
Séminaires & Congrès
20, 2009, p. 71–106

UNIPOTENT FLOWS ON PRODUCTS OF SL(2, K)/Γ’S

by

Nimish A. Shah

Abstract. — We will give a simplified and a direct proof of a special case of Ratner’s

theorem on closures of individual orbits of unipotent flows; namely, the case of or-

bits of the diagonally embedded unipotent subgroup acting on SL(2, K)/Γ1 × · · · ×
SL(2, K)/Γn, where K is a locally compact field of characteristic 0 and each Γi is

a cocompact discrete subgroup of SL(2, K). This special case of Ratner’s theorem

plays a crucial role in the proofs of uniform distribution of Heegner points by Vatsal,

and Mazur conjecture on Heegner points by C. Cornut; and their generalizations in

their joint work on CM-points and quaternion algebras. We will also deduce the cor-

responding uniform distribution theorem assuming Ratner’s classification of ergodic

invariant measures as a consequence of our proof. A purpose of this article is to make

the ergodic theoretic results accessible to a wide audience.

Résumé (Flots unipotents sur des produits de SL(2, K)/Γ). — Nous présentons une preuve

directe et simplifiée d’un cas particulier du théorème de Ratner sur les ensembles

d’adhérence de certaines orbites du flot unipotent. Plus précisémment nous étudions

les orbites de sous-groupes unipotents agissant sur SL(2, K)/Γ1× · · · × SL(2, K)/Γn,

où K est un corps localement compact de caractéristique 0 et où chaque Γi est un

réseau cocompact de SL(2, K). Ce cas particulier du théorème de Ratner joue un rôle

important dans les preuves de Vatsal et Cornut de résultats sur les points de Heegner.

À partir de notre démonstration du théorème de Ratner sur la classification des

mesures ergodiques invariantes, nous obtenons également un théorème de distribution

uniforme. Un des buts de cet article est de rendre accessibles à un large public des

théorèmes ergodiques difficiles.

1. Introduction

In the mid seventies M.S. Raghunathan conjectured that dynamical properties of
individual orbits of unipotent flows on finite volume homogeneous spaces of semisim-
ple Lie groups show a remarkable algebraic behaviour; namely, the closure of any
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non-periodic orbit is a finite volume homogeneous space of a larger subgroup. This
conjecture was motivated by an approach to resolve Oppenheim conjecture on values
of quadratic forms at integral points. A precise form of Raghunathan’s conjecture,
and its important measure theoretic analogues were formulated by S.G. Dani, who
also verified those conjectures for horospherical flows in the early eighties. This work
attracted greater attention to the Raghunathan conjecture and its extensions. It gen-
erated a lot of excitement when in the late eighties G.A. Margulis fully settled the
Oppenheim conjecture in affirmation by verifying Raghunathan’s conjecture for cer-
tain very specific cases. This seems to be the first major triumph of the power of
ergodic theoretic methods in solving long standing number theoretic problems. Soon
after, by the beginning of the nineties M. Ratner obtained complete affirmative res-
olution of the above mentioned conjectures on unipotent flows, and also proved the
uniform distribution for individual orbits, through a series of papers [15, 16, 17, 18]
involving many original deep ideas from dynamics and Lie theory. Ratner’s theo-
rems were very powerful tools ready to be used. Since then several types of new
Diophantine approximation results have been proved using the algebraic properties
of unipotent dynamics. The dynamical results were also generalized for p-adic Lie
groups by Ratner [19], as well as Margulis and Tomanov [12] whose work also pro-
vided more transparent and conceptual proofs of these results making effective use of
techniques of from algebraic groups and entorpy theory.

What really surprises me about the p-adic case of Ratner theorem is the way it gets
utilized in the work of V. Vatsal [24] on uniform distribution of Heegner points. Using
a combination of remarkable number theoretic results and his observations, Vatsal
reduced the study of distribution of Heegner points to the following combinatorial
problem:

Let T be a p+1-regular tree for a prime p, and G = T /Γ be a finite quotient graph,
where Γ is group of automorphisms of T with finite stabilizers of vertices. Let Γ� be
a conjugate of Γ in Aut(T ) such that Γ and Γ� do not have a common subgroup of
finite index; that is, they are not commensurable. Fix a base point v0 in T , and let
T (n) denote the vertices of T at the distance n from v0. Consider the finite graph
G� = T/Γ�, and let q : T → G and q� : T → G� denote the natural quotient maps. We
embed T diagonally in T × T , and project it onto G ×G�; more precisely we consider
the map ∆̄ : T → G × G� given by ∆̄(v) = (q(v), q�(v)). The question is whether
∆̄(T (n)) surjects onto G × G� for large n, and does it visit all points of the product
graph with the correct limiting frequency as n →∞?

His question was motivated by the fact that on a finite non-bipartite regular graph,
a random walk of step n is uniformly distributed as n → ∞. On the other hand in
this case it is already a question whether the image of the diagonally embedded T

is surjective on G × G�. In the actual situation of interest, T ∼= SL2(Zp)\SL2(Qp),
realized as the Bruhat-Tits tree, and Γ is a cocompact discrete subgroup of SL2(Qp)
so that G is associated to the quotient by the right action of Γ, and Γ� is a conjugate
of Γ in SL2(Qp). Therefore the surjectivity of the diagonal embedding follows if we
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can show that the set ΓΓ� is dense in SL2(Qp); or more generally, if the element-
wise product of any two non-commensurable lattices in SL2(Qp) is a dense subset of
SL2(Qp).

Vatsal asked this question to Raghunathan, who realizing this as a question about
orbit closures for Γ-action on SL2(Qp)/Γ� consulted Dani. The same question was
earlier posed and answered in author’s Masters thesis [22] for lattices in SL2(R) and
SL2(C), and later in [23] for the lattices in arbitrary real semisimple Lie groups using
Ratner’s theorem. Dani informed Vatsal that his guess was indeed correct, and showed
how to deduce the density result using orbit closure results for actions of semisimple
subgroup on p-adic homogeneous spaces. Later using Ratner’s uniform distribution
results for unipotent flows on the homogeneous space SL2(Qp)/Γ×SL2(Qp)/Γ�, Vatsal
also deduced the uniform distribution for the set ∆̄(T (n)) as n →∞ in G × G�.

It is remarkable that the above seemingly combinatorial question about products of
certain finite graphs turns out to be intimately connected to deep algebraic behaviour
of ergodic properties of unipotent flows; and these flows are analysed using local
arguments involving the adjoint actions on the Lie algebra near the origin.

In what follows, we would like to give a self-contained proof of the above surjectivity
of the diagonal embedding of a tree in the product of several regular finite graphs.
The published proofs of Ratner’s theorem for p-adic Lie groups are quite intricate
and they require taking care of many different possibilities associated to the general
case. Our purpose here is to follow the original arguments of Margulis [10] used in
his proof of Oppenheim conjecture, as well as those used in its extensions by Dani
and Margulis [6], along with additional observations to give an elementary proof.

In later works [2, 3, 25], Vatsal and Cornut also require the closure and the uniform
distribution results for products of several copies of SL2(K) for any finite extension
K of Qp. To take care of this, we have given our proofs for all local fields K of
characteristic 0 in place of Qp, without introducing any extra complications.

After the introduction, the article gets divided into two independent parts. In
the first half (§§2–4) we give a proof of the orbit closure result. For the case of
G = SL2(K) × SL2(K) this proof is self-contained. It may be noted that this case
suffices to prove that ΓΓ� = SL2(K) as needed by Vatsal [24] and Cornut [2]. For
the case of SL2(K)n (n ≥ 3), near the end of §4, we need to assume a technical
result on ‘uniform recurrence in linear time’ on the ‘non-singular’ set for the case of
SL2(K)n−1. The results on closures of orbits of diagonally embedded SL2(K) and
density of products of non-commensurable lattices are proved in §5.

In the second half of this article (§§6–9) we provide a complete proof of the above
mentioned result on uniform recurrence in linear time (Theorem 1.9). In fact, the
main content of the proof is precisely the same result which allows one to deduce
Ratner’s equidistribution theorem for unipotent flows from Ratner’s description of
ergodic invariant measures. Therefore instead of our proof, the reader could refer to
particular parts of Ratner’s original proof (see [18, pp. 257–264] for the archimedean
case and [19, pp. 376–380] for the non-archimedean case). On the other hand, in the
product case we are able to reduce the problem to the product of only two copies
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of SL2(K)’s. Further simplification comes from the fact that in the case of compact
quotients of SL2(K)× SL2(K) the singular sets are non-self intersecting.

As an additional consequence of the proof, in §10 we also deduce the equidistribu-
tion result by assuming the measure classification theorem.

Acknowledgement. — The author would like to thank the referee for useful comments.

1.1. Notation. — Let K denote a local field of characteristic zero. Let n ≥ 1 be given.
Let G = SL2(K)n. For ∅ �= J ⊂ {1, . . . , n}, let

GJ = {(g1, . . . , gn) ∈ G : gk = e, ∀k �∈ J}

HJ = {(g1, . . . , gn) ∈ GJ : gi = gj , ∀i, j ∈ J ; gk = e, ∀k �∈ J}.

Then GJ
∼= SL2(K)|J| and HJ

∼= SL2(K), which is diagonally embedded in SL2(K)|J|,
where |J | denotes the cardinality of J . If |J | = 1 then HJ = GJ .

Let C denote the collection of sets of the form J = {J1, . . . , Jm}, where 1 ≤ m ≤ n,
Ji ⊂ {1, . . . , n}, Ji �= ∅, and Ji ∩ Jj = ∅ for all i �= j. Define

HJ = HJ1 · · ·HJm .

Let
w1(t) =

�
1 t

0 1

�
, ∀t ∈ K; d1(α) =

�
α

α
−1

�
, ∀α ∈ K×;

W = {w(t) = (w1(t1), . . . , w1(tn)) : t = (t1, . . . , tn) ∈ Kn
}

A = {(d1(α1), . . . , d1(αn)) : αj ∈ K×
}.

We also consider

H = {(g, . . . , g) ∈ G : g ∈ SL2(K)} = H{1,...,n}

U = {u(t) = w(t, . . . , t) : t ∈ K} = W ∩H

D = {d(α) = (d1(α), . . . , d1(α)) : α ∈ K×
} = A ∩H,

U⊥ = {w(t1, . . . , tn−1, 0) : tj ∈ K}.

Assumption.— For j = 1, . . . , n, let Γj be a discrete subgroup of G{j} such that
G{j}/Γj is compact, and let Γ = Γ1 · · ·Γn. Then

(1) G/Γ ∼= G{1}/Γ1 × · · · ×G{n}/Γn.

In this article, we will consider the action of G on G/Γ by left translations; that
is, if g ∈ G and x ∈ G/Γ then gx := (gg1)[Γ], where g1 ∈ G is such that x = g1[Γ] is
the coset of g1 in G/Γ. Also for any A ⊂ G and X ⊂ G/Γ, we define AX = {ax : a ∈
A, x ∈ X} ⊂ G/Γ.

We endow G/Γ with the quotient topology; that is, a set X ⊂ G/Γ is closed (or
open) if and only if its inverse image in G is closed (resp. open). Thus, given any
A ⊂ G, and x = g[Γ] ∈ G/Γ for some g ∈ G, the set Ax is closed in G/Γ if and only
if AgΓ is a closed subset of G.

Let
C0 := {J ∈ C : ∪J∈J J = {1, . . . , n}} = {J ∈ C : HJ ⊃ U}.
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1.2. Statements of the main results

Theorem 1.1. — Given n ≥ 1, let G, Γ, U , and the other notation be as above. For
any x ∈ G/Γ, there exists J ∈ C0 and w ∈ W such that

Ux = (wHJw−1)x.

