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1 Introduction 

Let G be a connected Lie group, F be a lattice in G and U = {ut},~R be a unipotent 
one-parameter subgroup of G, viz. Adu is a unipotent linear transformation for all 
u ~ U. Consider the flow induced by the action of U (on the left) on G/F. Such a flow 
is referred as a unipotent flow on the homogeneous space G/F. The study of orbits 
of unipotent flows has been the subject of several papers. For a nilpotent group G, 
a result of Green [13] implies that if U has one dense orbit in G/F then every orbit 
of U is uniformly distributed with respect to a G-invariant measure on G/F. In the 
case when G = SL(2, R), it was proved by Hedlund that every orbit of the unipotent 
(horocycle) flow is either dense or periodic; periodic orbits exist only when G/F is 
non-compact. For a co-compact lattice, this result was strengthened by 
F/irstenberg [1 lJ proving that every orbit is uniformly distributed with respect to 
a G-invariant measure. For non-uniform lattices in SL(2, R), using a classification 
of invariant measures obtained by Dani in [21, Dani and Smillie [31 proved that 
every non-periodic orbit is uniformly distributed. There are also various results 
obtained on orbit closures and invariant measures etc. of larger subgroups 
consisting of unipotent elements, especially the horospherical subgroups. 
Recently, there was a spurt in the area initiated by Margulis' proof (cf. [151, 
see also [7]) of Oppenheim conjecture on values of quadratic forms at integral 
points using the study of unipotent flows. The reader is referred to the survey 
articles by Dani [41 and Margulis [14J for various related developments. 

We now note some conjectures expected to hold for orbits of a unipotent flow, 
namely the U-action on G/F as above (though we restrict to U being a one- 
parameter subgroup, the first two conjectures are expected to hold for any 
subgroup generated by unipotent elements contained in it). A conjecture due to 
Raghunathan on orbit closures states the following: 

Conjecture 1. For every x ~ G/F, there exists a closed subgroup F such that U-x= Fx. 

For G = SL(2, R) the conjecture follows from the result of Hedlund mentioned 
above. It was recently verified for "generic" unipotent flows in the case of 
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G= SL(3,R) [8]. Upto certain easy modifications, these are the only cases of 
semisimple groups where the conjecture is known to hold. 

The following measure theoretic analogue of the above conjecture was recently 
proved by Ratner [19]. 

Conjecture 2. For any finite ergodic U-invariant measure a on G/F, there exists a 
closed subgroup F containing U and x ~ G/F such that Fx  is closed and t~ is a 
F-invariant measure supported on Fx. 

In this paper we shall be concerned with the following conjecture which 
strengthens Conjectures 1 and 2. 

Conjecture 3. For every x ~ G/F, there exists a closed subgroup F such that Fx  is 
closed, Fx  admits a F-invariant probability measure a and the U-orbit through x is 
uniformly distributed with respect to ~ ; that is,for all bounded continuous functions f 
on G/F, 

lira 1 i r-.oo -T f(u~x)dt = j fd~ .  
G/F 

It may be observed that if the U-orbit of x ~ G/F is uniformly distributed with 
respect to the F-invariant probability measure on Fx as above then Ux = Fx. Thus 
Conjecture 3 includes Conjecture 1. Also since for any ergodic invariant measure 
there are "generic points" [10], Conjecture 3 is stronger than Conjecture 2. 

Our object is to prove the following result on the asymptotic behaviour of the 
orbits of certain unipotent flows. Specifically, we choose G to be a reductive Lie 
group and let U be a regular unipotent one-parameter subgroup of G, in the sense 
that U is contained in a unique maximal unipotent subgroup of G (see Theorem 4.3 
for other equivalent conditions) and prove the following. 

(1.1) Main Theorem. Let G be a connected reductive Lie group, F be a lattice in G 
and U = {ut}t~ be a regular unipotent one-parameter subgroup of G. Let X = G/F 
and let Y be the subset of  X consisting of  all points y such that Fy is closed for some 
proper closed subgroup F of G, containing U. Let x ~ X \  Y. Then, given e > O, there 
exists a compact subset K C X \  Y such that for all T>0,  

~e{t ~ [0, T] l u,x E K} > - 5 ,  1 

where ~ is the Lebesgue measure on R .  

Together with Ratner's classification of finite ergodic U-invariant measures, 
the theorem enables us to describe geometrically the set of points whose U-orbits 
are uniformly distributed with respect to a G-invariant measure; in particular, we 
are able to conclude the validity of Conjecture 3 for regular unipotent one- 
parameter subgroups when either G/F is compact or the R-rank of [G, G] is 1. The 
results may be stated as follows: 

(1.2) Corollary. Let G, F, and U be as in the Main theorem. Then for every x ~ X \  Y, 
the U-orbit of x is uniformly distributed with respect to the G-invariant probability 
measure on G/F. In particular, all these orbits are dense in G/F. 

(1.3) Corollary. Let G, F, and U be as in the Main theorem. Suppose further that 
G/F is compact. Then Conjecture 3 holds ( for all x ~ X ) .  



Uniformly distributed orbits 317 

(1.4) Corollary. Let G be a connected reductive Lie group such that the F,.-rank of  
[G, G] is 1. Let F be a lattice in G and U be any unipotent one-parameter subgroup 
of G. Then Conjecture 3 holds (for all x ~ X) .  

Like the earlier results on unipotent flows [14], the above results on uniformly 
distributed orbits raise certain interesting possibilities of application to Diophan- 
tine approximation. In particular, given a nondegenerate indefinite quadratic 
form Q on R 3 which is not a multiple of a rational quadratic form and e > 0 one can 
get lower estimates, for all larger r e R ,  for the number of solutions xETP, 
[Ixll < r  for the inequality IQ(x)l<e. On account of the somewhat incomplete 
nature of the results currently obtained and some new ideas involved in the 
proof, we shall deal with the applications elsewhere. 

The method of proof of the Main theorem is an adaptation of the ideas 
developed in [3] and the Appendix of [8]. In this method one relates thin 
neighbourhoods of subsets of Y as above to certain subsets of linear G-spaces and 
uses polynomial behaviour of orbits of one-parameter groups of unipotent linear 
transformations in vector spaces, to study properties of U-orbits on G/F. 

The paper is organized as follows. In Sect. 2 we prove that if x e G/F and F is 
the smallest closed subgroup of G containing U such that Fx is dosed then Fx  
admits a finite F-invariant measure and the U-action on Fx is ergodic. This result, 
which would also be of general interest, is used in Sect. 3 to show that any F as 
above comes from a special class of subgroups. The conclusion is used in Sect. 5 to 
give a geometric description of the set Y defined as in the Main theorem. Using this 
description we complete the proof of the Main theorem in Sect. 6. The Sect. 4 is an 
independent section devoted to a discussion on regular unipotent elements. 

2 Finite volume, ergodieity and Zariski density 

Let G be a connected Lie group, F be a lattice in G and L be a subgroup such that 
the unipotent one-parameter subgroups of G contained in L generate L. Let 
X = G/F. In this section we note some properties related to closed orbits of the 
form Fx, where x ~ X and F is a closed subgroup containing L such that Lx = Fx. 

(2.1) Notation. For x ~ X  and a subgroup FCG define 

F x = { g ~ F l g x = x } .  

We first note the following. 

(2.2) Lemma. Let F and H be Lie subgroups of G, Z 1 and Z 2 be closed orbits of F 
and H, respectively in X and let Z = Z 1 n Z  z. Then every orbit of F n H  in Z is both 
open and closed in Z. In particular, for any x e X there exists a unique smallest Lie 
subgroup F such that L C F  and Fx  is closed. 

Proof. Let z ~ Z. Then Fz= Z 1 and Hz = Z z are closed. Therefore, F/Fz~- Fz and 
H/H~ ~-Hz. Also Gz, F~, and H~ are discrete. Therefore, there exists a neighbour- 
hood P of the identity e in G such that f2f2- in  G~ = {e}, (Fznt2z)= (Fnt2)z and 
(Hznt2z) = (Hnf2)z. This implies that (FznHzn t2 z )=  (FnHnt2)z .  Hence (FnH)z  
is open in F z n H z = Z  for every z ~ Z .  Now (FnH)z  is closed, because its 
complement in Z is the union of open F n H  orbits in Z and Z is closed. [] 

One of our aims in this section is to prove the following: 
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(2.3) Theorem. For x ~ X let F be the smallest subgroup of G such that L C F and Fx 
is closed. Then 

(a) Fx is a lattice in F and 
(b) L acts ergodicaUy on Fx with respect to the F-invariant probability measure. 

In particular, Fx contains a dense L-orbit. 

We recall some preliminaries and a result due to Margulis before going to the 
proof of the theorem. 

