) if
and only if g0H(+∞) (resp. g0H(−∞)) is a parabolic fixed point for Γ (cf.
Theorem 2.1).

Corollary 1.8. Suppose that x0H is closed and non-compact. For any
ψ ∈ Cc(Γ\G),

lim
T→±∞

1

2|T |

∫ ∞
−∞

ψ(x0h(s)a(T )) ds =

∫
Γ\G

ψ dµ.

It is well-known due to the work of Duke, Rudnick and Sarnak [10] that
Theorem 1.2 follows once we establish the equidistribution of the translates
Γ\ΓHa(T ) of a divergent H-orbit as in Theorem 1.6. Our proof of Theorem
1.6 is based on the description of divergent orbits due to Dani [7] and the
effective equidistribution of the translates of a small piece of Γ\ΓH due to
Kleinbock and Margulis [15]. The new ingredient of our work is mainly in
the section 4.

Acknowledgments We thank Zeev Rudnick for insightful comments.

2. Structure of cusps in Γ\G and divergent trajectory

Let G = SL2(R) and Γ be a non-uniform lattice in G. We will keep the
notation for h(s) and a(s) from (1.1) in the introduction. Let

N = {( 1 s
0 1 ) : s ∈ R} and U = wNw−1

where w =
[ cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

]
. Note that h(s) = wa(s)w−1 for all s ∈ R.

For η > 0, let
Hη = {h(s) : s/2 > − log η}.

Let K = SO(2) = {g ∈ G : ggt = I}. Then the multiplication map
U ×H ×K → G: (u, h, k) 7→ uhk is a diffeomorphism.

The following classical result may be found at [13, Thm. 0.6] or [9]:

Theorem 2.1. There exists a finite set Σ ⊂ G such that the following holds:

(1) Γ\ΓσU is compact for every σ ∈ Σ.
(2) For any η > 0, the set

Ωη := Γ\Gr
⋃
σ∈Σ

Γ\ΓσUHηK

is compact; and any compact subset of Γ\G is contained in Ωη for
some η > 0.
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(3) There exists η0 > 0 such that for i = 1, 2, if σi ∈ Σ, ui ∈ U ,
hi ∈ Hη0, and Γσ1u1h1k1 = Γσ2u2h2k2, then σ1 = σ2, k1 = ±k2 and
h1 = h2.

Consider the standard representation ofG = SL2(R) on R2: ((v1, v2), g) 7→
(v1, v2)g. Let ‖·‖ denote the Euclidean norm on R2. Let

p = (0, 1)w−1 = (− sin(π/4), cos(π/4)).

Then pU = p, and ph(s) = (0, 1)a(s)w−1 = e−s/2p for all s ∈ R. Also

g ∈ UHηK ⇔ ‖pg‖ < η. (2.1)

Proposition 2.2 (Dani [7]). Let x0 ∈ Γ\G be such that the trajectory
{x0h(s) : s ≥ 0} is divergent. Then there exist σ0 ∈ ±IΣ, s0 ∈ R and
u ∈ U such that x0 = Γσ0uh(s0).

Proof. By Theorem 2.1, there exists s1 > 0 and σ ∈ Σ such that x0h(s) =
ΓσUHη0/2K for all s ≥ s1. Let g1 ∈ UHη0/2K be such that x0h(s1) = Γσg1.
We claim that pg1 ∈ Rp. If not, then ‖pg1h(s)‖ → ∞ as s→∞, and hence
there exists s > 0 such that η0/2 < ‖pg1h(s)‖ < η0. By (2.1), g1h(s) = uhk
for some u ∈ U , h ∈ Hη0 and k ∈ K. Therefore

Γσuhk = Γσg1h(s) = x0h(s1 + s) ∈ ΓσUHη0/2K.

By Theorem 2.1(iii), we have that h ∈ Hη0/2. But then ‖pg1h(s)‖ =
‖puhk‖ < η0/2, a contradiction. Therefore our claim that pg1 ∈ Rp is
valid. Hence g1 = u1h(s){±I} for some u1 ∈ U and s/2 ≥ − log(η0/2).
Thus x0h(s1) = Γσu1h(s){±I}, and hence x0 = Γσ0u1h(s − s1), where
σ0 = ±Iσ. �

Proposition 2.3. Let x0 ∈ Γ\G be such that the trajectory {x0h(s) : s ≥
0} is divergent. Let Ω ⊂ Γ\G be a compact subset. There exists M1 =
M1(Ω, x0) > 0 such that

x0h(s)a(T ) 6∈ Ω

for any T ∈ R and s > 0 satisfying s > |T | + M1. In particular, for any
f ∈ C(Γ\G) with support inside Ω,∫ ∞

0
f(x0h(s)a(T )) ds =

∫ |T |+M1

0
f(x0h(s)a(T )) ds.