Definition 1.1. — A multi-parameter subgroup of W is a subgroup of W of the form
V = {w(t) : t ∈ V}, where V is a subspace of Kn. We define dimV := dimK(V).

Corollary 1.2. — Given n ≥ 1, let G, Γ, and the other notation be as above. Let V
be a multi-parameter subgroup of W . Then for any x ∈ G/Γ, there exists J ∈ C and
w ∈ W such that V x = wHJw−1x.

Corollary 1.3. — For any x ∈ G/Γ, there exists J ∈ C0 such that

Hx = HJ x.

In order to describe the relation between H, Γi’s, and J , we need some definitions.

In a topological group, two infinite discrete subgroups Λ and Λ� are said to be
commensurable, if Λ ∩ Λ� is a subgroup of finite index in both, Λ and Λ�.

For i = 1, . . . , n, let pi : G → SL2(K) denote the projection on the i-the factor.
Let x0 = eΓ denote the coset of the identity in G/Γ.

Proposition 1.4. — Suppose that HJ x0 is compact for some J ∈ C0. Then for any
J ∈ J and any i, j ∈ J , the lattices pi(Γi) and pj(Γj) in SL2(K) are commensurable.

Combining this fact with Corollary 1.3 immediately gives the next result. Note
that HJ = G if and only if J = {{1}, . . . , {n}}.

Corollary 1.5. — If pi(Γi) and pi(Γj) are not commensurable for all i �= j then
HΓ = G.

More generally, we will show the following:

Corollary 1.6. — Let J ∈ C0 be the partition of {1, . . . , n} such that for any i, j, we
have i, j ∈ J for some J ∈ J if and only if pi(Γi) and pi(Γj) are commensurable.
Then Hx0 = HJ x0.

Corollary 1.7. — Suppose that Γ1 and Γ2 are cocompact noncommensurable lattices
in SL2(K). Then Γ1Γ2 is dense in SL2(K).
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1.3. Singular set for the U -action. — In the proof of Theorem 1.1 we will need to
understand the set of points for which the closure of the U -orbit is contained in a
closed orbit of a strictly lower dimensional subgroup of G.

More precisely, we say that a point x ∈ G/Γ is singular (for the U -action on G/Γ)
if Ux ⊂ (wHJw−1)x and (wHJw−1)x is compact for some J ∈ C0 and w ∈ U⊥, such
that HJ �= G.

The set of singular points (for the U -action on G/Γ) is denoted by S(U,Γ).

Note that if n = 1 then S(U,Γ) = ∅.

Proposition 1.8. — There always exists a non-singular point for the U -action on G/Γ;
that is G/Γ �= S(U,Γ).

This fact can be proved quickly as follows: There exists a unique G-invariant
probability measure ν on G/Γ; that is, ν(gE) = ν(E) for any measurable set E ⊂ G/Γ
and any g ∈ G. By Moore’s ergodicity theorem, U -acts ergodically on G/Γ with
respect ν. Since ν(E) > 0 for any nonempty open subset of G/Γ, by Hedlund’s
lemma, Uy = G/Γ for ν-almost all y ∈ G/Γ. Hence ν(S(U,Γ)) = 0.

In subsection 7 we will also give a simple proof of Proposition 1.8 (without using
Moore’s ergodicity) by showing that S(U,Γ) is the image of a union of countably
many algebraic subvarieties of G of strictly lower dimension.

As mentioned before following property of unipotent flows, called uniform recur-
rence in linear time in [6], at the end of the proof of Theorem 1.1.

Theorem 1.9. — Let xi → x be a sequence in G/Γ such that x �∈ S(U,Γ). Then for
any sequence ti → ∞ in K and a compact neighbourhood O of 0 in K, there exists
t�
i
∈ (1 +O)ti for every i ∈ N, such that, after passing to a subsequence, u(t�

i
)xi → y

for some y ∈ G/Γ � S(U,Γ).

Note that if G = SL2(K); that is n = 1, then Theorem 1.9 is a triviality, because
S(U,Γ) = ∅ in this case.

Moreover for proving Theorem 1.1 for any given n, we will need to use Theorem 1.9
only for G = SL2(K)m, where m < n.

Therefore the proof of Theorem 1.1 for n = 2 uses only the trivial case of Theo-
rem 1.9; that is for n = 1. It may be noted that Corollary 1.7, which is of special
interest, depends only on this case of Theorem 1.1.

The Theorem 1.9 is actually derived as a consequence of a more general result
about limiting distribution of a sequence of U -trajectories on the singular set. Since
the techniques of proving this result are very different from the remaining part of the
proof of Theorem 1.1 we have included all those results in a second part of this article.
In the second part of this article we will also prove the uniform distribution result
assuming Ratner’s description of ergodic U -invariant measures. In fact, the first part
of this article uses some of the ideas which have their analogues in the classification
of ergodic invariant measures for the U -action.
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2. Preliminaries

2.1. A result in ergodic theory. — We recall a result due to G.D. Mostow, see [8,
Prop. 1.5].

Proposition 2.1. — For any x ∈ G/Γ, the orbit DWx is dense in G/Γ.

Proof. — Take any α ∈ K such that |α|p > 1 and let a = d(α). By Mautner’s
Phenomenon (see [1, 13]), a acts ergodically on G/Γ. Therefore by Hedlund’s lemma
there exists y ∈ G/Γ such that

(2) {ai : i > 0}y = G/Γ.

Let a sequence {yk} ∈ {ai : i > 0}y be such that yk → x as k →∞.
Let z ∈ G/Γ be given. Then by (2) there exists a sequence ik → ∞ such that

aikyk → z, as k →∞.
Let a sequence gk → e in G be such that yk = gkx for all k. Since Lie(G) =

T[Lie(W )] ⊕ Lie(A) ⊕ Lie(W ), there exist sequences sk → 0 and tk → 0 in Kn,
dk → e in A, and a k0 ∈ N such that

gk = T[w(sk)]dkw(tk), ∀k ≥ k0.

Therefore aikyk = (aikgkaik)aikyk. Now

aikgka−ik = T[w(α−2iksk)]dkw(α2iktk) =: δkwk, ∀k ≥ k0,

where δk := T[w(α−2iksk)]dk and wk := w(α2iktk) ∈ W . Thus aikyk = δkwkaikx and
δk → e. Therefore

wkaikx = δ−1
k

(aikyk) → lim
k→∞

aikyk = z.

Thus z ∈ WDx = DWx. This shows that G/Γ ⊂ DWx.

The proofs of Mautner’s phenomenon and Hedlund’s lemma are very nice and short
[1]. The above result deviates from the classical ergodic theory results in one essential
way; namely it tells something about the dynamical property of each individual orbit,
rather than of almost every orbit. It is due to this reason we are able to use the above
result for problems in number theory.

2.2. Basic lemmas on minimal sets for group actions. — In this subsection let G be a
locally compact second countable topological group acting continuously on a topolog-
ical space Ω. For a subgroup F of G, a subset X of Ω is called F -minimal if X is
closed, F -invariant, and does not contain any proper closed F -invariant subset. Thus
if X is F -minimal then Fx = X for every x ∈ X. By Zorn’s lemma, any compact
F -invariant subset of Ω contains an F -minimal subset.

Lemma 2.2 (Margulis [11]). — Let F , P and P � be subgroups of G such that F ⊂

P ∩ P �. Let Y , Y � be closed subsets of Ω, and M ⊂ G be any set. Suppose that

1. PY ⊂ Y , P �Y � ⊂ Y �,
2. mY ∩ Y � �= ∅ for all m ∈ M , and
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3. Y is compact and F -minimal.

Then gY ⊂ Y � for all g ∈ NG(F ) ∩ P �MP .

In particular, if Y � = Y then Y is invariant under the closed subgroup generated
by NG(F ) ∩ P �MP .

Proof. — Let g ∈ P �MP . There exist sequences {p�
i
} ⊂ P �, {mi} ⊂ M , and {pi} ⊂ P

such that p�
i
mipi → g as i →∞.

By 2), for each mi there exists a yi ∈ Y such that miyi ∈ Y �. Since {p−1
i

yi} ⊂ Y
and Y is compact, by passing to subsequences, we may assume that p−1

i
yi → y for

some y ∈ Y . Now {p�
i
miyi} ⊂ Y �. Therefore as i →∞,

p�
i
miyi = (p�

i
mipi)(p

−1
i

yi) → gy ∈ Y �.

Further if g ∈ NG(F ), then

Y � ⊃ Fgy = gFy = gFy = gY,

where Fy = Y because Y is F -minimal.

Lemma 2.3 (Margulis [11]). — Assume that G acts transitively on Ω. Let F and P ,
where F ⊂ P , be closed subgroups of G, and Y be a compact F -minimal subset of Ω.
Suppose there exists y ∈ Y and a neighbourhood Φ of the identity in G such that

(3) {g ∈ Φ : gy ∈ Y } ⊂ P.

Then η(F ) is compact in P/Py, where Py = {g ∈ P : gy = y} and η : P → P/Py is
the natural quotient map.

Proof. — It is enough to show that given a sequence {fi} ⊂ F , the sequence {η(fi)}
has a convergent subsequence.

To show this, we note that after passing through a subsequence, fiy → z for some
z ∈ Y . Since Ω is a homogeneous space of G, Φy is a neighbourhood of y in Ω.
Now since Y is F -minimal, Fy is dense in Y , and hence there exists f ∈ F such
that fz ∈ Φy. Therefore by (3), fz = p�y for some p� ∈ P . Hence z = py, where
p = f−1p� ∈ P . Thus fiy → py. Hence (p−1fi)y → y.

Again by (3) there exists a sequence pi → e in P such that (p−1fi)y = piy for
all large i. Thus fiy = ppiy; and hence f−1

i
ppi ∈ Py for all large i. Therefore

η(fi) = η(ppi) → η(p) as i →∞.
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2.3. Limit set of a sequence of unipotent trajectories on a vector space. — Later after ap-
plying Lemma 2.2, we will proceed further using the following result.

Proposition 2.4. — Let M ⊂ G � NG(U) such that e ∈ M . Then the closure of the
subgroup generated by UMU ∩NG(U) contains either wDw−1 for some w ∈ W , or a
nontrivial one-parameter subgroup of U⊥.

The proof of this proposition is based on the following general result [6, 10]: Let
V be a finite dimensional vector space over K and U = {u(t)}t∈K be a nontrivial
one-parameter unipotent subgroup of GL(V ) and {pi} be a sequence of points in
V such that each of the trajectories {u(t)pi}t∈K is non-constant. Let L denote the
space of U -fixed vectors in V . Now if pi → p for some p ∈ L then, after passing to
a subsequence, the following holds: there exist a sequence ti → ∞ in K and a non-
constant polynomial map φ : K → V such that for any s ∈ K, we have u(sti)pi → φ(s)
as i →∞.

We will prove this only for the cases needed for our purpose.

Let V = K2 and consider the standard linear action of {w1(t)} on K2. Let I0 =�
1
0

�
. Then L0 = {tI0 : t ∈ K} is the space of {w1(t)}-fixed vectors.

Lemma 2.5. — Let {pi} ⊂ K2 �L0 be a sequence such that pi → I0 as i →∞. Then,
after passing to a subsequence, there exists a sequence ti →∞ such that the following
holds: Then for any s ∈ K,

lim
i→∞

w1(sti) · pi = (1 + s)I0.