(2.4) Definition. A subgroup H of G is said to have property (D) if for every locally 
finite H-invariant measure tr on X, there exist measurable H-invariant subsets X~, 
i ~ N such that tr(Xi) < 0o for all i ~ N and X = U Xi. 

t e n  
In particular, if H has property (D) then every locally finite ergodic H-invariant 

measure on X is finite. 

(2.5) Proposition [5, Theorem 4.3]. Any unipotent subgroup U CG has 
property (O). [] 

(2.6) Definition. Let F be a topological group, H C F and L C F. We say that the 
triple (F, H, L) has the Mautner property if the following condition is satisfied: for 
any continuous unitary representation of F on a Hilbert space ~ ,  if a vector ~ e ~" 
is fixed by L then it is also fixed by H. 

The following Proposition is a slight modification of Theorem 1.1 in [16]. 

(2.7) Proposition. Let F be a Lie group and L be a subgroup such that the unipotent 
one-parameter subgroups contained in L generate L. Then there exists a closed 
normal subgroup H of F such that (i)LCH and (ii)the triple (F, H,L) has the 
Mautner property. 

Proof. Let U be a unipotent one-parameter subgroup contained in L. By 
Theorem 1.1 of [16], there exists a normal subgroup Hu C F such that (a) (F, Hv, U) 
has the Mautner property and (b) the image of Ad(U) in the automorphism group 
of the Lie algebra of F/H v is relatively compact. For each u E U, Adu is a unipotent 
transformation of the Lie algebra of F, therefore the image of U in F/Hv is in the 
center. Hence the group UH v is normal in F and (F, UHu, U) has the Mautner 
property. 

Suppose unipotent one-parameter subgroups U1 .... , Un generate L. Let 
H 1 .... , H n be normal subgroups of F such that UiCH i and the triples (F, Hi, Ui) 
have the Mautner property for all l < i < n .  Then H = H I . . . H n  satisfies the 
conditions (i) and (ii). [] 

The proof of Theorem 2.3 depends on the following observation by Margulis. 

(2.8) Lenuna [14, Remarks 3.12]. Suppose H cG admits a Levi decomposition 
H= S. N, where S is a semisimple group without compact factors and N is the 
unipotent radical of H. Then H has property (D). 

Proof. Let tr be a locally finite H-invariant measure on X. H admits a left regular 
unitary representation on L#2(X, tr). 

Let W be a maximal unipotent subgroup of S. Then W-N is a unipotent 
subgroup of G. By Proposition 2.5 there exists a measurable W. N invariant 
partition {Xt}i~N of X such that a(Xi)<0o for all i~N. If Xi denotes the 
characteristic function of Xt then X~ is a W. N invariant function in La2(X, tr). By 
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Proposition 2.7 there exists a normal subgroup Q of G containing W. N such that 
X, is Q invariant for all i e lq. Since S is a semisimple group without compact fac- 
tors, S C Q. Hence X~ is H invariant for all i t  N. This completes the proof. [] 

Now we describe the group theoretic structure of a closed subgroup 
generated by unipotent one-parameter subgroups. 

(2.9) Lemma. Let H C G be a closed subgroup which is generated by unipotent one- 
parameter subgroups contained in it. Then H admits a Levi decomposition H = S . N, 
where S is a semisimple group with no compact factors and N is the unipotent radical 
o f n .  

Proof. It is enough to prove the lemma for the adjoint group of G. Therefore we 
may assume that G C GL(n, R) and its unipotent elements are unipotent linear 
transformations. By Levi decomposition H = S .  R, where S is a connected 
semisimple group and R is the radical of H (cf. [18, Sect. P.1.3]). Suppose H 1 is a 
normal subgroup of H containing R such that H/HI is a compact semisimple 
group. Note that under a surjective morphism a unipotent element projects to a 
unipotent element. Since compact semisimple groups contain no nontrivial 
unipotent elements, by hypothesis H=H~. This shows that S has no compact 
factors. 

To prove the other part we argue as follows; we refer the reader to [18, 
Preliminaries 2] for the results used in the argument. 

Let H be the smallest algebraic R-subgroup of GL(n, ff~) containing H. Let N be 
the unipotent radical of H. By Levi decomposition there exists a connected 
semisimple R-subgroup S c H  such that S -N  is a normal subgroup of H and 
T = H/(S. N) is an algebraic R-torus. Now the projection of any unipotent element 
of H in T is unipotent. But any algebraic torus contains only semisimple elements. 
Hence by hypothesis H ( S. N. By minimality of H, H = S. N. 

Since H normalizes the Lie subalgebra r corresponding to its radical R, by 
definition H normalizes r |  Hence R is contained in the radical of H. Since the 
radical of H is unipotent, R consists of unipotent linear transformations. This 
completes the proof. [] 

We also need the following lemma. 

(2.10) Lemma. Let F be a Lie group, A be a discrete subgroup of F and H be a 
normal subgroup of F such that HA = F. Then H acts ergodically on (F/A, a), where tr 
is a locally finite F-semi-invariant measure on F/A with the modular function of F as 
its character (cf. [18, Sect. 1.4]). 

Proof. The proof of Lemma 8.2 in [2] goes through as it is, if we replace 
~2(F/A, a) by the spce of locally integrable functions on (F/A, a). [] 

Proof of Theorem 2.3. By Proposition 2.7 there exists a smallest dosed normal 
subgroup H of F containing L such that the triple (F, H, L) has the Mautner 
property. 

Since H is normal in F, HF x is a subgroup of F. If Hj =HFx then HI 3 H  and 
H~x is closed in Fx. By minimality of F, H1 =F.  Hence H - ~ = F .  

Let H' be the closure of the group generated by all unipotent one-parameter 
subgroups of G contained in H. Then L C H' and H' is normal in F. Therefore, by 
the hypothesis on H, H ' =  H. 

Let tr be a locally finite F-semi-invariant measure on F/Fx with a character AF, 
where Ar is a modular function of F. If f is the Lie subalgebra corresponding to F 
then AF(f)= ]det(Adfl,)l for all f e  F. 
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Since H is the closure of a subgroup generated by unipotent one-parameter 
subgroups, AF(H)=I. Therefore, tr is H-invariant. By Lemma 2.10, H acts 
ergodically on (F/F:`, a). Since Fx is closed, the natural inclusion F/F:, ~ X is 
proper. Therefore, we may treat a as a locally finite ergodic invariant measure of H 
on X. By Lemmas 2.8 and 2.9, H has property (D). Hence tr is finite. But a finite 
F-semi-invariant measure tr must be F-invariant. Now by the Mautner property of 
the triple (F, H, L), L also acts ergodically on (Fx, a). [] 

Our next aim is to show that F as in Theorem 2.3 is contained in the Zariski 
closure of F x (cf. Corollary 2.13). We first prove the following result related to 
Borers density theorem. 

(2.11) Proposition. Let F be a connected Lie group, A 4: {e} be a discrete subgroup of 
F and U={ut}te R be a one-parameter subgroup of F such that U-A=F. Let 
Q : F ~GL(E)  be a finite dimensional representation of F such that Q(U) consists of  
unipotent linear transformations of  E. Then every A-stable subspace of E is also 
F-stable. 

Proof (cf. I-9, Proposition 9]). Let W be A-stable subspace of E. Passing to a 
s~itable exterior power of Q, we may assume that dim(W) = 1. Let ~: F ~ P G L ( E )  be 
the projective linear representation of F on the projective space ]PI(E). Let 
we W\{0} and r  be the map given by tp(t)=Q(ut)w for all t c R .  Fix an 
orthonormal basis {el, ..., en} of E with respect to some inner product. Since o(U) 
consists of unipotent linear transformations, there exist polynomials tpl . . . .  , tpn on 

R such that tp(t) = q~i(t)e~ for all t ~ R.  Now ~p2(t) ~1 ~p2(t) converges as t ~ 
i = l  j 

for 1 <i<n .  Hence lim ~p(t)/]ltp(t)l[ =p for some p~E\{0}. 
t~oO 

If d i m F =  1 then U = F  and there exists to e R\{0} such that Uk~o ~ A for all 
k e N. Therefore, Q(A)w = w and tp(kto)= w for all k e N. Since ~p is a polynomial 
function, it must be constant. Thus Q(F)w = w in this case. 

Suppose d i m F > l .  Since U A = F ,  for every f e F ,  there exist sequences 
{ tk}k e l i  C ~x,  and {t~k} k e l i  ( A such that t k ~ or3 and utk 6 k ~ f as k ~ ~ .  For x e E\{0}, 
let ~ denote its image in P~(E). Since O(A)ff=~, 

O(f)~ = lim O(ut~bk)~ = lim O(ut~)ff = lim tp(tk)= ~. 
k ~ o o  k ~ o o  k ~ o o .  