Proof. By Proposition 2.2, x0 = Γσ0uh(s0) for some σ0 ∈ ±Σ, u ∈ U, s0 ∈ R.
By Theorem 2.1(ii), let η > 0 be such that Ω ⊂ Ωη. Let M1 = −s0−2 log(η).
Since s− |T | > −s0 − 2 log η, we have

‖puh(s0)h(s)a(T )‖ = ‖ph(s+ s0)a(T )‖
= e−(s+s0)/2‖pa(T )‖
< e−(s+s0)/2e|T |/2

= e−(s+s0−|T |)/2 < η.

(2.2)

Therefore by (2.1), uh(s0)h(s)a(T ) ∈ UHηK, and hence

x0h(s)a(T ) ∈ Γσ0UHηK ⊂ Γ\Gr Ωη.
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�

3. Uniform mixing on compact sets

Let G = SL2(R) and Γ < G be a lattice. Let µ denote the G-invariant
probability measure on Γ\G. For an orthonormal basis X1, X2, X3 of sl(2,R)
with respect to an Ad-invariant scalar product, and ψ ∈ C∞(Γ\G), we
consider the Sobolev norm

Sm(ψ) = max{‖Xi1 · · ·Xij (ψ)‖2 : 1 ≤ ij ≤ 3, 0 ≤ j ≤ m}. (3.1)

The well-known spectral gap property for L2(Γ\G) says that the trivial
representation is isolated (see [1, Lemma 3]) in the Fell topology of the
unitary dual of G. It follows that there exist θ > 0 and c > 0 such that for
any ψ1, ψ2 ∈ C∞(Γ\G) with

∫
ψidµ = 0, S1(ψi) <∞ and for any T > 0,

|〈a(T )ψ1, ψ2〉| ≤ ce−θ|T |S1(ψ1)S1(ψ2) (3.2)

(cf. [5], [21])
Write Oε = {g ∈ G : ‖g − I‖∞ ≤ ε}. For a compact subset Ω ⊂ Γ\G, let

0 < ε0(Ω) ≤ 1 be the injectivity radius of Ω, that is, ε0(Ω) is the supremum
of 0 < ε ≤ 1 such that for any x ∈ Ω, the map Oε 3 g 7→ xg ∈ Γ\G is
injective.

For s ∈ R, let

n+(s) = ( 1 0
s 1 ) and n−(s) = ( 1 s

0 1 ) .

Let ‖f‖C1 denotes the C1-norm of f , that is,

‖f‖C1 = ‖f‖∞ +

3∑
i=1

‖Xi(f)‖∞. (3.3)

Set S†(f) := max{S1(f), ‖f‖C1}; in fact, S1(f) ≤ ‖f‖C1 .
The following is a special case of [15, Prop. 2.4.8]:

Theorem 3.1. Let Ω ⊂ Γ\G be a compact subset and η > 0. There exists
c = c(Ω) > 0 such that for any ψ ∈ C∞(Γ\G) with support in Ω, for any
|T | ≥ 1, x ∈ Ω, and 0 < r0 < ε0(Ω), we have∣∣∣∫ r0

0
ψ(xnν(s)a(T )) ds− r0

∫
ψ dµ

∣∣∣ ≤ c · (S†(ψ) + 1)e−θ0|T | (3.4)

for some θ0 > 0 depending only on the spectral gap for L2(Γ\G). Here and
in what follows, the sign ν = + if T > 0 and ν = − if T < 0.

4. Translates of divergent orbits

Let x0 ∈ Γ\G be such that x0h(s) diverge as s→∞.

Theorem 4.1. For any |T | > 1 and any ψ ∈ C∞c (Γ\G)∫ |T |
0

ψ(x0h(s)a(T )) ds = |T |
∫
ψ dµ+O(1)S†(ψ)
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where the implied constant depends on x0, S†(ψ) and the support of ψ.