Proof. — Write pi =
�

ai
bi

�
, ∀i. Since pi �∈ L0, bi �= 0, ∀i. Put ti = b−1

i
. Then for any

s ∈ K, as i →∞,

w1(sti)
�

ai
bi

�
=

�
ai+s

bi

�
→

�
1+s

0

�
.

Let I1 =
�

1
1

�
. For 1 ≤ m ≤ n, put

(4)

Em = M2(K)m

Im = (I1, . . . , I1) ∈ Em

wm(t) = (w1(t), . . . , w1(t)) ∈ SL2(K)m

Lm = {X ∈ Em : wm(t)Xwm(−t) = X, ∀t ∈ K} = (L1)m,

Lemma 2.6 (Margulis). — Let {Xi} ⊂ Em � Lm be a sequence such that Xi → Im as
i → ∞. Then after passing to a subsequence, there exist a sequence ti → ∞, and a
nonconstant polynomial map ψ : K → Km of degree at most 2 such that given any
s ∈ K and a sequence si → s in K,

(5) lim
i→∞

wm(siti)Xiwm(−siti) = wm(ψ(s)).

In particular, ψ(0) = 0.
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Proof. — If we write Xi = (Xi(1), . . . ,Xi(m)), where Xi(j) ∈ M2(K) for 1 ≤ j ≤ m,
and Xi(j, t) = w1(t)Xi(j)w1(−t) then

wm(t)Xiwm(−t) = (Xi(1, t), . . . ,Xi(m, t)).

Fix any 1 ≤ j ≤ m. If Xi(j) =
�

ai(j) bi(j)
ci(j) di(j)

�
, then

(6) Xi(j, t) = Xi(j) +

�
ci(j) di(j)− ai(j)

0 −ci(j)

�
t +

�
0 −ci(j)

0 0

�
t2,

If Xi(j, t) = Xi(j) for all t, then ci(j) = 0 = di(j)− ai(j), and we put ti(j) = ∞. If
ci(j) �= 0 or di(j)− ai(j) �= 0, then there exists ti(j) ∈ K such that

(7) max
�
|(di(j)− ai(j))ti(j)|, |ci(j)ti(j)

2
|
�

= 1.

As i → ∞, since Xi(j) → 0, we have ai(j) − di(j) → 1 − 1 = 0 and ci(j) → 0.
Therefore ti(j) →∞, and hence |ci(j)ti(j)| ≤ |ti(j)|−1 → 0 as i →∞.

Put

(8) ti = min{ti(1), . . . , ti(m)}.

Since Xi �∈ (L1)m, we have that ti < ∞. Since Xi → Im, we have ti → ∞. By (7)
and (8), after passing to a subsequence, for each 1 ≤ j ≤ m, there exist αj , βj ∈ K
such that

(9) lim
i→∞

(di(j)− ai(j))ti = αj and lim
i→∞

−ci(j)t
2
i

= βj .

In particular, ci(j)ti → 0 for all j. Now (5) follows from (6) and (9), where

ψ(s) = (α1s + β1s
2, . . . , αms + βms2).

Due to (7), |αj0 | = 1 or |βj0 | = 1 for some j0. Therefore ψ is nonconstant.

Proof of Proposition 2.4. — Let

E = En−1 ×K2 and p = (In−1; I0).

Define the linear action of G on E as follows: For any
g = (g(1), . . . , g(n)) ∈ G, and X = (X(1), . . . ,X(n− 1);Y ) ∈ E,

(10) g ·X = (g(1)X(1)g(2)−1, . . . , g(n− 1)X(n− 1)g(n)−1; g(n)Y ).

Then

(11) U = {g ∈ G : g · p = p}.

Let L = {X ∈ E : U ·X = X} = Ln−1 × L0. Then

(12) NG(U) = {g ∈ G : g · p ∈ L}.

We note that NG(U) = Z(G)DW , where Z(G) = {(±I1, . . . ,±I1) ∈ G} is the center
of G. Also

(13) G · p = SL2(K)n−1
×K∗I0.
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For g ∈ G if g · p ∈ UM · p then there exist ui ∈ U and mi ∈ M such that
uimi · p → g · p as i → ∞. Then (g−1uimi) · p → p. Therefore, by (13) there exists
a sequence δi → e in G such that (g−1uimi) · p = δi · p for all i. By (11) there exist
u�

i
∈ U such that g−1uimiu�i = δi for each i. Therefore uimiu�i → g.

Thus for any g ∈ G,

(14) g · p ∈ UM · p ∩ L ⇔ g ∈ UMU ∩NG(U).

By (12), M · p ∩ L = ∅ and e ∈ M . Therefore there exists a sequence

(15) {Xi} ⊂ M · p ⊂ E � L,

such that Xi → p as i →∞. By combining Lemma 2.5 and Lemma 2.6, after passing
to subsequences, there exists a sequence ti →∞ in K such that for any s ∈ K,

(16) lim
i→∞

u(sti) ·Xi = (wn−1(ψ(s));φ(s)I0) ∈ L,

were φ(s) is a polynomial of degree at most 1, φ(0) = 1 and

ψ(s) = (ψ1(s), . . . , ψn−1(s)) ∈ Kn−1

is a polynomial map of degree at most 2, ψ(0) = 0, and ψ or φ is non-constant. We
define ψ�

k
=

�
n−1
j=k

ψj for 1 ≤ k ≤ n− 1, and

ψ�(s) = (ψ�1(s), . . . , ψ
�

n−1, 0) ∈ Kn.

Then ψ� : K → Kn is a polynomial of degree at most 2, and ψ� is constant if and only
if ψ is constant.

For any s ∈ K such that φ(s) �= 0, we put

(17) Φ(s) = w(ψ�(s))d(φ(s)).

Therefore due to (10),

(18) Φ(s) · p = (w1(ψ1(s)), . . . , w1(ψn−1(s));φ(s)I0) ∈ L.

Therefore by (15)–(18),

Φ(s) · p ∈ U · (M · p) ∩ L.

Hence by (14) and (17), for all s ∈ K with φ(s) �= 0,

Φ(s) ∈ DU⊥ ∩ UMU.

Now the conclusion of the proposition follows from Lemma 2.9 proved below.
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2.4. Some more elementary lemmas. — It is straightforward to verify the following.

Lemma 2.7. — Let m ∈ N and ψ : K → Km be a polynomial map such that deg(ψ) ≥
1. Then there exists a nonzero vector v ∈ Km such for any s ∈ K,

(19) ψ(t + st−q)− ψ(t) → sv as t →∞,

where q = deg(ψ)− 1. In particular, any closed additive subgroup generated by ψ(K)
contains a nonzero subspace of Km.

Lemma 2.8. — Let F be an abelian subgroup of DW . Then either F ⊂ {d(±1)}W or
there exists v ∈ W such that F ⊂ vDv−1.

Proof. — Suppose d(α)w(t) ∈ F for some α ∈ K∗ such that α =�= ±1. Let v =
w((1 − α2)−1t). Then v−1d(α)w(t)v = d(α). Therefore v−1Fv is contained in the
centralizer of d(α).

Now for any β ∈ K× and s ∈ Kn, we have

d(α)[d(β)w(s)]d(α)−1 = d(β)w(α2s).

Therefore, since α2 �= 1, we have vFv−1 ⊂ D.

Lemma 2.9. — Let φ : K → K be a affine map, and ψ : K → Kn−1 × {0} be a
polynomial map such that at least one of them is non-constant, φ(0) = 1 and ψ(0) = 0.
Let F be the closed subgroup of DU⊥ generated by

{Φ(t) := w(ψ(t))d(φ(t)) : t ∈ K, φ(t) �= 0}.

Then either F contains a nontrivial one-parameter subgroup of U⊥ or F = vDv−1

for some v ∈ U⊥.

Proof. — If F ⊂ U⊥ then the result follows from Lemma 2.7. Otherwise φ is a
non-constant affine map. Therefore φ(K) = K. In particular, F �⊂ Z(G)W .

If F is abelian, then by Lemma 2.8 there exists v ∈ W such that F ⊂ vDv−1.
Since φ is linear and nonconstant, F = vDv−1.

Now we can further assume that F is not abelian. Since the commutator

[F, F ] ⊂ [DU⊥, DU⊥] ⊂ U⊥,

there exists s ∈ Kn−1 × {0}, s �= 0 such that w(s) ∈ F . Therefore

Φ(t)w(s)Φ(t)−1 = w(φ(t)2s) ∈ F, ∀t ∈ K.

Put ψ̃(t) := φ2(t)s. Then ψ̃ : K → Kn−1 × {0} is a non-constant polynomial map.
Therefore by Lemma 2.7 applied to ψ̃ we conclude that F contains a nontrivial one-
parameter subgroup of U⊥. This completes the proof.

The following is a special case of the general fact that cocompact discrete subgroups
in semisimple Lie groups do not contain unipotent elements having nontrivial Adjoint
action on the Lie algebra.

Proposition 2.10. — W ∩Gx = {e} for all x ∈ G/Γ.
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Proof. — Let C be a compact subset of G such that CΓ = G. Since Γ is discrete,
there exists a neighbourhood Ω of e in G such that cZ(G)Γ−1∩Ω = {e} for all c ∈ C.
Therefore

Gy ∩ Ω = {e}, ∀ y ∈ CΓ/Γ = G/Γ.

Suppose that w(t) ∈ Gx for some t ∈ K. Let α ∈ K× such that |α| < 1. Then

Gd(αi)x = d(αi)Gxd(α−i) � d(αi)w(t)d(α−i) = w(α2it) → e

as i →∞. Therefore w(α2it) ∈ Gd(αi)x ∩ Ω = {e} for some i. Hence w(t) = e.

Proposition 2.11. — Let ∆ be a discrete subgroup of DW such that ∆ ∩ W = {e}.
Then W acts properly on DW/∆.

Proof. — We have

[∆,∆] ⊂ [DW, DW ] ∩∆ ⊂ W ∩∆ = {e}.

Hence ∆ is an abelian subgroup of DW . If g = d(−1)w(t) ∈ ∆ for some t ∈ Kn, then
g2 = w(2t) ∈ ∆ ∩W = {e}; and hence t = 0. Therefore by Lemma 2.8 there exists
v ∈ W such that ∆ ⊂ vDv−1.

Since DW = (vDv−1)W = W (vDv−1), we have that

DW/∆ = W (vDv−1)/∆ ∼= W × (vDv−1/∆)

is a W -equivariant isomorphism, where W acts on the space W × (vDv−1/∆) by
translation on the first factor and trivially on the second factor; and this action is
proper.

3. U -minimal sets

In order to understand closed U -invariant sets, especially the closures of U -orbits,
we begin with the study of U -minimal sets.

Theorem 3.1. — Let X be a U -minimal subset of G/Γ. Then X is invariant under
either vDv−1 for some v ∈ U⊥ or a nontrivial one-parameter subgroup of U⊥.

Proof. — Let M = {g ∈ G : gX ∩X �= ∅}. For any g ∈ M ∩ NG(U), gX ∩X is a
nonempty closed U -invariant set. Hence by minimality gX = X. Thus M ∩NG(U) is
a closed subgroup of G. We note that DW is a subgroup of finite index in NG(U) =
Z(G)DW . Therefore M1 := M ∩ DW is a closed subgroup of DW and an open
subgroup of M ∩NG(U).

First suppose that e �∈ M � NG(U). Then every orbit of M ∩NG(U) in X is open.
Therefore every orbit of M1 on X is open, and hence it is compact. Let x ∈ X. Since
U ⊂ M1, and X is U -minimal, X = M1x. Hence M1/(M1)x

∼= M1x = X is compact.
By Proposition 2.10 and Proposition 2.11, U acts properly on M1/(M1)x, which is a
contradiction.
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Therefore e ∈ M � NG(U). By Lemma 2.2, X is invariant under the subgroup
generated by NG(U)∩UMU . Now the conclusion of the theorem follows from Propo-
sition 2.4.