Putting f =  identity we get/~ = ft. Hence ~(F)ff = ft. [] 

(2.12) Corollary. Let F be a connected Lie subgroup of G and L be a subgroup of F 
generated by unipotent one-parameter subgroups U l ..... U k of G. Suppose L-x= Fx. 
Let Q: F ~GL(E)  be a finite dimensional representation such that for each 1 < i < k, 
Q(Ui) consists of  unipotent linear transformations of E. Then every F~-stable 
subspace of E is F-stable. 
Proof. Fix i. Let F i be the smallest closed subgroup of F such that F i 3 U~ and Fix is 
dosed. By Theorem 2.3 there exists gl ~ Fi such that Uigix = Figix = Fix. Let A = Fx 
and d i = A c~Fl. Then Uigtdig [- 1 = Fi. 

Now let W be a A-stable subspace of E. Let W~ = Q(gi)W. Then W~ is stabilized by 
(giAigi 1). By Proposition 2.11, W~ is stabilized by Fi. Since g? ~ e Fi, we have 
Wt=Q(g~I)W~= W. Therefore, Fi stabilizes W. This happens for each i =  1 .. . . .  k. 
Therefore, Q(L)W= W and hence Q(LA)W= W. Now by continuity of Q we have 
o(F)W= W. [] 
(2.13) Corollary. Let the notation be as above. Suppose further that G is the 
component of  identity in GR=Gc~GL(n,~,.), where GCGL(n,~)  is an algebraic 
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subgroup defined over R.  Let F be a connected Lie subgroup of G and L be a 
subgroup generated by all algebraic unipotent one-parameter subgroups contained in 
F. Suppose x e X is such that Lx = Fx. Then F is contained in the Zariski closure of 
F~ in GL(n,R). 
Proof. Let Pa be the space of real polynomials of degree _~ d defined on M(n, R), 
the space of n x n matrices with real entries. Consider the representation 0 of 
GL(n,R) on Pd defined as follows: for g~G, P~Pd and xeM(n ,R) ,  [0(g)p](x) 
=p(g-ix).  Clearly, 0(g)P ~ Pd. Since o:GL(n, R)~GL(Pd) is an algebraic mor- 
phism, 0 preserves algebraic unipotent subgroups. Thus 0 restricted to F 
satisfies the conditions of Corollary 2.12. Define Id= {pePdlp(6)=0 for all 
6 ~ F~}. Since F~ is a group, F~ stabilizes I d. Therefore, by Corollary 2.12, for all 
f e F  and p~I  d we have o(f-1)p~Ia and hence p(f)=[o(f-1)p](e)=O. Thus 
p(f) = 0 for all f ~  F, p e I d and d >__ 0. This shows that F is in the Zariski closure 
of F~ in GL(n, R). 

3 On subgroups with closed orbits 

(3.1) Proposition. Let G be a connected semisimple Lie group without compact 
factors, with trivial center and of R-rank = 1. Let F be a lattice in G and L 4: {e} be 
a subgroup generated by unipotent elements of G contained in L. Let x ~ G/F and 
suppose that L x =  Fx for a connected Lie subgroup F C G. Then either 

(a) F is a reductive group with compact center, or 
(b) F is a unipotent subgroup of G. 

Proof. G = G ~ for a semisimple algebraic R-group G (cf. [21, Sect. 3.1.6]). Let F be 
the smallest algebraic R-subgroup of G containing F. 

Suppose that the unipotent radical Ru(F) is trivial. Then F ~ is a reductive group 
(cf. [18, Prelim. 2.5]). Since the R-rank of G is 1 and the commutator subgroup of 
F ~ is noncompact, this also implies that the center of F ~ is compact. Since F is 
Zariski dense in F, the radical of F is contained in the radical of F ~ Hence F is a 
reductive group with compact center. 

Suppose the unipotent radical of F ~ is nontrivial. Let N be a maximal 
unipotent subgroup of G containing Ru(F ~.  Then F C P = N~(N), the normalizer of 
N in G (cf. [18, Sect. 12.6]). Since N contains all unipotent elements in P, L ( N .  If 
F = E then we are through. Otherwise, since L-~ = Fx, there exist sequences {It} C L 
and {f~} CF such that l t~  oo, fi--+e and lix=fix for all i e N .  Now for all large i, Yi 
=fi-ll~eF~\{e}. Since P is a minimal parabolic subgroup of G, P admits a 
decomposition P = Z~(A)  9 N, where A is a Cartan subgroup of G and Z~(A) is the 
centralizer of A in G. There exists Y in the Lie algebra of A such that if q = exp ( -  Y) 
then for all l ~ N, q n l q - ~  e as n-~ ~ .  Therefore there exists an increasing sequence 
{ni}i~l~ such that q~'~iq-n'-~e as i--+ oo. For each j e N ,  put ~)=e i f j < n  1, and put 
~) = yn. if ni-< j < ni + 1. Then q ~ ' ~ q - ~  e as n--* ~ .  Therefore by Lemmas 3.5 and 3.6 
in [12], N~G~*O. Now by Lcmmas 3.16 and 3.17 in [12], N/NnG~ is compact, 
equivalently Nx is compact. This shows that L-~( Nx. Hence F ( N .  This completes 
the proof. [] 

In view of arithmeticity of irreducible lattices in semisimple groups of rank 
greater than 1, we formulate the next result in the setup of algebraic groups. 

(3.2) Proposition. Let G = G  ~ for an algebraic O-group G cSL(n,C), F = G  
c~SL(n,Z) and L be a subgroup generated by algebraic unipotent one-parameter 
subgroups of G contained in L. Suppose LF = FF for a connected Lie subgroup F of 
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G. Let F be the smallest algebraic q-group containing L. Then the radical of F is a 
unipotent algebraic (1)-group and F = F ~ 

Proof. By the arguments as in Lemma 2.9, it follows that the radical of F is a 
unipotent algebraic q-group. Therefore F admits no nontrivial character defined 
over ~ .  Let A = SL(n, ~r) and d = F~  Then the natural inclusion map i: F~A 
-* SL(n, R)/A is proper (of. [,18, Sect. 10.15]). Let j:G/F-~ SL(n, R)/A be the natural 
inclusion map. Now F ~  - I(F~ is closed in G. Therefore F E F  ~ Hence L-A 
= FA in F~A.  Since i is proper, L-~ = FA. 

Note that A is a lattice in SL(n,R) (cf. [18, Sect. 10.5]). Let F' be the Zariski 
closure of A in G. Therefore F' is defined over ~ (cf. [21, Sect. 3.1.8]). By 
Corollary 2.13, F E F'. Since L E F, by minimality of F we have F ' =  F. Hence F is 
Zariski dense in F. 

By Levi decomposition F = S. R, where S is a semisimple group and R is the 
radical of F. Let S and R be the smallest algebraic R-groups containing S and R, 
respectively. Now S normalizes R and R is a solvable group. Therefore F = S. R. 
Since the radical of F is unipotent, S is a semisimple group and R is a unipotent 
group. Therefore R = R  ~ (cf. [,18, Sect. P.2.2]). Now S is a connected normal 
Zariski dense subgroup of the sernisimple group S ~ Hence S = S  ~ Thus 

o 0 0 F = S ~ "  RR=FR. [] 
3.3) Notation. For a semisimple Lie group G and a parabolic subgroup P, define 
P = {g e P I det(Adgl,,)= 1}, where w is the Lie subalgebra corresponding to the 

unipotent radical of P. 
(3.4) Lemma. Let G = G ~ for a semisimple algebraic (I~-group G, F = GnSL(n, Z) 
and U = U  ~ for a unipotent algebraic q-subgroup U cG. Then there exists a 
parabolic q-subgroup P E G such that if P = po and W =  Ru(P ) then (a) U E W and 
No(U)EP, (b) W/Wc~F is compact and (c) ~ is closed. 
Proof. Let P be the maximal algebraic q-subgroup of G such that U E Ru(P) and 
NG(U) C P. Let W = Ru(P). Then W is a q-group, Pt  =NG(W) is a (1)-group, PEPx 
and W E Ru(P1). By the maximality P1 = P. Therefore P is a parabolic subgroup of 
G (cf. [18, Sect. 12.8]). This proves (a). 

Let W = W  ~ Since W is defined over Q, W/Wc~F is compact (el. [,-18, 
Sect. 2.13]). 

Let g and w be Lie algebras corresponding to G and IV, respectively. 
Let r=dim(w) and 0:G-~GL(A'g) be the r-th exterior of the Adjoint 
representation Ad:G~GL(g) .  Let {el, ..., e,} be a basis of w and put 
p=el  A ... Ae,. Then for all a~P, ap=(Ada)el A ... A(Ada)e,=(detAda[,,)p. 
Therefore, 0p = {g ~ G I 0(g)P = P}. 