Proof. Let R0 = − log η0. Due to Proposition 2.2, replacing x0 by an-
other point in x0H, we may assume that x0 = Γσ0h(R0). For any S > 0,
‖ph(R0)h(S)a(S)‖ ∈ [η0/

√
2, η0]. Hence x0h(R0)h(S)a(S) ∈ Ωη0/

√
2.

Let r0 be the injectivity radius of Ωη0/
√

2, that is, r0 = ε0(Ωη0/
√

2). Let

S0 = 0, and choose Si such that r0e
−Si ≤ δi := Si+1−Si ≤ 2r0e

−Si for each
i. We will choose Si = log(2r0i+1) for each i. Then x0h(Si)a(Si) ∈ Ωη0/

√
2.

We put Ri = T − Si.
We will express x0h([Si, Si+1])a(T ) = xih

a(Si)([0, δi])a(Ri), where xi =

x0h(Si)a(Si), h
a(Si)(s) = a(−Si)h(s)a(Si) = n(eSis/2)wi(s), and |wi(s)| =

O(e−2Si). Note that r0/2 ≤ eSiδi/2 ≤ r0.
By Theorem 3.1, we have∫ r0

0
ψ(xin(s)a(Ri))ds− r0

∫
ψdµ = S†(ψ) ·O(e−θ0Ri)

and hence∫ Si+1

Si

ψ(x0h(s)a(T ))ds =
δi
r0

∫ r0

0
ψ(xin(s)a(Ri))ds+ S†(ψ) ·O(e−2Siδi).

Let k = k(T ) be such that Sk ≤ T < Sk + r0e
−Sk . Therefore, since

δir
−1
0 ≤ 2e−Si ,

∫ T

0
ψ(xh(s)a(T ))ds =

k−1∑
i=0

∫ Si+1

Si

ψ(xh(s)a(T ))ds+O(e−Sk)

=
k−1∑
i=0

δi
1

r0

∫ r0

0
ψ(xin(s)a(T ))ds+ S†(ψ) ·O(e−2Siδi) +O(1)

=
k−1∑
i=0

δiµ(ψ) +
k−1∑
i=0

δir
−1
0 S

†(ψ) ·O(e−θ0Ri) + S†(ψ) ·O(e−2Siδi) +O(1)

= Tµ(ψ) +O(

k−1∑
i=1

e−Sie−θ0Ri +

k∑
i=1

e−3Si)S†(ψ) +O(1)

= Tµ(ψ) +O(e−θ0T
k−1∑
i=0

e(1−θ0)Si +
k−1∑
i=0

e−3Si)S†(ψ) +O(1).

Since Si = log(2r0i+1), 0 < T−Sk < 2e−T implies that k < eT−1
2r0

< k+1,
and hence

k−1∑
i=0

e−3Si �
k−1∑
i=1

1

(2r0i+ 1)3
= O(k−2 + 1) = O(e−2T + 1) <∞
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and
k−1∑
i=0

e(1−θ0)Si �
∫ eT

0

1

(2r0x+ 1)1−θ0 dx = O(eθ0T ).

Hence

e−θ0T
k−1∑
i=0

e(1−θ0)Si +

k−1∑
i=0

e−3Si = O(1).

Therefore ∫ T

0
ψ(xh(s)a(T ))ds = Tµ(ψ) +O(1)S†(ψ).

�

Theorem 1.6 follows from the following:

Theorem 4.2. Let x0h(s) diverge as s → ∞. For a given compact subset
Ω ⊂ Γ\G, and ψ ∈ C∞(Γ\G) with support in Ω, we have∫ ∞

0
ψ(x0h(s)a(T ))ds = |T | ·

∫
ψ dµ+O(1)S†(ψ)

with the implied constant depending only on x0, S†(ψ), and the support of
ψ.

Proof. Since x0h(s) diverges as s → ∞, by Proposition 2.3, there exists
M1 = M1(Ω) > 0 such that∫ ∞

0
ψ(x0h(s)a(T ))ds =

∫ |T |+M1

0
ψ(x0h(s)a(T ))ds

= (|T |+M1)

∫
ψ dµ+O(1)S†(ψ)

= |T |
∫
ψ dµ+O(1)S†(ψ).