Corollary 3.2. — Let n = 1; that is, G ∼= SL2(K) and Γ is a cocompact discrete
subgroup of G. Then Ux is dense in G/Γ for every x ∈ G/Γ.

In other words, Theorem 1.1 is valid for n = 1.

Proof. — Since Ux is a closed U -invariant subset of G/Γ, there exists a compact U -
minimal subset X ⊂ Ux. By Theorem 3.1, X is invariant under D, because for the
case of n = 1, we have W = U and U⊥ = {e}. Thus X is a closed DW -invariant
subset of G/Γ. Therefore by Proposition 2.1, X = G/Γ. Thus Ux = G/Γ.

3.1. D-invariant U -minimal sets. — In view of Theorem 3.1, we first suppose that
the U -minimal set is invariant under wDw−1 for some w ∈ U⊥. Now Y := w−1X
is U -minimal and D-invariant. Therefore for simplicity of notation we will further
investigate Y , rather than X.

We need the following group theoretic result.

Proposition 3.3. — Let sequences {hi} in SL2(K) and {ti} in K, |ti| → ∞ be given.
Then, after passing to a subsequence, there exists at most one s∗ ∈ K such that for
any s ∈ K, s �= s∗, the following holds:

(20) w1(sti)hiB → eB as i →∞,

where B is the group of all upper triangular matrices in SL2(K), and the limit is
considered in the quotient space SL2(K)/B.

In fact, if {hi} is a constant sequence, then (20) holds for all s ∈ K.

Proof. — Consider the projective linear action of SL2(K) on the projective space
P = (K2 � {0})/K×. Let < v > denote the image of v ∈ K2 on P. The the
stabilizer of <e1 > is B, where e1 =

�
1
0

�
. We can express hi <e1 >=

��
ai
bi

��
, where

|ai|
2 + |bi|

2 = 1. Then for any s ∈ K,

(21) w1(sti)hi <e1 >=
��

ai+stibi
bi

��
=

�� 1
bi/ai+stibi

��
, if s �= −ai/(tibi).

After passing to a subsequence, either −ai/(tibi) → s∗ for some s∗ ∈ K, or
|−ai/(tibi)| → ∞. By (21), if s �= s∗, then since |ti| → ∞,

w1(sti)hi <e1 >→<e1 > .

From this (20) follows, because the action of SL2(K) on P is transitive, and the
stabilizer of <e1 > is B.

The next proposition is very similar to Proposition 2.4, and it will allow us to
investigate further after an application of Lemma 2.2.

Proposition 3.4. — Let M ⊂ G such that e ∈ M � H. Then the closed subgroup
generated by DUMDU ∩W contains a nontrivial one-parameter subgroup of U⊥.
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Proof. — First we suppose that e �∈ M � U⊥H. Since e ∈ M � H, there exit v ∈
U⊥ � {e} and h ∈ H such that vh ∈ M . By Proposition 3.3, applied to H ∼= SL2(K)
and DU ∼= B, there exists a sequence {ui} ⊂ U such that uihDU → eDU in H/DU .
Hence

uivhDU = vuihDU → vDU, as i →∞.

Therefore v ∈ UMDU . We can write v = w(t), t ∈ Kn � {0}. Then d(a)vd(−a) =
w(a2t) for all a ∈ K×. By Lemma 2.7, the closure of the additive subgroup generated
by {a2t : a ∈ K} in Kn contains Kt. Hence the subgroup generated by DUMDU∩W
contains a nontrivial one-parameter subgroup of U⊥.

Now we may assume that e ∈ M � U⊥H. Let a sequence {gi} ⊂ M � U⊥H
be such that gi → e. Since G = G{1,...,n−1}H, we can write gi = Xihi, where
Xi ∈ G{1,...,n−1} � U⊥, Xi → 0, and hi → e in H. By Lemma 2.6, after passing to
a subsequence, there exist a sequence ti → ∞ in K and a non-constant polynomial
map ψ : K → Kn of degree at most 2 such that for any s ∈ K,

(22) lim
i→∞

u(sti)Xiu(−sti) = w(ψ(s)) ∈ U⊥.

By Proposition 3.3, there exists at most one s∗ ∈ K such that for all s ∈ K with
s �= s∗, the following holds:

(23) u(sti)hi(DU) → DU, as i →∞.

By (22) and (23), ∀s ∈ K with s �= s∗, as i →∞,

u(sti)giDU = (u(sti)Xiu(−sti))(u(sti)hiDU) → w(ψ(s))DU,

in G/DU . Thus w(ψ(s)) ∈ UMDU , ∀s ∈ K. Since W ∼= Kn, and ψ(s) is a non-
constant polynomial map, the conclusion of this proposition follows from Lemma 2.7.

Theorem 3.5. — Let X be a U -minimal subset of G/Γ. Then either X is a closed orbit
of wHw−1 for some w ∈ U⊥, or X is invariant under a nontrivial one-parameter
subgroup of U⊥.

Proof. — By Theorem 3.1, we are reduced to considering the case that X is wDw−1-
invariant for some w ∈ W .

We put Y = w−1X. Then Y is DU -invariant and U -minimal. Let

M = {g ∈ G : gY ∩ Y �= ∅}.
By Lemma 2.2, applied to Y � = Y , P = P � = DU and F = U , we have that Y is

invariant under the subgroup generated by DUMDU ∩NG(U).
Now if e ∈ M � H then by Proposition 3.4, there exists a nontrivial one-parameter

subgroup, say V , of U⊥ such that V Y = Y . Therefore

V X = V (w−1Y ) = w−1(V Y ) = w−1Y = X,

and the conclusion of the theorem holds.
Next suppose that e �∈ M � H. Fix y ∈ Y and let ∆ = Hy. Then by Lemma 2.3,

DU∆/∆ is compact in H/∆. Since H/DU is compact, we have that H/∆ is compact.
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Therefore by Proposition 2.1 applied to the case of G := H ∼= SL2(K), Γ := ∆,
W := U , and D := D, we conclude that DU∆ = H. Since Hy ∼= H/∆, we have that
Hy is compact and Hy = DUy = Y . Hence X = (wHw−1)(wy), which is a closed
orbit of wHw−1.

3.2. Minimal sets for actions of at least 2 dimensional subgroups of W

Remark 3.1. — For any x ∈ G/Γ, there exists gj ∈ G{{j}} for 1 ≤ j ≤ n such that
x = (g1 . . . gn)Γ, and

Gx = (g1Γ1g
−1
1 ) · · · (gnΓng−1

n
).

In particular, for any J ⊂ {1, . . . , n}, we have

(24) GJx ∼=
�

j∈J

G{j}/gjΓjg
−1
j

.

For J ∈ C, define ∪J = ∪J∈J J , |J | = |∪J |, GJ = G∪J , WJ = W ∩ GJ ,
UJ = W ∩HJ =

�
J∈J UJ , where UJ = W ∩HJ , and DJ = A ∩HJ =

�
J∈J DJ ,

where DJ = D ∩HJ .

Theorem 3.6. — Assume that for any k < n the Theorem 1.1 is true for k in place
of n. Let J ∈ C such that J �= {{1, . . . , n}}. Then for any x = G/Γ, we have
UJ x = wHJ �w−1x for some J � ∈ C and w ∈ W .

Proof. — We intend to prove this result by induction on n.

By our choice of J there exists J1 ⊂ J , where J1 ∈ C and 1 ≤ n1 := |∪J1| < n.
Put G1 = GJ1 and U1 = UJ1 .

By Remark 3.1, for any y ∈ G/Γ,

G1y ∼=
�

j∈∪J1

G{j}/(G{j})y.

We claim that there exists J �1 ∈ C and w1 ∈ WJ1 such that, if we put H1 =
w1HJ �

1
w−1

1 then

(25) U1x = H1x.

Here U1 ⊂ H1 ⊂ G1.

If J1 = {{∪J1}}, then the claim follows by applying the assumption that Theo-
rem 1.1 is valid for n1 < n, G1 in place of G, and U1 in place of U .

If J1 �= {{∪J1}} then the claim follows by applying the induction hypothesis of
this theorem to n1 < n in place of n, G1 in place of G, and J1 in place of J . Thus
the claim is proved in all the cases.

If J �∈ C0, then |J | < n, and hence if we choose J1 = J then the conclusion of the
theorem follows from (25).

Therefore we can assume that J ∈ C0. Let J2 = J � J1 �= ∅. Then n2 = |J2| =
|J | − |J1| = n − n1 < n. By the same argument as above for J2 in place of J1 the
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following holds: there exists J �2 ∈ C and w2 ∈ WJ �
2

such that, if we put G2 = GJ2 ,

U2 = UJ1 and H2 = w2HJ �
2
w−1

2 , then U2 ⊂ H2 ⊂ G2 and

(26) UJ2x = H2x.

Since (∪J1) ∩ (∪J2) = ∅, we have that GJ1 ⊂ ZG(GJ2). Therefore for any
g2 ∈ GJ2 , we have

(27) UJ1g2x = g2UJ1x = g2(w1HJ �
1
w−1

1 x) = w1HJ �
1
w−1

1 (g2x).

Moreover

(28) H1H2x ∼= H1/(H1)x ×H2/(H2)x

which is compact. Hence by (25)–(28),

UJ x = U1U2x = U1H2x = H1H2x = wHJ �w−1x,

where w = w1w2 and J � = J �1 ∪ J
�
2. This completes the proof of the theorem.

Remark 3.2. — By the condition of Theorem 3.6, n ≥ 2. Therefore to begin the
induction, we have n = 2 and for this case J = {{1}, {2}}, J1 = {{1}} and J2 =
{{2}}, and the result follows from the assumption that Theorem 1.1 is valid for n = 1;
in fact, this assumption was verified in Corollary 3.2.

Theorem 3.7. — Assume that for all k < n, the Theorem 1.1 is true for k in place of
n. Let V be a multi-parameter subgroup of W of dimension at least 2 and containing
U . Let X be a compact V -minimal subset of G/Γ. Then there exists J ∈ C0 and
w ∈ W such that X = (wHJw−1)x.

Proof. — Without loss of generality we may assume that V is the largest multi-
parameter subgroup of W whose action preserves X.

If n = 2 then V = W and the theorem follows from Theorem 3.6. We intend to
prove this theorem by induction on n.

Let V1 = V ∩ G{1,...,n−1}. Then V = V1U , and dim V1 ≥ 1 (see Definition 1.1).
Let J be the smallest subset of {1, . . . , n− 1} such that V1 ⊂ GJ . Then there exists
a ∈ A ∩GJ such that UJ ⊂ aV1a−1.

Let Y be a compact V1-minimal subset of X. Take y ∈ Y . Then by Remark 3.1,
GJy is compact, and

GJy ∼= GJ/
�

j∈J

(G{j})y.

In particular, Y ⊂ GJy.
Let y1 = ay. We claim that there exists J ∈ C and w1 ∈ W ∩ GJ such that

HJ ⊂ GJ and

(29) (aV1a−1)y1 = w1HJw−1
1 y1.

If dimV1 = 1, then UJ = aV1a−1. Since |J | < n, the claim follows from our first
hypothesis that Theorem 1.1 is valid for |J | in place of n, GJ in place of G, and UJ

in place of U .
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If dim V1 ≥ 2, then the claim follows from the induction hypothesis of this theorem
applied to GJ in place of G and aV1a−1 in place of V in the statement. This completes
the proof of the claim in both the cases.