Since G and W are defined over ~ ,  g and w admit compatible rational 
structures. Now A'g, Arw and 0 are defined over ~ .  Fix a rational basis of Arg. For  
a nonzero rational vector p ~ A~w, let ~: G ~ A'g be the map defined by ~(g) = o(g)P 
for all g ~ G. Then ~ is defined over ~ .  Therefore ~(F) consists of rational points 
with bounded denominators in each co-ordinate. Hence ~(F) is discrete and F~ 
= c~-t(ct(F)) is closed. Therefore ~ is closed. [] 

The next lemma is useful when we want to change a lattice by a commensurable 
One. 

(3.5) Lemma, Let G be a Lie group and F and F' be discrete subgroups of G. Suppose 
F' E F and [ F : F'] < Go. Let r : X '  = G/F'-~ X = G/F be the natural quotient map. Let 
x' ~X', x=~p(x')eX and F and H be closed connected subgroups G. Then the 



Uniformly distributed orbits 323 

foUowing,,statements hold. 
1. FX = Hx  =~ ~ =  Hx. 
2. F-x= Hx =~ Hx'  is closed and F U  contains an open subset of Hx'. 
3. I f  F is__a lattice in G and F is generated by unipotent one-parameter subgroups 

of G then Fx  = Hx =~ Fx '=  Hx'. 

Proof S i n c e r e .  F'] = n < oo~ the map ~p is proper. If P-~ = Hx' then by properness 
of ~p, ~x-= ~ ) =  ~p(P'~)= ~p(Hx')= Hs. This proves 1). 

Let F" = 0 ?F'7-1. Then F" is a normal subgroup of finite index in F. There- 
),e_r 

fore in view of 1), we may assume that F' is normal in F for proving 2) and 3). There- 
fore F acts on X' from the right and X = X'/F. 

Sul~pose ] ~  = Hx. Let Z' = (p- l(Hx) and E' = ~ v C  Z'. Now (p(E') = ] ~  = Hx 
n 

= ~p(Hx'). Hence there exits {71 .. . . .  7,} E F such that ~) Hx'?i = Z ' =  U E'~i. This 
i = l  i = 1  

shows that Hx' and E' contain open subsets of Z'. Therefore Hx'~i is open in Z' for 
each i and hence Hx' is closed in Z'. This proves 2). 

Assume the hypothesis in 3). Then F' is also a lattice in G. Now since Fx' 
contains an open subset of Hx', H is the smallest Lie subgroup of G such that F E H 
and Hx' is closed. By Theorem 2.3, Hx' contains a dense orbit of F, which must 
intersect Fx ---~. Therefore ~ = Hx'. This proves 3). [] 
(3.6) Definition. Let G be a Lie group. We call discrete subgroups F and F' of G 
commensurable if [F : Fc~F'] < ~ and [F' :  Fc~F'] < oo. 
(3.7) Remark. The Proposition 3.2 and Lemma 3.4 hold when F is commensurable 
with GnSL(n,~r). To show this use Lemma 3.5 and Theorem 2.3. 

The next lemma is useful when we want to factor agroup a group by a compact 
normal subgroup. 

(3.8) Lemma. Let Q : G--*G 1 be a surjective homomorphism of Lie groups G and G 1. 
Let F be a discrete subgroup of  G. Suppose F 1 =Q(F) is a lattice in G 1 and the 
canonical quotient map ~ : X = G/F--* X 1 = G 1/F1 is proper. Let L be a subgroup of G 
generated by unipotent one-parameter subgroups contained in L. Suppose ker(Q) 
normalizes L. Let LI=Q(L ), x e X  and x l = ~ ( x ) e X 1 .  Then L-x=Fx for a con- 
nected Lie subgroup F of  G if and only if L l x  I = F i x  I for a connected Lie sub- 
group F 1 of  G 1. In this case F 1 =0(F). 

Proof. Since ~ is proper, F must be a lattice in G. 
If L-x = Fx then by properness of 0, ~ = ~(Lx) = ~(E~) = O(F-x) = Q(F)xl. 
Suppose x ~  = Fix1. If H = r then Hx = ~-1(Fix1) is closed. Let F be 

the smallest Lie subgroup of H such that F 3 L  and Fx  is closed. Now F i x  ~ 
= ~(Hx) ~ ~(Fx) 3 O(E-x) = ~ = F l x r  Therefore since F and F1 are connected, 
we have F1 = Q(F). By Theorem 2.3 there exists y ~ Fx such that L ~ =  Fx. Since 
o(L-x) = O(Fx) there exists h e kerr  such that hy e L-x. Since ker(Q) normalizes L, L~ 
3 L-~ = hL-y= hFx = (hFh- 1)hy. Therefore hFh-  1 E F and by dimension consider- 
ation hFh-  1 = F. Hence L-x-= Fx. [] 

(3.9) Lemma. Let G be a connected semisimple Lie group without compact factors, 
with trivial center and of  I~-rank > 1. Let F be an irreducible lattice in G and L be a 
subgroup generated by unipotent one-parameter subgroups of G contained in L. 
Suppose LF = FF for a connected Lie group F E G. Then the radical of  F is a 
unipotent subgroup of G. Moreover, if the radical of F is nontrivial then there exists a 
proper parabolic subgroup P of G such that (a) F C op, (b) ~  is closed in G/ F, and (c) 
W/Wc~F is compact, where W =  Ru(P). 
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Proof. By the arithmeticity theorem of Margulis (cf. [21, Theorem 6.1.2]), F is an 
arithmetic lattice in G. That is, there exists a semisimple algebraic Q-group H and a 
surjective homomorphism Q:H~G such that ker(Q) is compact and Q(A) is 
commensurable with F, where H = H ~ and A = HnSL(n, Z). By Lemma 3.5, there 
no loss of generality in assuming that Q(A) = F. 

There is a normal semisimple subgroup H 1 C H such that ~(H1) = G and ker(Q) 
nH~ is discrete. Note that Ht  contains all unipotent one-parameter subgroups of 
H and ker(Q) commutes with H~. There exists a subgroup ECHI such that E is 
generated by algebraic unipotent one-parameter subgroups contained in it and 
Q(E)=L. If ~:H/A~G/F  is the natural quotient map then ~ is__p_roper. By 
Lemma 3.8, there exists a subgroup F ' (  H such that Q(F')= F and IgA = F'A. 

By Proposition 3.2, the radical of F' is U '=  U~ for a unipotent Q-subgroup 
U 'cH.  Since Q is surjective and ker(Q) is compact, the radical of F is also a 
unipotent subgroup of G. 

If U' is not trivial then by Lemm 3.4 there exists a proper parabolic subgroup P' 
of H such that a) UCNn(U')CP', b) ~ is closed in H/A, and c) W'/W'nA is 
compact, where W'= Ru(P'). Since E is generated by unipotent one-parameter 
subgroups, E C up, and hence F'C 0p,. If P = Q(P') then P is a proper parabolic 
subgroup of G with the required properties. [] 
(3.10) Proposition. Let G be a connected semisimple Lie group without compact 
factors and with trivial center. Let F be a lattice in G and L be a s u b g r ~  generated 
by unipotent one-parameter subgroups contained in L. I f  x ~ G/F and Lx = Fx for a 
connected Lie subgroup F C G then one of the following possibilities holds. 

1. F is a reductive group with compact center. 
2. There is a proper parabolic subgroup P of G such that (a) F C up, (b) ~ is 

closed and (c) Ru(P)x is compact. 
Proof. Let Gx=A. For G there exists a direct product decomposition G= G1...G, 
such that A~=GknA is an irreducible lattice in Gk for l < k < n  and 
[A :At...A,] < oo (cf. 1"18, Sect. 5.22]). By Lemma 3.5, without loss of generality we 
may assume that A =At  ... A,. Then G/A ~ G1/A~ x . . .  x GJA,. Let tpk: G~G k be 
the projection homomorphism of G onto Gk and t~ k: G/A ~ Gk/Ak be the natural 
projection. Let Xk = (#~(X), Lk = ~Ok(L) and Fk = tPk(F). By Theorem 2.3, Fx supports 
a finite F invariant measure tr. Now the projection of tr on FkXk is a finite Fk 
invariant measure. Therefore FknAk is a lattice in Fk. Hence FkXk is closed in Gk/Ak 
(of. [18, Sect. 1.13]). Now kL-k'~=FkXk. 

Let R be the radical of F. Then Rk = tPk(R) is the radical of Fk. If Fk is reductive 
for all k then by Proposition 3.1 or Lemma 3.9, Rk is compact and abelian for all k. 
Hence R is compact and abelian. In this case 1) holds. 