�

By a similar argument, we also deduce the following:

Corollary 4.3. If x0h(s) diverges as s→ −∞, then∫ 0

−∞
ψ(x0h(s)a(T ))ds = |T |

∫
ψdµ+O(1)S†(ψ)

with the implied constant depending only on x0, S†(ψ), and Ω.

Lemma 4.4. If x0h(R) is closed and non-compact, then x0h(s) diverges as
s→ ±∞.

Proof. We use a well-known fact that for a closed subgroup H of a locally
compact second countable group G and a discrete subgroup Γ of G, if ΓH is
closed in G, then the canonical projection map H ∩Γ\H → Γ\G is a proper
map (cf. [18, Remark 7.9(2)]). Since x0h(R) is non-compact and h(R) is
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one-dimensional with no non-trivial finite subgroups, the stabilizer of x0 in
h(R) is trivial. Therefore the map h(R) → Γ\G given by h → x0h is a
proper injective map. This implies that x0h(s) diverges as s→ ±∞. �

Proof of Corollary 1.8. As the set C∞c (Γ\G) is dense in Cc(Γ\G), the claim
follows from Lemma 4.4, Theorem 4.1, and Corollary 4.3. �

5. Counting: Proof of Theorem 1.2

Let Q be a real quadratic form in 3 variables of signature (2, 1) and Γ0

a lattice in the identity component G0 of SOQ(R). We assume that v0Γ0 is
discrete for some vector v0 ∈ R3 with Q(v0) = d > 0 and that the stabilizer
H0 of v0 in G0 is finite.

It suffices to prove Theorem 1.2 in the case when Q = x2 + y2 − z2 and
v0 = (

√
d, 0, 0) by the virtue of Witt’s theorem.

Consider the spin double cover map ι : G := SL2(R)→ G0 given by

(
a b
c d

)
7→

(
a2−b2−c2+d2

2
ac−bd a2−b2+c2−d2

2
ab−cd bc+ad ab+cd

a2+b2−c2−d2
2

ac+bd a2+b2+c2+d2

2

)
.

For s ∈ R and θ ∈ [0, 2π), we set

h(s) =
(

cosh(s/2) sinh(s/2)
sinh(s/2) cosh(s/2)

)
; a(s) =

(
es/2 0

0 e−s/2

)
and k(θ) =

(
cos θ sin θ
− sin θ cos θ

)
.

Recall that H := {h(s) : s ∈ R}, A := {a(t) : t ∈ R} and K1 := {k(θ) :
θ ∈ [0, 2π)}, here K1 is half of the circle group. Observing that

ι(h(s)) =
(

1 0 0
0 cosh s sinh s
0 sinh s cosh s

)
and ι(a(t)) =

(
cosh t 0 sinh t

0 1 0
sinh t 0 cosh t

)
,

the subgroup H̃ := ±H is the stabilizer of v0 in G. We have a generalized
Cartan decomposition G = H̃AK1 in the sense that every g is of the form
hak for unique h ∈ H̃, a ∈ A, k ∈ K1. And for g = h(s)a(t)k, dµ(g) =
sinh(t)dsdtdk defines a Haar measure on G, where dk = (1/2π)dk(θ), and ds,
dt and dθ are Lebesgue measures. As v0G = ±H\G ' A×K1, sinh(t)dtdk
defines an invariant measure on v0G. We consider the volume forms on
G and v0G with respect to these measures. Via the map ι, these define
invariant measures on G0 and v0G0 as well.

Denote by Γ the pre-image of Γ0 under ι. Then StabΓ(v0) = H̃ ∩ Γ =
{±I}.

For each T > 1, define a function on Γ\G:

FT (g) :=
∑

γ∈±I\Γ

χBT (v0γg).

Proposition 5.1. For any Ψ ∈ C∞c (Γ\G),

〈FT ,Ψ〉 =
T log Tµ(Ψ)

vol(Γ\G)
· 2
∫
K1

1

‖v+k‖
dk +O(S†(Ψ)T )
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where v± =
√
d

2 (e1 ± e3). Here the implied constant depends only on the

support of Ψ and S†(Ψ).