From (29) we have that

Y ⊃ V1y = V1a−1y1 = a−1(aV1a−1)y1 = a−1w1HJw−1
1 ay.

Let w = a−1w1a ∈ W ∩ GJ . Then wDJw−1y ⊂ Y ⊂ X, where DJ = A ∩ HJ =�
I∈J DI .

Therefore by Lemma 2.2,

(30) gX = X, ∀g ∈ NG(V ) ∩ V (wDJw−1)V .

We have

(31) NG(V ) ∩ V (wDJw−1)V ⊃ W ∩ UDJU,

and

(32) UDJU ⊃ {uDJ u−1 : u ∈ U} =
�

I∈J

{uDIu−1 : u ∈ UI}.

Take any I ∈ J . Let {Xi} be a sequence in DI � {e} such that Xi �= e as i →∞. In
view of the identification DI ⊂ HI

∼= SL2(K) ⊂ M2(K) = E1, we have that

{Xi} ⊂ E1 � L1

(recall (4)). We apply Lemma 2.6 to conclude the following: The subgroup generated
by {uDIu−1 : u ∈ UI} contains UI (see Lemma 2.7). Therefore by (32), the subgroup
generated by UDJU contains UJ . Therefore by (30) and (31), UJX = X. By the
maximality of V , assumed in the beginning of the proof, UJ ⊂ V . Thus UJ ⊂

GJ ∩ V = V1. Therefore

UJ ⊂ V1 ⊂ a−1HJ a ∩W = a−1(HJ ∩W )a = aUJ a−1.

Therefore UJ = a−1UJ a, and hence V1 = UJ . Thus V = UJU = UJ � , where
J � = J ∪ {{1, . . . , n}}. Now the theorem follows from Theorem 3.6.

4. Proof of Theorem 1.1

We intend to prove Theorem 1.1 by induction on n.

The case of n = 1 is proved in Corollary 3.2.

As an induction hypothesis, we assume that Theorem 1.1 is valid for all k in place
of n in its statement, where k ≤ n− 1. In particular, the hypothesis of Theorem 3.7
is satisfied.

Let X = Ux. Let V denote a maximal multi-parameter subgroup of W such that
V x� ⊂ X for some x� ∈ X. Let Z be a compact V -minimal subset contained in V x�.
Therefore by Theorem 3.5 and by Theorem 3.7, there exists J ∈ C0 and w ∈ U⊥ such
that Z = wHJw−1z�, where z� ∈ Z and V ⊂ wHJw−1.
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Note that w−1X = Uw−1x. Now if we can show that w−1X = HJ �(w−1x), then
X = wHJ �w−1x and the conclusion of the theorem follows. Therefore without loss
of generality, we replace X by w−1X, Z by w−1Z, and z� by w−1z�, and assume that
Z = HJ z�.

If HJ = G, then X = G/Γ and the theorem is proved.

Therefore we can assume that HJ
∼= SL2(K)m for some m ≤ n − 1. In view of

(24), we have

(33) Λ := (HJ )z� =
�

J∈J

HJ/(HJ)z� .

We note that

(34) HJ /Λ ∼= HJ z� = Z

is compact. Therefore HJ/(HJ)z� is compact for all J ∈ J . Therefore by Proposi-
tion 1.8 applied to HJ in place of G and Λ in place of Γ,

(35) ∃z ∈ HJ /Λ � S(U,Λ).

In view of (34) we treat z as an element of Z, and hence

(36) HJ z� = Z = HJ z ⊂ X.

We have made such a choice of z �∈ S(U,Λ) because later in the proof we intend to
apply Theorem 1.9 for the U -action on HJ /Λ.

We define

J
∗ = {J � max{J} : J ∈ J , |J | > 1}.

Now J ∈ C0. Therefore G = GJ ∗ ·HJ .

Since z ∈ Z ⊂ Ux, there exists a sequence gi → e in G such that giz ∈ Ux for all
i. We can express gi = Xihi such that Xi ∈ GJ ∗ , hi ∈ HJ , and Xi → e and hi → e.

If Xi0 ∈ W for some i0, then

(37) HJ z ⊂ X = Ugiz = Xi0Uhiz ⊂ Xi0HJ z = Xi0HJX−1
i0

(Xi0z).

In particular, z belongs to the closed orbit (Xi0HJX−1
i0

)(Xi0z). Therefore

HJ z ⊂ Xi0HJX−1
i0

(Xi0z) = (Xi0HJX−1
i0

)z.

Hence HJ is an open subgroup of Xi0HJX−1
i0

. Since HJ is Zariski closed, we have

that HJ = Xi0HJX−1
i0

. Therefore the inclusions in (37) are equalities. Hence X =
HJ z, and the conclusion of the theorem holds.

Now we may assume that {Xi} ⊂ GJ ∗ � W . Put m = |∪J ∗|. In view of the
identification, GJ ∗ ∼= SL2(K)m, we have that

{Xi} ⊂ M2(K)m � Lm

(recall (4)). Also the conjugation action of u(t) on GJ ∗ corresponds to the conjugation
action of wm(t) on M2(K)m. Therefore by Lemma 2.6, there exists a sequence ti →∞
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and a non-constant polynomial map ψ : K → Kn such that for any sequence si → s
in K,

(38) lim
i→∞

u(siti)Xiu(−siti) = w(ψ(s)) ∈ WJ ∗ .

If Z were U -minimal, which would be the case if HJ
∼= SL2(K), or if n = 2 and

m ≤ n − 1 = 1. We would then apply Lemma 2.2 for Y � = X, Y = Z, P � = U ,
P = HJ and F = U ; and conclude that Ψ(s)X ⊂ X.

In general, we will have to go deeper into the proof of Lemma 2.2 to see what is
exactly required; and that turns out to be Theorem 1.9 as shown below.

In view of (33) and (36), we apply Theorem 1.9 to HJ and Λ in places of G and Γ,
respectively, and to the sequence {xi := hiz}i∈N ⊂ Z. Since xi → z and z �∈ S(U,Λ)
(see (35)), we conclude the following: given any compact neighbourhood O of 0 in
K and s ∈ K, there exists a sequence t�

i
∈ sti(1 + O) such that, after passing to a

subsequence, u(t�
i
)xi → y as i →∞, where y ∈ Z ∼= HJ /Λ and y �∈ S(U,Λ).

Since HJ
∼= SL2(K)m for some m ≤ n − 1, by our induction hypothesis, Theo-

rem 1.1 is valid for HJ in place of G. Therefore, since y is nonsingular for the U
action on Z, we conclude that

(39) Uy = Z.

Note that this is the second instance of the use of the induction hypothesis in this
proof.

We put si = t�
i
/ti ∈ s(1 + O) for all i. Then t�

i
= siti, and after passing to a

subsequence, we may assume that si → s� and s� ∈ s(1 +O). Now by (38),

u(siti)giz = u(siti)Xixi

= [u(siti)Xiu(−siti)]u(siti)xi

→ w(ψ(s�))y.

Thus w(ψ(s�))y ∈ X, and hence by (39)

X ⊃ Uw(ψ(s�))y = w(ψ(s�))Uy = Ψ(s�)Z.

Since O was an arbitrarily chosen neighbourhood of 0, and s� ∈ s(1+O), we conclude
that

(40) X ⊃ w(ψ(s))Z, ∀s ∈ K.

This finishes a major step in the proof, as we have obtained a nontrivial trajectory
of a polynomial set in WJ ∗ . Now we will use an idea from [6] to show that X contains
a trajectory of a nontrivial one-parameter subgroup of WJ ∗ .

Since X is compact, there exists a sequence Ti →∞ in K and x� ∈ X such that

(41) w(ψ(Ti))z → x�.

Then by Lemma 2.7,

ψ(Ti + sT−q

i
)− ψ(Ti) → sv, ∀s ∈ K,
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UNIPOTENT FLOWS ON PRODUCTS OF SL(2, K)/Γ’S 91

where q = deg(ψ)− 1 ∈ {0, 1} and v ∈ Kn � {0}. Therefore by (41)

w(ψ(Ti + sT−q

i
))z = w(ψ(Ti + sT−q

i
− ψ(Ti))w(ψ(Ti))z → w(sv)x�.

Therefore, since V Z = Z, for any u ∈ V , by (40),

X � w(ψ(Ti + sT−q

i
))uz = uw(ψ(Ti + sT−q

i
))z → uw(sv)x�.

Thus V V1x� ⊂ X, where V1 = {w(sv) : s ∈ K}. We note that V ⊂ HJ and
ψ(s) ∈ WJ ∗ . Therefore V1 is a nontrivial one-parameter subgroup of WJ ∗ , which is
not contained in V . Thus V V1 is a multi-parameter subgroup of W which is strictly
larger than V , and V V1x� ⊂ X. This contradicts the maximality property of V
assumed at the beginning of the proof. This completes the proof of the theorem.

5. Closures of H-orbits

Lemma 5.1. — If D ⊂ wHJw−1 for some w ∈ W and J ∈ C0 then w ∈ HJ .

Proof. — It easily follows from the facts that NG(HJ ) = Z(G)HJ , and that
d(a)w(t)d(a)−1 = w(a2t) for any t ∈ Kn and a ∈ K∗.

Define F to be the collection of closed subgroups F of G with the following prop-
erties: F/F ∩ Γ is compact, and F = gHJ g−1 for some g ∈ G and J ∈ C.

Lemma 5.2. — F is countable.

Proof. — Let F ∈ F. In view of Remark 3.1,

F/F ∩ Γ ∼=
r�

i=1

SL2(K)/Λi,

where Λi is a cocompact discrete subgroup of SL2(K) and 1 ≤ r ≤ n. It is straight-
forward to verify that each Λi is Zariski dense in SL2(K) (this is a very special easy
case of the Borel’s density theorem (see [4, 5] or [14]). Therefore Zcl(F ∩ Γ) = F ,
where Zcl(X) denotes the Zariski closure of a set X in M2(K)n. Now there exists a
finite set S ⊂ F ∩ Γ such that if �S� denotes the subgroup generated by S then

Zcl(�S�) = Zcl(F ∩ Γ) = F.

Thus

F ⊂ {Zcl(�S�) : S is a finite subset of Γ}.

Since Γ is countable, F is countable.
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Proof of Corollary 1.3. — For any h ∈ H, by Theorem 1.1, there exist w ∈ W and
J ∈ C0 such that

hUh−1x = hU(h−1x) = h(wHJw−1)(h−1x) = Fhx,

where Fh := hwHJw−1h−1.

Suppose if H ⊂ Fh then H ⊂ wHJw−1, and by Lemma 5.1, we have w ∈ HJ and
Fh = HJ . Hence HJ x is compact, and

HJ x ⊃ Hx ⊃ (hUh−1)x = HJ x.

Thus Hx = HJ x, and we are through.

Suppose that H �⊂ Fh, then hUh−1 ⊂ Fh∩H, which is a proper algebraic subgroup
of H ∼= SL2(K). Therefore Fh∩H at most 2 dimensional, and any nontrivial algebraic
unipotent subgroup of Fh∩H equals hUh−1. Hence for any h1 ∈ H, if Fh1 = Fh then
h1Uh−1

1 = hUh−1. Thus,

(42) for any h, h1 ∈ H: if H �⊂ Fh and Fh = Fh1 , then h1 ∈ hNH(U).