Now suppose Fk is not reductive for some k. Then by Proposition 3.1 or 
Lemma 3.9, there exists a parabolic subgroup Pk ~- Gk such that (a) Fk C Up, (b) ~ k 
is closed and (c) R,(Pk)Xk is compact. If P=(I-I  Gj~Pk then P is a parabolic 

\ j # k  ] 
subgroup of G, Up= ( I I  G;~ ~ and R~(P)=R~(Pk). Now (a) FC~ (b) ~ 

/ 

= (Pk l(Opkxk) is closed (c)/in view of the natural inclusion Gk/A k ~ G/A, R~(P)x 
=R~(Pk)Xk is compact. [] 

4 Regular unipotent elements 

(4.1) Def'mition. Let G be a connected reductive Lie group. A unipotent element of 
G is called regular if it is contained in a unique maximal unipotent subgroup of G. A 
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unipotent one-parameter subgroup of G is called regular if it contains a regular 
unipotent element. 

(4.2) Lemma. Let Q : G--*G' be a homomorphism of connected reductive Lie groups. 
Let u e G be a unipotent element. 

1. I f  Q is surjective and u is regular in G then Q(u) is regular unipotent in G'. 
2. IfkerQCZ(G) and Q(u) is regular unipotent in G' the u is regular in G. 

Proof. 1) follows immediately from the definition. 
Suppose kerQ C Z(G). Since G is connected and reductive, G = Z(G)S, where S is 

a connected semisimple group. Now any maximal unipotent subgroup of G is of 
the form Z(G)N, where N is a maximal unipotent subgroup of S. Since S is 
semisimple and connected, Q(N) is a unipotent subgroup of G' (of. [21, Sect. 3.4.2]). 
Now 2) easily follows from the definition. [] 
(4.3) Theorem (cf. [20, Theorem 3.7]). Let G be a connected semisimple Lie group 
with trivial center, A be a Cartan subgroup of G and Po = M A N  be a minimal 
parabolic subgroup of G, where M is a maximal compact connected subgroup of 
Z6(A) and N is a maximal unipotent subgroup of G. Let u be a unipotent element of G. 
Then the following statements are equivalent. 

(a) u is regular. 
(b) u belongs to a unique conjugate of a given parabolic subgroup of G. 
(c) I f  u e N  and u=exp(~_~,+X~l then for every simple root a, X~+ X2~4=O. 

, ,  = ~  / 

Here R + is the set of positive roots associated to the parabolic pair (Po, A) and X~ is 
an element of the a-root space of A. 
Proof. We refer to 1-18, Chap. 12] for the results used in this proof. First note the 
following. G = G ~ for an algebraic P,-group G. If P is a parabolic subgroup of G 
then P =  Pc~G. Let W= Ru(P ). There exists a semisimple F,-subgroup S CP such 
that if S=S~  then any unipotent element of P is contained in S. W (cf. 1-18, 
Prelim. 2.5]). Therefore any maximal unipotent subgroup of P is of the form V. W, 
where V is a maximal unipotent subgroup of S. Since S is a semisimple group, any 
two maximal unipotent subgroups of S are conjugates. Therefore, any two 
maximal unipotent subgroups of P are conjugate by an element of P. More- 
over, any maximal unipotent subgroup of G is conjugate to a subgroup of P. 

Now assume (a). Let N' be a maximal unipotent subgroup of G containing u. 
Suppose there exist gl, g2 e G such that glug~ 1, g2ug 21 e P. By regularity of giug 71 

1 and the observations made above, g~N g~- C P for i = 1, 2. Now there exists p e P 
1 ~ 1 1 such that g i n  g? =pg2N g2 P-  9 Since the normalizer of a maximal unipotent 

subgroup of P is contained in P, we have Pg2g-( l e P. Hence g~-1Pg 1 =g~ 1Pg 2. 
Thus (a) =~ (b). 

Assume the contrary to (c). Suppose u e Po, u = exp ( Y, X ~  and for some 
\ ~ e R  § / 

simple root/~, Xp + X2p = 0. Let X_p # 0 be an element of the ( -  #)-root space. If 
a e R  + and a#/~ or 2/~ then for every k e N ,  either a - k B e R  + or a - k #  is not a 
roo t .  S ince  adkX_o(X,) belongs to the (a-k/~)-root space, we have 

to the a-root space. a d g ( , , ~ .  X , ) = ~ +  Y,, where g=exp(X_a) and Y~ belongs 

Therefore, gug-~ePo . Hence uePoc~gPog -1. But gq~Po. This contradicts (b). 
Thus (b) =*- (c). 

Let u e N be such that u = exp ,o--(~§ X_~] and X,  + X 2, # 0 for every simple root 

/L Suppose for some g e G, u e gNg-~. By Bruhat decomposition of G, g = plw*p2 
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where Pl, P2 ~ Po and w*6 No(A) represents a Weyl group element w ~ W(G, A). 
Therefore gug- t =(pf  lw*- rp? t)u(pl w*p2)6 N. Hence w*- l(p-~ lupl)w* ~ P o. 
Now u' = P l upS- t = exp ( y. X'~ ~ P0. Suppose p j = amn, where a 6 A, m ~ M and 

n~N. Then for every simple root l/, X~=Ad(am)X~ and when X~--0, X ~  
= Ad(am)X2~. Now w*-lu'w* = exp ( Z Y~)~ 6 P0, where u  w*)X~ be- 

longs to the w(u)-root space of A. Hence w(u) ~ R + unless X~ = 0. But X~ + X ~  4= 0 
for every simple l/, therefore w stabilizes the positive Weyl chamber. Since the Weyl 
group acts simply transitively on the Weyl chambers of A, w is an identity element 
of W(G, A). Therefore w* 6 Zo(A ) C Po. Hence gNg-  1 = N. Since any two maximal 
unipetent subgroups of G are conjugate, (c) =, (a). [] 

(4.4) Remark. Suppose G is a semisimple group of R-rank 1. Then in the notation 
of the Theorem 4.3, R + contains only one simple root. Therefore, any non- 
trivial unipotent element of G is regular. 

(4.5) Lemma. Let G be a semisimple group with trivial center and let H c G be a 
reductive algebraic subgroup of G. I f  H contains a regular unipotent element of G 
then ZG(H ) is compact. 

Proof. Let the notation be as in Theorem 4.3. Let u ~ H be a regular unipotent 
dement  of G. We may assume that u ~ N. Then Z6(u)C Po. By Theorem 4.3(c), it is 
easy to see that Z6(u) C MN. Therefore ZG(H ) C MN. But Z6(H) is reductive group 
(of. [18, Sect. P.2.6]). Hence it must be compact. [] 

5 Union of lower dimensional homogeneous closures 

Let G be a semisimple Lie group with trivial center and no compact factors, F be a 
lattice in G and U = {ut} ~R be a regular unipotent one-parameter subgroup of G. 

Let X = G/F and Y = {y E X [ Fy is dosed for a connected Lie subgroup F of G 
such that d i m F < d i m G  and UCF}. 

Take y e Y and let F be the smallest Lie subgroup of G such that U C F and Fy is 
dosed. Then dim F < dim G. By Theorem 2.3 there exists x ~ Fy such that U~ = Fx 
= Fy. By Proposition 3.10, either 1) F is a connected reductive group with compact 
center or 2) there exists a proper parabolic subgroup P of G such that (a) U C 0p, (b) 
~ is dosed and (c) Ru(P)x is compact. 

Consider the first possibility. Let F nc denote the maximal connected normal 
semisimple subgroup of F with no compact factors. Let H = NG(Fn~ Then H is an 
open subgroup of R-points of a real algebraic group. Hence H has finitely many 
components (of. [18, Prelim. 2.4-1). Since F ~c is connected and semisimple, H ~ 
CZG(F~)F ~c. By Lemma 4.5, Z~(F ~c) is compact. Therefore Hx is closed and 
H uc = F ~. 

Let ~ be the set of all pairs of the form (H, x), where x ~ Y and H is a reductive 
subgroup of G such that (a) U C H, (b) Hx is dosed, (c) dim H < dim G and (d) there 
exists a connected reductive subgroup F with compact center such that 
H = NG(F *c) and U-x = Fx. 

Let ~ be the set of all pairs of the form (op, x), where x ~ Y and P is a parabolic 
subgroup of G such that (a) U C H, (b) Hx is closed, (c) d imH < dim G, and (d) there 
(5.1) Remark. Let ~ = ~ u ~ .  Then from the above discussion, 

Y= U Fx. 
(F,x)~ 
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(5.2) Lemma. There is a countable subset adr* of ~ such that if (F', x')e gr then 
there exist g e G  and ( F , x ) e ~ *  such that F'=gFg -1 and x '=gx .  

Proof. Let ~ be the set of connected Lie subgroups of G such that if A ~ ~ then (i) 
either A is a reductive group with compact center or A is unipotent subgroup of G 
and (ii) A n F  is a Zariski dense lattice in A. In both cases A is the identity 
component of a real algebraic group. Moreover A n F  is finitely generated (cf. [18, 
Sects. 2.10, 13.20, 13.25]). Thus A is completely determined by finitely many 
elements of F. Hence ~ is countable. 