Proof. Note that v0 = v+ + v− and v0a(t) = etv+ + e−tv−. Since BT =
{v0a(t)k : ‖v0a(t)k‖ < T, t ∈ R, k ∈ K1}, we have

〈FT ,Ψ〉 =

∫
Γ\G

∑
γ∈±I\Γ

χBT (v0γg)Ψ(g)dµ(g)

=

∫
k∈K1

∫
‖v0a(t)k‖<T

(∫
h(s)∈±I\H̃

Ψ(h(s)a(t)k)ds

)
sinh(t)dtdk

=

∫
k∈K1

∫
‖v0a(t)k‖<T

(∫
s∈R

Ψ(h(s)a(t)k)ds

)
sinh(t)dtdk.

Since v0Γ is discrete and H ∩ Γ is trivial, it follows that Γ\ΓH is closed
and non-compact in Γ\G. Now fix any k ∈ K1. Hence by Theorem 4.2 and
Lemma 4.4,∫

t�1,‖v0a(t)k‖<T

(∫
s∈R

Ψ(h(s)a(t)k)ds

)
sinh(t)dt

=
1

vol(Γ\G)

∫
t�1,et‖v+k‖<T+O(1)

(2tµ(Ψ) +O(1)S†(Ψ))(et/2 +O(1))dt

=
T log Tµ(Ψ)

vol(Γ\G) · ‖v+k‖
+O(T )S†(Ψ).

Similarly,∫
t�−1,‖v0a(t)k‖<T

(∫
s∈R

Ψ(h(s)a(t)k)ds

)
sinh(t)dt

=

∫
t�1,‖v0a(−t)k‖<T

(∫
s∈R

Ψ(h(s)a(−t)k)ds

)
sinh(t)dt

=
1

vol(Γ\G)

∫
t�1,et‖v−k‖<T+O(1)

(2tµ(Ψ) +O(1)S†(Ψ))(et/2 +O(1))dt

=
T log Tµ(Ψ)

vol(Γ\G)‖v−k‖
+O(T )S†(Ψ).

Since v−k(π) = −v+,∫
k∈K1

‖v−k‖−1dk =

∫
k∈K1

‖v+k(π)k‖−1dk =

∫
K1

‖v+k‖−1dk.

The required formula can be deduced in a straightforward manner from
this. �

Fix a non-negative function ψ ∈ C∞c (G) whose support injects to Γ\G
and with integral

∫
ψ(g) dµ(g) = 1. Consider a function ξT on R3 defined
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by

ξT (x) =

∫
g∈G

χBT (xg)ψ(g)dµ(g).

Then the sum
∑

γ∈±I\Γ ξT (v0γ) is a smoothed over counting satisfying∑
γ∈±I\Γ

ξT (v0γ) � #v0Γ ∩BT .

Theorem 5.2. As T →∞,∑
γ∈±I\Γ

ξT (v0γ) =
2T log T

vol(Γ\G)
·
∫
k∈K1

1

‖v+k‖
dk +O(T ).

Proof. It is not hard to verify that∑
γ∈±I\Γ

ξT (v0γ) = 〈FT ,Ψ〉

where Ψ(Γg) =
∑

γ∈Γ ψ(γg). Therefore the claim follows from Proposition
5.1. �

Theorem 5.3. For T � 1, we have

#{w ∈ v0Γ : ‖w‖ < T} =
2T log T

vol(Γ\G)

∫
K1

1

‖v+k‖
dk · (1 + (log T )−α)

where α = 0.25.

Proof. Note that FT (I) = #{w ∈ v0Γ : ‖w‖ < T}. For each ε > 0, let
Oε = {g ∈ G : ‖g− I‖∞ ≤ ε}. There exists 0 < ` ≤ 1 such that for all small
ε > 0,

O`εBT ⊂ B(1+ε)T , B(1−ε)T ⊂ ∩u∈O`εuBT . (5.1)

Let ψε be a non-negative smooth function on G supported in O`ε and with
integral

∫
ψεdµ = 1 and define Ψε ∈ C∞c (Γ\G) by Ψε(Γg) :=

∑
γ∈Γ ψ

ε(γg).

Using (5.1), we have

〈F(1−ε)T ,Ψ
ε〉 ≤ FT (I) ≤ 〈F(1+ε)T ,Ψ

ε〉.