Now fix g ∈ G such that x = g[Γ] ∈ G/Γ. Since Fhx is compact, we have gFhx =
gFhg−1Γ/Γ is compact. Therefore gFhg−1 ∈ F. Since F is countable, the collection
{Fh : h ∈ H} is countable. Hence due to (42), since H/NH(U) is uncountable, there
exists h ∈ H such that Fh ⊃ H, and we are back to the case considered earlier.

Proof of Proposition 1.4. — Since HJ = GJ ∩ HJ , Y := GJx0 ∩ HJ x0 is compact,
and the stabilizer of x0, which is Γ, is discrete, we conclude that every orbit of HJ in
Y is open. Therefore every orbit of HJ in Y is closed. In particular, HJx0 is compact.

Therefore replacing G by GJ , HJ by HJ , and Γ by GJ∩Γ, without loss of generality
we may assume that Hx0 is compact.

In view of Remark 3.1, we define the natural projection maps qj : G → G{j} and

q̄j : G/Γ → G{j}/Γj . Now q̄−1
j

(eΓj) ∩ Hx0 is a compact subset of G/Γ. Since it is
countable, it is finite. Therefore

q̄−1
j

(eΓj) ∩Hx0
∼= q−1

j
(Γj) ∩H/q−1

j
(Γj) ∩H ∩ Γ

is finite. Now

q−1
j

(Γj) ∩H = {(γ, . . . , γ) ∈ G : γ ∈ Γj}

and

q−1
j

(Γj) ∩H ∩ Γ = {(γ, . . . , γ) ∈ G : γ ∈ ∩n

i=1Γi}.

Therefore ∩n

i=1Γi is a subgroup of finite index in Γj . Therefore Γi and Γj are com-
mensurable for all i and j.

Proof of Corollary 1.6. — Let J ∈ J , and ΛJ = ∩j∈Jpj(Γj). Then by definition ΛJ

is a subgroup of finite index in pj(Γj) for each j ∈ J , and hence ΛJ is a cocompact
lattice in SL2(K). Clearly, HJ/(HJ ∩ Γ) ∼= SL2(K)/ΛJ is compact. Therefore HJx0

is compact.
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UNIPOTENT FLOWS ON PRODUCTS OF SL(2, K)/Γ’S 93

From this we obtain that HJ x0 is compact. Now for any J1, J2 ∈ J with J1 �= J2,
we have that the lattices ΛJ1 and ΛJ2 are noncommensurable. Therefore applying
Corollary 1.5 to HJ in place of G, we conclude that Hx0 is dense in HJ x0.

Proof of Corollary 1.7. — We are in the case of n = 2. Let the notation be as above.
Let xi = eΓi ∈ Gi/Γi for i = 1, 2 and x0 = (x1, x2). To prove that Γ1Γ2 is dense
in G, it is enough to show that Γ1x2 = G2/Γ2. Let y ∈ G2/Γ2. By Corollary 1.5,
Hx0 = G/Γ. Therefore there exists a sequence {hi} ⊂ SL2(K) such that

(hi, hi)x0 = (hix1, hix2)
i→∞
−→ (x1, y).

Since hix1 → x1 as i → ∞, there exist sequences δi → e in SL2(K) and {γi} ⊂ Γ1

such that hi = δiγi for all i. Since hix2 → y as i →∞, we have

γix2 = δ−1
i

hix2
i→∞
−→ y.

Thus y ∈ Γ1x2.

6. Limiting distributions of sequences of unipotent orbits

As noted in the introduction, we start the second half of the article. First we give
the statement of the main result, which says that a unipotent trajectory starting from
a non-singular point attaches zero measure on its singular set S(U,Γ) in the limiting
distribution.

Notation. — Let M = M(G/Γ) denote the space of probability measures on G/Γ,
which is compact. Then M is compact with respect to the topology of weak-∗ con-
vergence; here by definition, a sequence µi → µ in M if

�
f dµi →

�
f dµ as i → ∞,

for all f ∈ C(G/Γ).

Let θ denote a Haar measure on K.

Theorem 6.1. — Let xi → x be a sequence in G/Γ and ti → ∞ be a sequence in K.
Fix any measurable set O ⊂ K with 0 < θ(O) < ∞. Let µi = µO

i
∈ M(G/Γ) be

defined as

(43) µO
i

(E) =
θ({t ∈ tiO : u(t)xi ∈ E})

θ(tiO)
, for all Borel sets E ⊂ G/Γ.

Let µ ∈ M be a limit of any subsequence of {µi}
∞
i=1 in M. Further suppose that

x �∈ S(U,Γ). Then µ(S(U,Γ)) = 0.

As a first consequence of this result, we deduce the result required in the proof of
Theorem 1.1.
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Proof of Theorem 1.9. — Given a compact neighbourhood O of 0 in K, we apply
Theorem 6.1 for 1 + O in place of O in the statement above. Since µ(S(U,Γ) = ∅,
we can choose y ∈ supp(µ) � S(U,Γ). Let Ωi be a sequence of open neighbourhoods
of y in G/Γ such that ∩iΩi = {y}. Now by the definition of µi = µ1+O

i
, by passing

to a subsequence of i, we may assume that supp(µ1+O
i

) ∩ Ωi �= ∅. Then there exists
t�
i
∈ (1 +O)ti such that u(t�

i
)xi ∈ Ωi. Therefore u(t�

i
)xi → y as i →∞.

6.1. Uniform distribution of U -orbits. — As another main consequence of Theorem 6.1
we will deduce the uniform distribution of U -orbits using Ratner’s measure classifica-
tion result. We first give an idea of the connection of both the results.

Lemma 6.2. — Any limit measure µ as obtained in Theorem 6.1 is U -invariant.

Since invariant measures decompose into its ergodic components, using the descrip-
tion of ergodic U -invariant measures [12, 19] and Theorem 6.1, we will obtain the
following uniform distribution result.

Theorem 6.3. — Let O be a measurable subset of K such that 0 < θ(O) < ∞. Fix
any x ∈ G/Γ then there exists w ∈ W and J ∈ C such that Ux = wHJw−1x and the
following holds: For T ∈ K � {0} define µT ∈M as

(44) µT (E) =
θ({t ∈ TO : u(t)x ∈ E})

θ(TO)
, for all Borel sets E ⊂ G/Γ.

Then for any continuous function f on G/Γ, we have
�

f dµT →

�
f dµ as T →∞ in K,

where µ denotes the unique wHJw−1-invariant probability measure on the space

wHJw−1x ∼= wHJw−1/(wHJw−1
∩Gx),

where Gx denotes the stabilizer of x in G.

7. A countability theorem and the singular set

Note that for any g ∈ G, and x = gx0, the orbit Gjx = gG{j}x0 is compact for
any j = 1, . . . , n, where x0 ∈ G/Γ denotes the coset of the identity. Similarly, GJx is
compact for any nonempty J ⊂ {1, . . . , n}.

Let ΓJ = GJ ∩ Γ, and ρ̄J : G/Γ → GJ/ΓJ denotes the natural projection in
view of (1). Note that every fiber of ρ̄J is a compact orbit of the group GJc , where
Jc = {1, . . . , n} � J . Therefore ρ̄J is a proper map; namely, the inverse images of
compact sets are compact.

We assume that n ≥ 2. Let H denote the collection of all subgroups F of G with
the following properties: (i) F/F ∩ Γ is compact, and (ii) F = f−1GJcHJf for some
f ∈ GJ , where J ⊂ {1, . . . , n}, |J | = 2. Note that Z(G)F is a proper maximal
subgroup of G, where Z(G) = {(±I, . . . ,±I)} denotes the center of G, and I =

�
1

1

�
.
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Note that F ∩Γ = ΓJc(fHJf−1 ∩ΓJ). Let Λ = fHJf−1 ∩ΓJ . Then fHJf−1/Λ is
compact and admits an fHJf−1-invariant probability measure. This measure projects
onto an fHJf−1-invariant probability measure on fHJf−1/L, where L denotes the
Zariski closure of Λ in fHJf−1. Since HJ

∼= SL2(K), if L is one dimensional then
the quotient cannot be compact, and if L is two dimensional then the quotient is a
projective line and does not admit an invariant measure. Therefore L = fHJf−1; we
remark that this conclusion is also a special case of Borel’s density theorem [4, 14].
Therefore fHJf−1 is the Zariski closure of the subgroup generated by a finite subset
of ΓJ . Hence F ∈ H is determined by J and a finite subset of Γ. Since Γ is countable,
we conclude the following:

Lemma 7.1. — The collection H is countable.

For any F ∈ H, we define (the algebraic variety)

X(F ) = {g ∈ G : U ⊂ gFg−1
}.

Note that for any F ∈ H and g ∈ G:

(45) g ∈ X(F ) ⇔ Ugx0 ⊂ gFx0 = (gFg−1)gx0,

where x0 = π(e) and π : G → G/Γ is the natural quotient map.

Lemma 7.2. — S(G/Γ) =
�

F∈H π(X(F )).

Proof. — By (45), π(X(F )) ⊂ S(G/Γ).

Now let g ∈ G such that gx0 ∈ S(G/Γ). Then there exists J ∈ C and w ∈ W such
that ∪J = {1, . . . , n}, HJ �= G, U ⊂ wHJw−1 and HJw−1gx0 is compact.

Therefore there exists 1 ≤ j1 < j2 ≤ n such that, if g = (g1, . . . , gn) and g ∈ HJ ,
then gj1 = gj2 . Put J = {j1, j2}. Since G = GJcGJ , there exists f ∈ GJ such that
g−1w ∈ GJcf .

If we put F = GJcfHJf−1, then F = GJc(g−1w)HJ (w−1g). Since GJcz is com-
pact for all z ∈ G/Γ, Fx0 is compact. Hence g−1Ugx0 ⊂ Fx0. Therefore g−1Ug ⊂ F ,
and hence g ∈ X(F ).

Lemma 7.3. — Let F ∈ H, J = {j1, j2}, 1 ≤ j1 < j2 ≤ n, and f ∈ GJ such that
F = f−1GJcHJf . Then X(F ) = WGJcHJZ(G)f . Moreover HJ(zfx0) is compact
for every z ∈ Z(G).

Proof. — Take any g ∈ X(F ). Let UJ = U ∩HJ . Then g−1UJg ⊂ f−1HJf . Since
HJ

∼= SL2(K), there exists h ∈ H such that

g−1UJg = f−1hUJh−1f.

Therefore h−1fg ∈ DJWJZ(G)GJc . Multiplying h by an appropriate element of DJ

on the right, we may assume that h−1fg ∈ WJGJcZ(G). Hence g ∈ hfWJGJcZ(G) ⊂
WJGJcHJZ(G)f .

Moreover GJcHJ(zfx0) = zfGJc(f−1HJ f)x0 = zfFx0 is compact.
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Proof of Proposition 1.8. — By Lemma 7.3, the set X(F )γ cannot contain an open
subset of G for any F ∈ H and γ ∈ Γ. Now X(F ) can be expressed as a countable
union of compact sets, and since H and Γ are countable sets, by Baire’s category
theorem we have that G �=

�
F∈H X(F )Γ. Therefore G/Γ �= S(U,Γ) by Lemma 7.2.

8. Reducing Theorem 6.1 to the case of n = 2

By Lemma 7.2 and Lemma 7.3, in order to prove that µ(S(G/Γ)) = 0, it is enough
to show that µ(WGJcHJy) = 0 for every J = {j1, j2}, 1 ≤ j1 < j2 ≤ n, and y ∈ G/Γ
such that HJy is compact.

Fix J and y as above. Then HJ ȳ is compact in GJ/ΓJ , where ȳ = ρ̄J(y). Also

(46) (ρ̄J)−1(WJHJ ȳ) = WGJcHJy.