Let (H1, xi), (H2, x2)e ~ .  Let F 1 and F 2 be closed connected subgroups such 
that ~ = Fax 1 and ~ = F2x2. Let g 1, g2 e G be such that x l = gl F and x2 = g2 F. 
Then by the definition of ~ and Corollary 2.13, glFlg[ 1, g2F2g2 ~ ~ ~. Suppose if 
g1F1gtl=g2F2g21 then .c - 1 _  nc -1 g lNo(Fx)gl  -g2NG(F2)g  2 . By definition H 1 
= N6(F~ ~) and H 2 = No(F~r If we put g =gig21  then H 1 = gH2g-1 and x 1 = g x  2. 
Thus by countability of @ we can choose a countable subset #t* of gt with the 
property that for every (F', x') ~ ,  there exits g e G such that (g- iF'g, g-  ix') ~ #t*. 

Take (~  Then R,(P)x is compact. Take g ~ G  such that x=gF.  
Then by Theorem 2.1 in [18], g R , ( P ) g - I E ~ .  Since P is a parabolic sub- 
group, P = NG(R,(P)). Now argue as in the above case. []  

(5.3) Notation. For  a Lie subgroup F of G containing U define 

L(F) = {g ~ G [ g t g - t  3 U}. 

Note that No(U)L(F)No(F)= L(F). 
(5.4) Remark. Let (op, x) e ~ .  If g ~ L(~ then U C PngPg-  1. Since U contains a 
regular unipotent element of G, by Theorem 4.3, L(~ = P. 

(5.5) Notations. Define #-0 = ~ca# ' *  and for all n e 1'4 define 

= {(n, x) e ~ n # - *  I dim(n"~) = n}. 

Put  Y-t = 0  and for all n e N u { 0 }  define 

The next corollary is a direct consequence of the above discussion. 

(5.6) Corollary. Y~=Yfor  all n>_dimG-1 .  [ ]  

6 Proof of the main theorem 

We follow the notations of Sect. 5. To prove the main theorem (for G as above) it is 
enough to prove the following. 

(6.1) Theorem. Let n ~ N u { 0 ,  - 1}. Given e > 0  and a point y ~ X \  Y, there exists a 
compact subset K c X \  Y~ such that for all T > 0 ,  

(1/T)d{t e [0, T] [ u,y ~ K} > 1 - ~. 

For  n = - 1, that is when Y, = 0, the theorem is essentially proved in [5, 6] and 
the above form is deduced in Proposition 1.8 of [8]. For  n = 0  it is proved in the 
Appendix of [8]. In this paper we exploit the techniques of [8] to study the case 
of n e 1'4. We shall assume the theorem for n = - 1 and give a proof  by induction 
on n ~ Nu{O}. 



328 N.A. Shah 

(6.2) Lenuna. For each (F, x) ~ ~r there is a finite dimensional real vector space E 
equipped with a linear G action and a point p e E such that 

(a) F is the isotopy subgroup of p, 
(b) if (F, x)~ 91 then Gp is closed, and 
(c) if  (F, x) = (oe, x) ~ H then ap = det(Adalw)p for all a ~ P, where w is the Lie 

subalgebra corresponding to Ru(P). 
Proof First note that G = G ~ for an algebraic R-group G. Suppose (F, x) ~ ~r By 
the definition F=Gc~H for a reductive algebraic R-subgroup H cG.  Now 
Proposition 7.7 in [1] provides such a representation. 

For  (F, x)=(~ x)~ H such a representation is constructed explicitly in the 
proof of Lemma 3.4. [ ]  
(6.3) Lemma. Let (op, x ) e H  and (E, p) be a linear G-space with a distinguished 
vector as in Lemma 6.2. Let W = Ru(P) and w be the Lie subalgebra corresponding to 
W.. Then the following holds. 

1. I f  a t e  then Vol(W/WJ=det(Adal,,)lVol(W/W~), the volumes of the 
quotients being understood to be relative to a f ixed Haar measure on W. 

2. I f  ax = a'x for some a, a' e P then ap = +_ a'p. 
3. For a sequence { a , } ~ C  P, if a~p-~O as i ~ oo then no subsequence of { aix } i ~ N 

converges in X.  
Proof Let a be a Haar  measure on W. Let ~ be a fundamental domain for the 
lattice W~ in W. Then Vol(W/W~)= a(~). Since W,x = aW~a-t, the set aSCa-1 is a 
fundamental domain for W,~. Therefore VoI(W/W,~) = a(aACa - 1) 
= Idet(Ad alw)la(~). Hence 1) holds. 

Now 2) is an immediate consequence of 1) and the condition (c) of Lemma 6.2. 
Now suppose that a~-~0. Then by 1), Vol(W/W,,x)~0. Since W,,. = aiW~ai-1, 

there exists a sequence {~i}i~NC W~ C G~, such that ~i =~ e and ai~iai -$--*e. Hence 
{a~x}~N is divergent in X (cf. [18, Sect. 1.12]). This proves 3). []  
(6.4) Remark. In the notation of Lemma 6.3, 0 e / ~ .  Therefore i fX is compact then 
H=r 

The following lemma will enable us to apply induction in the proof of 
Theorem 6.1. 

(6.5) Lemma. Let ( H , x ) e ~ .  Define 

Z = {z ~ Y I z ~ llHxc~12Hx and l lH ~: 12 H for some 11, 12 ~ L(H)}. 

Then Z C Y,_ 1, where n=dim(H"~). 

Proof Let z ~ l iHxn l2Hx  be such that I1H~: 12H, where 11, 12 e L(H). Now  liHx 
=(liHlil)(lix) for i=1,2. Since Hx is closed, by Lemma2.2 if F=(l lHl~ 1) 
c~(12Hl~ 1) then Fz is closed. By the definition of b(H), U C F. Let F0 be the smallest 
Lie subgroup of G such that U C Fo and Foz is closed. If F o is not reductive then by 
definition z ~ Yo. 

Suppose Fo is rcductive. Since FoCF, we have F~~ If dim(F~ ~ 
< dim(H "~) then z ~ Y._ 1. 

Now suppose dim(F~r176 Since F~o ~ and H "r are connected, 
F~o ~ = l~H"~ ~ = 12H*~l~ ~. Therefore, 1~ ~12 ~ NG(H nr = H, a contradiction. This 
completes the proof. []  

The following notations are used in Sect. 6.8 to Sect. 6.13. 
(6.6) Notations. Let (F, x) ~ ~ and (E, p) be a linear G-space with a distinguished 
vector, satisfying the properties mentioned in Lemma 6.2. 
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Let 
L = { v ~ E [ U v = v }  

be the fixed point space of U in E. For  a subset S C E define 
S(x) = {gx ~ X [ g ~ G and gp  9 S}. 

(6.7) Remark. If g  9 G and gp ~ L then U(gp) = gp. Therefore g-  1Ug C F and hence 
g  9 L(F). Thus L(x) = L(F)x. 

(6.8) Lemma. Let A = {(gx, gF)  9 X x G/F I g  9 G}. Let ~p: A ~ X  x E be the map 
defined by lp(gx, gF) = (gx, gp) for all g e G. Then v2 is injective and proper. 
Proof. First note that ~p is well defined and injective. Also lp is G-equivariant with 
respect to the obvious G-actions. 

Suppose ( F , x ) e ~ .  In this case Gp is closed. Therefore the map ~: G / F ~ E  
defined by ~(gF)=gp for all g e G  is proper. Hence ~p is proper. 

Suppose (F, x ) =  (Op, x )  9  9 ~. By Iwasawa decomposition there is a maximal 
compact subgroup K o of G such that G=KoP.  Let Ap={(ax,  a~ [aeP}.  
Then d = K o d  e. Let I p r : d p " ~ X x E  be the restriction of v2 to Ap. Since K o i s  
compact and ~ is G-equivariant, it is enough to show that vA is proper. Since Pp 
=Ppu{0} ,  the properness of ~p, follows immediately from 3) of Lemma 6.3. [ ]  
(6.9) Corollary. For y ~ X,  the set S = {gp  9 E [ g e G and y = gx} is closed. 

Proof. Since Fx is closed, the set G~F is closed in G. Ify = gx for some g e G then the 
set Ay = (y, gG,,F) C A is closed. For the map ~p as in Lemma 6.8, ~p(dy) = (y, S). Since 
tp is proper, S is closed. []  

(6.10) Lenuna. Let ~p : G/Fx--*X x E be the map defined by q~(gFx) = (gx, gp) for all 
g ~ G. Then ~p is proper. 