Note that S1(Ψε) = O(ε−3/2) and ‖(Ψε)‖C1 = O(ε−3) so that S† =
O(ε−3). Therefore by Proposition 5.1

〈F(1±ε)T ,Ψ
ε〉 =

2T log T

vol(Γ\G)

∫
K1

1

‖v+k‖
dk +O(εT log T ) +O(S†(Ψε)T )

=
2T log T

vol(Γ\G)

∫
K1

1

‖v+k‖
dk +O(εT log T ) +O(ε−3T )

=
2T log T

vol(Γ\G)

∫
K1

1

‖v+k‖
dk(1 + (log T )−1/4),

where the last equality follows by we putting ε = (log T )−1/4. �
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Proof of Theorem 1.2. The computation in the proof of Proposition 5.1 also
shows that

vol(BT ) =

∫
k∈K1

∫
‖v0a(t)k‖<T

sinh(t)dtdk = T

∫
k∈K

1

‖v+k‖
dk +O(log T ).

(5.2)
From Theorem 5.3, it follows that

FT (I) =
2 log T vol(BT )

vol(Γ\G)
(1 +O(log T )−α). (5.3)

Since FT (I) = #(v0Γ ∩BT ), this completes the proof of the first claim (1).
The second claim (2) follows from Proposition 5.1. �

6. Orbital counting for general representations of SL2(R)

Let G = SL2(R). For s ∈ R, define

h(s) =
[

cosh(s/2) sinh(s/2)
sinh(s/2) cosh(s/2)

]
, a(s) =

[
es/2 0

0 e−s/2

]
, k(θ) =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
Put H = {h(s) : s ∈ R}, A+ = {a(t) : t > 0}, and K1 = {k(θ) : θ ∈ [0, 2π]},
here K1 is half of the circle group. Put w0 = k(π). Then {±I}\G =
HA+K1 ∪Hw0A

+K1, w−1
0 h(s)w0 = h(−s) and w−1

0 a(t)w0 = a(−t).
Let V be any finite dimensional representation of G and v0 ∈ G be such

that H is the stabilizer subgroup of v0 in G, i.e., H = Gv0 where Gv0 = {g ∈
G : v0g = v0}. Assume that V is linearly spanned by v0G. Then if emt is
the highest eigenvalue for a(t)-action on V , then m ∈ N, and the G action
factors through {±I}\G = PSL2(R) ∼= SO(2, 1)0.

For example, let Vm denote the (2m+1)-dimensional space of real homoge-
neous polynomials of degree 2m in two variables, and consider the standard
right action of g ∈ SL(2,R) on P (x, y) ∈ Vm by (Pg)(x, y) = P ((x, y)g),
where (x, y)

[
a b
c d

]
= (ax + cy, bx + dy). Let v0(x, y) = (x2 − y2)m. Then

Gv0 = HW, where W = {±I} if m is odd and W = {±I,±w0} if m is even.
Moreover, {P ∈ Vm : Ph = P, for all h ∈ H} = Rv0. A general finite di-
mensional representation of G with a nonzero H-fixed vector is a direct sum
of such irreducible representations, and v0 is a sum of one nonzero H-fixed
vector from each of the irreducible representations; we assume that V is a
span of v0G.

Theorem 6.1. Let V , v0 and m be as above. Suppose that Γ is a lattice in
G, v0Γ is discrete, and Γv0 := Γ ∩Gv0 is finite. Let ‖·‖ be any norm on V ,
and v+

0 = limt→∞ v0at/‖v0at‖. Let C be an open subset of {v ∈ V : ‖v‖ = 1}
such that Θ = {θ ∈ [0, 2π] : v+

0 k(θ) ∈ RC} has positive Lebesgue measure,

and {θ ∈ [0, 2π] : v+
0 k(θ) ∈ R(C rC)} has zero Lebesgue measure. Then for

T � 1,

#(v0Γ ∩ [0, T ]C) (6.1)

=
4(2π)−1

∫
Θ‖v

+
0 k(θ)‖−1/m dθ

|Γv0 | · volG(Γ\G)
× log T

m
T 1/m(1 +O((log T )−α))
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where volG is given by the Haar integral dg = sinh(t)dtdsdθ on G, where
g = h(s)a(t)k(θ), and α = 1

4 .

Moreover, if C ⊂ V satisfies RC ∩ v+
0 K1 = ∅, then #(v0Γ ∩ RC) <∞.

Proof. The result can be deduced by the arguments as in the proof of Theo-
rem 5.3; one may also use the basic ideas from [14] about using the highest
weight. �
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