Let µ̄ denote the projection of µ on GJ/ΓJ via ρ̄J ; that is, µ̄(E) = µ((ρ̄J)−1(E))
for any Borel measurable set E ⊂ GJ/ΓJ . Therefore in order to prove that
µ(WGJcHJy) = 0, it is enough to show that µ̄(WJHJ ȳ) = 0. Further it is enough to
show that for any compact set C ⊂ WJ ,

(47) µ̄(CHJ ȳ) = 0.

Note that GJ
∼= SL2(K) × SL2(K), and under this isomorphism HJ corresponds

to the diagonally embedded copy of SL2(K) in SL2(K)× SL2(K). For the projection
homomorphism ρJ : G → GJ , let ū(t) := ρJ(u(t)) ∈ HJ for all t ∈ K. Let x̄i = ρ̄J(xi),
and let µ̄i ∈M(GJ/ΓJ) be such that

µ̄i(E) =
θ({t ∈ tiO : ū(t)x̄i ∈ E})

θ(tiO)
, for all Borel sets E ⊂ GJ/ΓJ .

Then µ̄i is the projection of µi on GJ/ΓJ . Furthermore whenever µi → µ in M(G/Γ),
we have µ̄i → µ̄. Since x �∈ WGJcHJy ⊂ S(U,Γ), by (46), x̄ := ρ̄J(x) �∈ WJHJ ȳ, and
x̄i → x̄.

In view of the above explanation, to prove Theorem 6.1 it is enough to prove it for
the case of n = 2.

For r > 0, and x ∈ K, let Bx(r) denote the ball of radius r > 0 in K centered at x.

8.1. Reduction to the case of O = B0(r). — Since 0 < θ(O) < ∞, given any β < 1
there exists a compact subset O1 ⊂ O such that θ(O1)/θ(O) > β. Therefore it will
be enough to prove the result under the assumption that O ⊂ B0(r) for some r > 0.
Put B = B0(r).

Let λi = µB as defined in (43). Then µi(E) ≤ (θ(B)/θ(O))λi(E) for any Borel
set E ⊂ G/Γ. By passing to a subsequences we have that µi → µ and λi → λ as
i →∞. Therefore µ(E) ≤ (θ(B)/θ(O))λ(E) for all Borel sets E ⊂ G/Γ. Therefore if
we prove that λ(S(U,Γ)) = 0, then µ(S(U,Γ)) = 0. This proves that it is enough to
prove Theorem 6.1 for O = B0(r) for all r > 0.
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9. Theorem 6.1 for G = SL2(K)× SL2(K)

Let G = SL2(K) × SL2(K) and H be the diagonal embedding of SL2(K) in G.
For t1, t2 ∈ K, let w(t1, t2) :=

��
1 t1

1

�
,
�

1 t2
1

��
. Let W = {w(t1, t2) : ti ∈ K. Define

u(t) = w(t, t) ∈ G, ∀t ∈ K, and U = {u(t) : t ∈ K} = W ∩H.

Let Γ be a discrete subgroup of G such that G/Γ is compact.

In this section we will prove the following:

Theorem 9.1. — Let y ∈ G/Γ such that Hy is compact. Let xi → x be a convergent
sequence in G/Γ such that x �∈ WHy. Then given any � > 0 and a compact set
C1 ⊂ W there exist a neighbourhood Ψ1 of C1Hy in G/Γ and a natural number i0
such that ∀i ≥ i0 and T > 0,

(48) θ({t ∈ B0(T ) : u(t)xi ∈ Ψ1}) ≤ �θ(B0(T )).

Proof of Theorem 6.1. — Let O = B0(r) for some r > 0. In view of (43), µi(Ψ1) ≤
� · θ(B0(r)) for all i ≥ i0, and hence µ(C1Hy) = 0. Since C1 can be chosen to be
an arbitrary compact subset of W , we have that µ(WHy) = 0. Thus in view of the
discussion in Section 8, the Theorem 9.1 implies Theorem 6.1.

9.1. Linearization of the U -action near WHy. — For a group F acting on a set X and
an element x ∈ X, let

Fx = {f ∈ F : fx = x}, the stabilizer of x in F .

Note that G = G{1}H and WH = W1H, where W1 = G{1}∩W = {w(t, 0) : t ∈ K}.
Let I =

�
1 0
0 1

�
.

Lemma 9.2. — wHw−1 ∩H = U ∪ (−I,−I)U for all w ∈ W1 � {e}.

Proof. — Let h = (x, x) ∈ H and w = (w1, I) ∈ W1, w1 �= I. Then whw−1 ∈ H ⇒

x = w1xw−1
1 ⇒ x =

�
±1 s

0 ±1

�
, s ∈ K.

The next observation, which states that the singular set WHy = W1Hy does not
self-intersect along W1, makes the study of dynamics near singular sets much simpler
in our situation, as compared to the general case [21, Lemma 6.5].

Proposition 9.3. — For w1, w2 ∈ W1, if w1 �= w2 then w1Hy ∩ w2Hy = ∅.

Proof. — Let Z = w1Hy ∩ w2Hy. Suppose that Z �= ∅. Put Hi = wiHw−1
i

. Then
wiHy = H1(wiy) = Hiz is compact for every z ∈ Z. Since Gz is a discrete group,
(H1 ∩H2)z is open in Z = H1z ∩H2z. Since w1 �= w2, by Lemma 9.2, U is an open
subgroup of H1 ∩ H2. Therefore every orbit of U on Z is open in Z. Hence every
orbit of U on Z is closed. Since Z is compact, Uz ∼= U/U ∩ Gz is compact, which
contradicts Proposition 2.10.
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We consider a linear action of G on E := M2(K) defined as follows: Given g =
(g1, g2) ∈ G and X ∈ E,

g ·X := g1Xg−1
2 .

Let I =
�

1 0
0 1

�
∈ E. Then

H = {g ∈ G : g · I = I}(49)

G · I = SL2(K) ⊂ E.(50)

Let W = {w1(t) : t ∈ K} ⊂ E. Then W1 · I = W, and

(51) W1H = WH = {g ∈ G : g · I ∈ W}.

Lemma 9.4. — The set Gy · I is discrete.

Proof. — Since Hy is compact, H/H∩Gy is compact, and hence HGy is closed in G.
Therefore HGy is closed in G. Hence GyH = (HGy)−1 is closed in G. Due to (50)
and (49), the map G/H → SL2(K) given by gH �→ g · I is a homeomorphism. Hence
Gy · I is a closed subset of SL2(K), and hence of E. Further since Gy is countable,
Gy · I is discrete.

For any z ∈ G/Γ, we define R(z) = {g · I : gz = y, g ∈ G}. Note that if z = gy,
then R(z) = gGy · I = gR(y). The set R(z) is called the set of representatives of z in
E. By Lemma 9.4, R(z) is discrete.

Lemma 9.5. — #(R(z) ∩W) ≤ 1, for all z ∈ G/Γ.

Proof. — If gγ1 ·I, gγ2 ·I ∈ W for some γ1, γ2 ∈ Gy, then by (49), there exist wi ∈ W1

such that giγi ∈ wiH for i = 1, 2. Then

gγ1y = gγ2y ∈ w1Hy ∩ w2Hy.

Therefore by Proposition 9.3, w1 = w2. Hence gγ1H = w1H = w2H = gγ2H. Thus
gγ1 · I = gγ2 · I.

The following observation will allow us to ‘linearize’ the G-action in thin neigh-
bourhoods of compact subsets of WHy.

Lemma 9.6. — Given a compact subset D of W, there exists a neighbourhood Φ of D
in E such that #(R(z) ∩ Φ) ≤ 1 for all z ∈ G/Γ.

Proof. — Let {Φi} be a decreasing sequence of relatively compact neighbourhoods
of D in E such that ∩i Φi = D. If the lemma is false, then there exists a sequence
{zi} ⊂ G/Γ such that #(R(zi) ∩ Φi) ≥ 2 for all i. By passing to a subsequence we
may assume that zi = giy for a sequence gi → g in G, and for each i there exist
γi, δi ∈ Gy such that

(52) giγi · I, gi · δi · I ∈ Φi and γi · I �= δi · I.

Now
{γi, δi : i ∈ N} ⊂ ∪∞

i=1{g
−1
i

Φi} ⊂ ({gi : i ∈ N} ∪ {g})Φ1,

SÉMINAIRES & CONGRÈS 20
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which is compact. Therefore by Lemma 9.4 there exist γ, δ ∈ Gy such that γi ·I = γ ·I
and δi ·I = δ ·I for all large i. Therefore gi ·γ ·I → gγ ·I ∈ D, and similarly gδ ·I ∈ D.
Therefore by Lemma 9.5, gγ · I = gδ · I. Hence

γi · I = γ · I = δ · I = δi · I, for all large i,

a contradiction to (52).

9.2. Growth properties of polynomial maps. — For any v ∈ E, the coordinate functions
of the map t �→ u(t) · v are polynomials of degree at most 2. Therefore to study the
behaviour of the U -orbits on thin neighbourhoods of compact subsets of W, we will
use the growth properties of the polynomial maps as described in the following basic
observations (see [7, 9]).

Let l ≥ 1 be the dimension of K over the topological closure of Q in K. For a ball
B in K, let rad(B) denote the radius of B such that rad(B) = |λ| for some λ ∈ K.
Then for any balls B1 and B2 in K,

(53) θ(B2) = (r2/r1)
l
· θ(B1), where ri = rad(Bi).

Lemma 9.7. — Let � > 0 and d ∈ N be given. Then there exists c > 0 such that for
any f ∈ K[t] with deg(f) ≤ d, and any ball B in K,

(54) θ({t ∈ B : |f(t)| < c sup
t∈B

|f(t)|}) ≤ � · θ(B).

In fact, we can choose c = C−1
d

(�/d)d/l, where Cd = 1 if K is non-archimedean, and
Cd = (d + 1)2d if K is archimedean.

Proof. — Put M = sup
t∈B

|f(t)|. Fix any c > 0. Put I = {t ∈ B : |f(t)| < cM}.
Suppose that

(55) θ(I) > � · θ(B).

We claim that there exist points x0, . . . , xd in I such that

(56) |xi − xj | > (�/d)1/lr, ∀ i �= j,

where r denotes the radius of B.

To prove the claim, suppose that x0, . . . , xk are chosen so that (56) holds for 0 ≤
i, j ≤ k, where 0 ≤ k ≤ d− 1. Put

I � =
k�

j=0

Bxj ((�/d)1/lr).

Then by (53),

θ(I �) ≤ (k + 1)(�/d)θ(B) ≤ �θ(B).

By (55) there exists xi+1 ∈ I � I �. Then |xi+1 − xj | ≥ (�/d)1/l for all j ≤ i− 1. This
proves the claim.
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By Lagrange’s interpolation formula,

f(x) =
�

0≤i≤d

f(xi)
�

j �=i

x− xj

xi − xj

.

Now |f(xi)| < cM and |x−xj |

|xi−xj |
≤ 2/(�/d)1/l for all j �= i, and x ∈ B. Therefore

M < (d + 1)cM2d/(�/d)d/l. This leads to a contradiction if we choose c = (1/(d +
1)2d)(�/d)d/l. Therefore (55) cannot hold.

Corollary 9.8. — For any f ∈ K[t] with deg(f) ≤ d, and balls B1 ⊂ B2 in K, let
Mi = sup

t∈Bi
|f(t)| and ri = rad(Bi) for i = 1, 2. Then

(57) M2 ≤ Cd(r2/r1)
dM1.