Proof. Let n: G / F x ~ X  x G/F be the map defined by n(gFx) = (gx, gF) for all g  9 G. 
Then <o =~p o n. In view of Lemma 6.8, it is enough to prove that n is proper. 

Let {g~} ( G  be a sequence such that {gix} and {giF} are convergent. Then 
there are sequences {fit} C G~ and {fi} C F such that {gifi} and {g~fi} converge in G. 
Therefore {f~- 16i} = {(g~f~)- l(g~fii)} converges in G. Hence f i -  tx converges in X. 
Since Fx is closed, the map i : F / F ~ X  given by i ( fFx )=fx  for all f e F ,  is a 
homeomorphism on to its image. Therefore {f~-tFx} converges in F/F~ and 
hence {g~F~} = {(g~fi)fi-1F~} converges in GIFt. This shows that n is proper. [ ]  
(6.11) Proposition. Let nel' ,Iu{0} and ( F , x ) ~ , .  Let K be a compact subset o f  
X \  Y,_ ~ and C be a compact subset of  L. Then there exists a neighbourhood 12 of  C in 
E such that if g, g'  9 G, gx = g'x ~ K and gp, g'p ~ 12 then gp = + g'p. 
Proof. Suppose this is not true. Then there exist sequences {gi} and {g'~} con- 
tained in G and points y e K and c, c' e C such that the following holds. (i) For  each 
i~lq, y i = g i x = g ; x e K  and gtp-l-g'ip. (ii) As i~oo,  Yi-*Y, g~p~c and g'@~c'. 

Since the map ~p as in Lemma 6.10 is proper, the sequences {g~Fx} and {g~F~} 
have convergent subsequences in G/Fx. Passing to subsequences and replacing g~ 
and g'~ by appropriate elements of g~F~, and g~Fx we may assume that g~--*g and 
g '~g '  for some g, g' ~ G. Now g~- tg~ e G~ for all i ~ N. Since g~- ~g~--*g- ~g and G~ is 
discrete, there exists 6  9 Gx such that g'~=g~ for all large i. Since g~p.  +g~p 
= +_ g~@, we have 6p 4: +_ p. Hence gp ~ +_ g'p. Since gp = c, g'p = c' ~ L, by 
Remark 6.7, g, g' e L~F). Also y = gx = g'x. 

Suppose (F, x) = (uP, x) e @. By Remark 5.4, g, g' e L(~ = P. Now  gx = g'x but 
gp ~ +. g'p. This contradicts 2) of Lemma 6.3. 
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Suppose (F, x) = (H, x) ~ ~. Since g, g' ~ L(H), y ~ gHxn g' Hx and gH ~ g' H, by 
Lemma 6.5, y e  Y~_~. This contradicts the fact that y r  and Kc~Y,_~ =O. This 
completes the proof. []  

The following Lemma about  polynomial growth is very useful in studying the 
dynamical behaviour of orbits of a unipotent flow in a vector space. 

(6.12) Lemma [8, Lemma A.8]. Let nEgq and e>O be given. Then for any ~ > 0  
there exists afl ~ (t3, ~) and for any [3 > 0 there exists an ~ > [3 such that the following 
condition is satisfied: if tp is a polynomial on R of degree utmost n such that lq'(0)t >-_ ct 
then there exists te(1,  1 +5) such that Iq(t)l>[3. []  
(6.13) Proposition. Let n ~ N u { 0 }  and ( F , x ) ~ , .  Let y e X \  Y,, K be a compact 
subset of X \  Y~_ 1 and C be a compact subset of L. Then, given ~ > O, there exists a 
neighbourhood ~ of C in E such that for all T > 0 ,  

:{ te  [0, T] ]utye ~P(x)caK} <~T. 
Proof. Let L • be a complementary subspace of L in E. Let c = dimL, d = dimL" and 
m=c+d=dimE.  Let {e~,...,e~} be a basis of L and {f~,...,f~} be a basis 
of L • For r > 0 define 

'(r)={,=~',e, l l ' , l < r f o r a l l l < i < c } c L  

and 

J(r)= {j~=l~jf~ ]~jl<r for all l <=j<=dt cLl .  

L e t / / > 0  be such that I(fl)3C. By Lemma 6.12 there exists ~>[3 such that 
if q~ is a polynomial on 1~ of degree atmost m and if k0(0)l >__a then there exists 
re( i ,  1 + e/(2m2)) such that kp(t)l _-> [3. 

Let C'=I(a). By Proposition 6.11 there exists a neighbourhood sO' of C' in E 
such that if g, g' 6 G, gx = g'x ~ K and gp, g'p ~ sO', then gp = • g'p. Since y r Y, 3 L(x), 

orollary 6.9 there exists a > 0  such that if O = I ( a ) x  J(a) then yCsO(x) and 
f] .  
By Lemma 6.t2 there exists 0 < b < a  such that if ~p is a polynomial on ]R of 

degree atmost m and if ko(0)l>__a then there exists re ( l ,1  +e/(2m2)) such that 
I~(t)l _-> b. Let ~P = I([3) x J(b). Then ~v C f~ and ~v is a neighbourhood of C in E. 

For  geG and T > 0  define, 

A(g) = {t e (0, T) I u,(gp) efl}.  
Note that A(g) is a union of open intervals. 
Step 1. I f  gp r f2, I = (r, s) is a connected component of A(g) and s' z (r, s] then 

r z It, s'] I u,(gx) z ~(x)nK} < ~(s '-  r)- 
Proof. Since gp ~ I2, u,(gp) r 0\12. Therefore replacing g by urg, we may assume that 
r=0 .  Now if t e  [0,s] and ut(gx)e ~(x)nK then ut(gp)e f2 and there exists g'~G 
such that g'x = (utg)x and g'p e ~. By the choice of O, (u,g)p = _ g'p. Since ~ is 
symmetric about  the origin, ut(gp) r ~e. Therefore 

:{t ~ [0, s'] I ut(gx)~ ~'(x)nK} < e{t e [0, s'] I u,(gp) ~ ~'}. (1) 
Note  that U acts by unipotent linear transformations on E (cf. [21, Sect. 3.4.2]). 

Therefore there exist polynomials tp 1 . . . .  , r and ~pl ..... W~ on R of degree atmost 
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m(=dimE) such that for all t e R,  
d 

ut(gp)= ~ tPi(t)e,+ E tpj(t)fy. 
i = l  j = l  

Let At = {t ~(0, s')iu,(gp)~ ~}. Then A_z is open. Let (ao, bo) be a connected 
component of A 1. Since gpr ~,  uoa(gp)e ~V\~v. Therefore there exist i~ {1 ..... c} 
such that I~p,(ao)l =fl or j s {1, ...,d} such that I~j(ao)l =b. Hence A 1 consists of 
atmost 2m 2 connected components. Now A 1 = (al, bl)W...u(at, bt), where l~  2m 2 
and bk < ak + 1 for 1 ~ k < l. 

Take k e { 1 .....  l}. Since u,(gp) r t2, there exist i E { 1,..., c} such that I~0~(0)l ->  9 or 
j e{1  .. . . .  d} such that I~pj(0)[>a. Now by the choice of ~t and b, there exists 
t ~ (1,1 + e/(2m2)) such that tpz(tak) > fl or ~pj(tak) > b. Therefore, 0 < b k < tak. 
Hence (bk--ak)<(e/(2m2))ak<(e/(2m2))s'. Thus 

l 
#{t ~ [-0, s'] [ ut(gp) ~ ~} = e(a 1) = Z (bk-- ak) < eS'. (2) 

k = l  

Since r=0 ,  Step 1 follows from (1) and (2). 
Let 

Gx,y= {ge G [ g x = y } .  

Fix T > 0. Let ~ be the collection of pairs of the form (I, g), where g e Gx.y and I is a 
connected component of A(g). For an interval I = ( r , s ) C R  define J(I)=(r,s'], 
where 

s' = sup{t E Jr, s] [ uty e K} .  
Step 2. We can choose a subcollection ~oCr~ satisfying the following conditions. 

1. { t ~ [ O , T ] [ u t y ~ ( x ) c ~ K } C  U J(I). 
(l,0)r 

2. For (It, g2), (I2, g2) ~ ~ 0 / f  (11, gt) # (12, g2) then J(It)nJ(I2) = O. 
Proof. For t > 0 ifuty ~ Kc~ ~f(x) then there exists (I, g) ~ ~ such that t ~ J(/). Suppose 
J(Ix)c~J(I2) ~= 0 for some (It, gl), (I2, g2) e ~. Then there exists to ~ FlC~I2 such that 
u J  e K and utog tP, utog2P E ~ C g2'. By the choice of fl', we have Uto(g t P) = + uto(g2P). 
Thus ut(gl)P = + ut(g2)p for all t e R.  Since f2 is symmetric about  the origin, A(gt) 
= A(g2) and hence I t  = I2. Now it is clear how to choose ~r ( ~r so that 1) and 2) are 
satisfied. 

Thus by Step 1 and Step 2, 

f{t~EO, T] lu tye~F(x)c~K}6e(  ~, f(J(l))~ <=eT. [] 
\(z,a)e~o / 

Proof of  Theorem 6.1. For n = - 1 the theorem is same as Proposition 1.8 in [8]. 
Take n~Nw{0}.  Then by Notations 5.5 and Remark 6.7, 

e.= ( U 
\ (F ,  x) e ~ .  

Now ~ is countable and for each (F, x)~ ~ ,  the set L is a countable union of 
compact subsets. Therefore, for each i~ N we can choose a 3-tuple (F~, x~, C~) 
such that (a) (F~, x~)~ ~,~,, (b) Ci is a compact subset of L~, and (c) ~ L(x) 
= U C , & , ) .  

ieH 

By induction there exists a compact subset K' E X \  Y~_ t such that for all T > 0, 

/{t  ~ [0, T] I uty ~ K'} > (1 - ~/2)T. (3) 
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By Proposition 6.13, for each i ~ lq there exists a neighbourhood ~v i of Ci in E~ 
such that for all T>0 ,  

t'{ t ~ E0, T] I utY ~ ~,(x)c~K'} < (e/2' + t) T. (4) 

Let K = K ' \ ( , U  N ~P,(x)). Then K (X\Y, .  By (3)and (4), 

(1/T)E{t~[O,T]Iu,yeK}> I--~/2-- ~ e/2'+t~--l--e. [] 
ie]N 

(6.14) Reduction to semisimple case. Let G be a connected reductivc Lie group; that 
is, the adjoint action of G on its lie algebra is completely reducible. Let G* be the 
adjoint group of G. Then G* admits a direct product decomposition G* = C. G', 
where C and G' are normal (and hence semisimple) subgroups of G*, C is compact 
and G' is a semisimple group with trivial center and no compact factors. Let 
0 : G~G'  bc the projection homomorphism of G onto G'. 

Let F be a lattice in G. Let 0: X = G / F ~ X '  = G'Iq(F) be the map defined by 0(F) 
= o(g)Q(r) for all g e G. 

(6.15) Lemma [2, Lcmma 9.1]. 0(F) is a lattice in G' and ~ is proper. 
Let U be a regular unipotent one parameter subgroup of G. Then U' = 0(U) is a 

regular unipotent one parameter subgroup of G'. Let Y = {y e X I Fy is closed for a 
connected Lie subgroup F of G such that dim F < dim G and U E F}. Let Y' E X' be 
similarly defined with respect to U'E G'. 
(6.16) Lemma. (i) o-x(Y')E Y (ii) I f  Y . X  then O(Y)= Y'. 
Proof. (i) follows from properness of ~. 

Now let y ~ Y Let F be a connected Lie subgroup of G such that U E F, dim F 
< dim G and Fy is closed. Since ~ is a proper map, ifF' = o(F) and y' = ~(y) then F'y' 
=~(Fy) is dosed. Also U'EF'. To show that y '~ Y' we need to show that dimF'  
<dimG'.  

Suppose dim F' = dim G'. Since G' is connected, F ' =  G'. Therefore G = F .  ker ~. 
Since ker0 commutes with U, UEgFg - t  for all geG.  Also (gFg-L)(gy)=gFy is 
dosed for all g ~ G. Therefore gy e Y for all g ~ G. Hence ~(Y)C Y' if Y:~ X. []  

Proof of the main theorem i.1. Let e, G', U' = {u'r}~R, X', Y' etc. be as defined earlier. 
Let x '= ~(x). Then x 'e  X ' \  Y' by Lemma 6.16. By Corollary 5.6 and Theorem 6.1, 
there exists a compact subset K ' E X ' \ Y '  such that for all T>0 ,  

(1/T)#{t ~ [0, T] [ u;x' e K'} > 1 --e. 
Let K=~-X(K').  Then K is compact and by Lemma 6.16, K C X \ Y  Now 

utx e K if and only if u~x' ~ K'. Hence for all T > 0, 

(1 /T)#{ t~[O,T] lu ,yeK}>l- -e .  [] 

7 Deductions 

(7.1) Corollary. Let G be a connected reductive Lie group, F be a lattice in G and 
U = {u,}teR be a regular unipotent one-parameter subgroup of G. Let x ~ X = G/F 
and F be the smallest Lie subgroup of G containing U such that Fx is closed. I f  F is a 
reductipe group then the U-orbit through x is uniformly distributed with respect to the 
F-invariant propability measure supported on Fx. 

Proof By Theorem 2.3, Fx is a lattice in F. By Lemma 4.2, U is a regular unipotent 
one-parameter subgroup of F. Suppose if F 4= G then dim F < dim G and since 
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F/F x ~- Fx, the corollary will follow by induction. Now in the notation of the main 
theorem, we may assume that x e X \  Y. 

Let X" = X_u { ~ } be the one point compactification of X. For T > 0 let vr be the 
measure on X such that for all continuous functions f on )~, 

~ fdvr= l i f(utx)dt. 

Note that the space of Borel probability measures on a compact second countable 
space is compact with respect to the weak* topology. Now to prove uniform 
distribution of the {ut}-orbit through x, it is enough to prove that whenever for a 
sequence Ti~ ~ the sequence of measures vr, converges (in the weak* topology), 
the limit measure v is supported on X and is G-invariant. 

First we claim that v(Yu{oo})=0. Let e > 0  be given. By the main theorem, 
there exists a compact set K C X \ Y  such that for all T>0 ,  

(1/T)f{t ~ [0, T,1 [ utY ~ K} > 1 - e. 

Now I2 = X'\K is a neighbourhood of Yu { oo} and vr(f2)< e for all T >  0. Hence 
v(O) < e. This proves the claim. 

It is easy to see that v is U-invariant. Therefore there exist a partition of X into 
U-invariant subsets X o C ~ ~, probability measures rr c on Xc and a probability 
measure rr on r such that (a) for almost all C e r rr c is U-ergodic invariant, and (b) 
for any measurable ACX,  A n X c  is measurable for almost all C~r  and v(A) 
= ~ nc(A n C)drr(C) (cf. [2, Sect. 1.4,1 ). Since v(Y) = 0, we have rcc(Y) = 0 for almost all 
Cr By Ratner's Theorem [19,1, the preceeding observation implies that for 
almost all C, rr c is G-invariant. Hence v is invariant under the action of G. This 
completes the proof. [] 

(7.2) Remark. Corollary 1.2 is a particular case of Corollary 7.1. 

Proof of Corollary 1.3. Let the notation be as in Sect. 6.14. Let x ~ X  and 
x' = 0(x) e X'. Let F be the smallest Lie subgroup of G such that U C F and Fx is 
dosed. If F' is the smallest Lie subgroup of G' such that U' C F' and F'x' is closed 
then F1 =Q(F). Now X' is compact. Therefore by Remark 6.4, F' is reductive. 
Hence by the definition of Q, F is reductive. Now apply Corollary 7.1 to complete 
the proof. [] 

Proof of Corollary 1.4. Let the notations be as in Sect. 6.14. For x e X let x', F and 
F' be defined as in the proof of Corollary 1.3. If F' is reductive then F is reductive 
and we can apply Corollary 7.1 to complete the proof. 

Otherwise by Proposition 3.1, F' is a unipotent subgroup of G' and F'x' is 
compact. Since F' = Q(F), it follows that F = C. W, where C is a connected compact 
normal semisimple subgroup of F and W is the nilpotent radical of F. Therefore 
U C W and C C ZG(W). Since W is normal in F, R = WFx is a subgroup of F and Wx 
= R~ By a theorem of Auslander (applied to F/F~), R ~ a solvable group (cf. [18, 
Sect. 8.24,1). From the structure o f F  it is clear that R ~ is actually a nilpotent group 
and by the definition of F, R ~ = F. Now the uniform distribution of the U-orbit 
through x follows from a result of Green (of. [13-1, see also [17, Theorem 5,1) about 
flows on compact nilmanifolds. This completes the proof. [] 

(7.3) Remark. Let G=SL(3,R),  F be a lattice in G and U be any unipotent one 
parameter subgroup of G. Then using the method of this paper, it is not very 
difficult to verify the validity Conjecture 3 in this case. 
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(7.4) Remark. Let G=SO(n, 1), F be a lattice in G and L be a closed subgroup  
generated by unipotent  one-parameter  subgroups  contained in L. In  this case 
using the methods  of  [15, 7, 81 and  the method  of  the p roof  of  the main  theorem the 
au thor  is able to verify Conjecture  1 (for L in place of  U), wi thout  using the 
classification of  invariant  measures involved in the p roof  of  the above corollaries. 
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