Proof. — Let 0 < � < (r2/r1)−l. Let F = {t ∈ B2 : |f(t)| < C−1
d

�d/lM2}. Then by
Lemma 9.7 and (53),

θ(F ) ≤ �θ(B2) = �(r2/r1)
lθ(B1) < θ(Bx(r)).

Thus Bx(r) �⊂ F , and hence M1 ≥ C−1
d

�d/lM2. Hence M2 ≥ CdλdM1.

Proposition 9.9. — Given � > 0 and a compact set C ⊂ W, there exists a compact set
D ⊂ W containing C such that the following holds: given any neighbourhood Φ of D
in W there exists a neighbourhood Ψ of C in E such that for any v ∈ E and any ball
B in K, one of the following holds:

u(B)v ⊂ Φ(58)

or

θ({t ∈ B : u(t)v ∈ Ψ}) ≤ � · θ({t ∈ B : u(t)v ∈ Φ}).(59)

Proof. — Let {φ1, . . . , φ4} be linear functionals on E such that

y =

�
φ1(y) φ2(y)

φ3(y) φ4(y)

�
, ∀y ∈ E.

Then
W = {y ∈ E : φi(y − I) = 0, ∀ i �= 2}.

Note that φ2(y − I) = φ2(y) for all y ∈ E. Define fi(t) = φi(u(t)v − I) for all i and
t ∈ K. Then fi ∈ K[t] and deg(fi) ≤ 2.

There exists α2 > 0 such that

C ⊂ {y ∈ W : |φ2(y − I)| < α2}

We fix a small 0 < c < 1, whose value will be specified below. Let M2 = c−1α2

and put
D = {y ∈ W : |φ2(y − I)| ≤ M2}.

Now given any neighbourhood Φ of D, there exists Mi > 0 for each i �= 2, such
that

Φ ⊃ {y ∈ E : |φi(y − I)| ≤ Mi, ∀ i}.
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We choose αi = cMi for each i �= 2, and put

Ψ = {y ∈ E : |φi(y − I)| < αi, ∀ i}.

Then Ψ is a neighbourhood of C.

Define

F = {t ∈ B : |fi(t)| < Mi, ∀ i}(60)

⊂ {t ∈ B : u(t)v ∈ Φ},(61)

and

F1 = {t ∈ B : |fi(t)| < αi, ∀ i}(62)

= {t ∈ B : u(t)v ∈ Ψ}.(63)

Suppose that (58) does not hold. Then

B �⊂ F.

A ball B ⊂ F is a called a maximal ball in F , if B� �⊂ F for any ball B� ⊂ B
strictly bigger than B.

Let B be a maximal ball in F . We claim that

(64) sup
t∈B

|fi0(t)| ≥ τ−1Mi0 , for some i0,

where τ = p2C2 > 1 if K is non-archimedean, and τ = 1 if K is archimedean.

Suppose if sup
t∈B

|fi(t)| < Mi for all i, then B ⊂ F � B. Then there exists a ball
B� ⊂ B strictly bigger than B. Hence B� �⊂ F . Therefore by (60), for some i0,

sup
t∈B�

|fi0(t)| ≥ Mi0 .

If K is a finite extension of Qp, we choose B� such that rad(B�)/ rad(B) = p; and (57)
implies (64). If K is archimedean, (64) is straightforward to conclude.

If K is non-archimedean or K = R, then any two intersecting maximal balls in
F are same. Therefore F = ∪B, where B denotes the collection of disjoint maximal
balls of F . If K = C then there exists a collection B� of disjoint maximal balls in
F such that if we put B = {Bx(3r) : Bx(r) ∈ B�} then F ⊂ ∪B (cf. [20, Proof of
Lemma 8.4]). Therefore

(65)
�

B∈B

θ(B) ≤ κθ(F )

where κ = 1 if K �= C and κ = 9 if K = C.

We specify the value c = (C2�2/l)−1τ−1. Let B ∈ B. Therefore by (64), there
exists i0 such that

sup
t∈B

|fi0(t)| ≥ τ−1Mi0 .

Since αi0 = cMi0 , by (62) and Lemma 9.7 applied to fi0 :

θ(F1 ∩B) ≤ θ({t ∈ B : |fi0(t)| < αi0}) ≤ � · θ(B).
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Therefore by (65), we get that

θ(F1) = θ(F1 ∩ (∪B))

≤

�

B∈∪B

θ(F1 ∩B) ≤ �
�

B∈∪B

θ(B) ≤ κ� · θ(F ).

Therefore (59) follows from (61) and (63).

Proof of Theorem 9.1. — Given � > 0 and a compact set C1 ⊂ W , put C = C1 ·

I ⊂ W, and obtain D ⊂ W as in Proposition 9.9. By Lemma 9.6, there exists a
neighbourhood Φ of D in E such that

(66) #(R(z) ∩ Φ) ≤ 1, ∀ z ∈ G/Γ.

In other words, every element of G/Γ can have at most one representative in Φ.

The set WD := {w ∈ W1 : w · I ∈ D} is compact. Also {g : g · I ∈ D} = WDH.
Now D1 := WDHy is a compact subset of WHy ⊂ G/Γ. Since x �∈ WHy, and
R(x) ∩ D = ∅. Since R(x) is discrete and D is compact, there exists a compact
neighbourhood V of the identity in G such that VR(x) ∩D = ∅. We replace Φ by
Φ�VR(x), which is an open neighbourhood of D. Since xi → x, we have xi ∈ VR(x)
for all i ≥ i0 for some i0. Since R(vx) = vR(x) for all v ∈ V , we have that have that

(67) R(xi) ∩ Φ = ∅, ∀ i ≥ i0.

By Proposition 9.9 and (67), there exists a neighbourhood Ψ of C in E contained
in Φ such that for any T > 0,

θ({t ∈ B0(T ) : u(t)v ∈ Ψ})

≤ � · θ({t ∈ B0(T ) : u(t)v ∈ Φ}), ∀v �∈ Φ.
(68)

Let Ψ1 = {gy : g ·I ∈ Ψ, g ∈ G} ⊂ G/Γ. Since Ψ is a neighbourhood of C = C1H ·I
in E, we conclude that Ψ1 is a neighbourhood of C1Hy in G/Γ.

Now fix T > 0. For a subset Ω ⊂ E, define

LΩ(v) = {t ∈ B0(T ) : u(t)v ∈ Ω}, ∀v ∈ E.

We observe that

(69) {t ∈ B0(T ) : u(t)xi ∈ Ψ1} =
�

v∈R(xi)

LΨ(v).

By (67) and (68),

(70) θ(LΨ(v)) ≤ � · θ(LΦ(v)), ∀v ∈ R(xi).

We claim that

(71) LΦ(v1) ∩ LΦ(v2) = ∅, ∀v1 �= v2, vi ∈ R(xi).

If the claim is false, then there exists t ∈ LΦ(v1) ∩ LΦ(v2). Therefore
{u(t)v1, u(t)v2} ⊂ R(u(t)xi) ∩ Φ and u(t)v1 �= u(t)v2. This contradicts (66).
This proves the claim.
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Now due to (71),

(72)
�

v∈R(xi)

θ(LΦ(v)) ≤ θ(tiO).

Combining (69), (70), and (72), we get

θ({t ∈ B0(T ) : u(t)x ∈ Ψ1}) ≤ � ·Θ(tiO), ∀ i ≥ i0.

10. Uniform distribution for unipotent orbits

Proof of Lemma 6.2. — Let � > 0 be given. Since 0 < θ(O) < ∞ by the observation
as before, we may assume that O is compact. Now since θ is translation invariant
and regular, there exists δ > 0, such that for any s ∈ K with |s| ≤ δ, we have

θ((O+ s) ∆O)/θ(O) ≥ �,

where A ∆ B := (A � B) ∪ (B � A).
Let s ∈ K be given. If t ∈ K such that |t| ≥ δ−1|s|, then

θ((tO+ s) ∆ tO)/θ(tO) = θ(t((O+ t−1s) ∆O))/θ(tO)

= θ((O+ t−1s) ∆O)/θ(O) ≤ �.

Let i0 ∈ N be such that |ti| ≥ δ−1|s| for all i ≥ i0. Then for any Borel set E ⊂ G/Γ,

|µi(u(−s)E)− µi(E)| ≤ θ((tiO+ s) ∆O)/θ(tiO) ≤ �, ∀ i ≥ i0.

Therefore |µ(u(−s)E)− µ(E)| ≤ �. Since �, s, and E are arbitrary, µ is U -invariant.

10.1. On the definition of singular set. — We begin with a group theoretic observation.

Proposition 10.1. — Suppose F is a closed subgroup of G containing U and x ∈ G/Γ
such that Fx is compact. Then there exists J ∈ C and w ∈ W such that wHJw−1 ⊂

F ⊂ Z(G)(wHJw−1).

Proof. — First we consider the case of n = 1, that is G = SL2(K). Now suppose
that F ⊂ NG(U) = DU . Since [F, F ] ⊂ U , by Proposition 2.10, [Fx, Fx] ⊂ U ∩Gx =
{e}. Therefore Fx is an abelian subgroup of DU . Also since Fx ∩ U = {e}, it is
straightforward to verify that Fx ⊂ uDu−1 for some u ∈ U . Since F = U(uDu−1∩F ),
it follows that F/Fx cannot be compact, a contradiction.

Therefore there exists f ∈ F such that U � := fUf−1 �= U . Then for the standard
SL2(K) action on K2,

UU �
�

1
0

�
= K2 �

�
K

0

�
.

Hence
U �UU �

�
1
0

�
= K2 � {0}.

Since the stabilizer of
�

1
0

�
is U , we have that U �UU �U = SL2(K). Therefore F =

G = H{1}, and the proof is complete.
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We intend to prove the general case by induction on n. Therefore we assume that
the proposition is valid for k in place of n, where k = 1, . . . , n− 1.

For i ∈ {1, . . . , n} and J = {1, . . . , n}�{i}, let pi : G → GJ and p̄i : G/Γ → GJ/ΓJ

be the natural quotient maps.

Now if F ⊃ Gi for some i, then pi(F )p̄i(x) = p̄i(Fx) is compact. Since pi(U) plays
the role of U in GJ , the general result easily follows from the induction hypothesis.

Now we assume that F �⊃ Gj for each j. For any i = 1, . . . , n, let qi = G → Gi

and q̄i : G/Γ → G{i}/Γi be the natural projection maps for i = 1, . . . , n. Then from
the case of n = 1 we deduce that

q̄i(Fx) = qi(F )q̄i(x) = Gi/Γi.

Hence qi(F ) = Gi.

Let F1 = G{1}F . Since G{1}y is compact for all y ∈ G/Γ, we have that F1x is
compact. Therefore by what we have proved above there exists w ∈ W and J ∈ C

such that

wHJw−1
⊂ F1 ⊂ Z(G)wHJw−1.

If HJ �= G then wHJw−1 ∼= SL2(K)k for some 1 ≤ k ≤ n− 1. Since

wHJw−1/(wHJw−1)x =
�

J∈J

wHJw−1/(wHJw−1)x,

we conclude the result from the induction hypothesis.

Therefore we can assume that G{1}F = F1 = G. Since F ∩ ker(q1) = F ∩G{2,...,n}

is a normal subgroup of F , and it commutes with G{1}, we have that F ∩ ker(q1) is
normal in G and in particular it is a normal subgroup of G{2,...,n}. Since we have
assumed that F does not contain G{j} for any j, we have that F ∩ ker(q1) ⊂ Z(G).
Since q1(F ) = G{1}, we have n = 2. Thus G = SL2(K) × SL2(K), and Lie(F ) ∼=
Lie(SL2(K)). By the same argument as above F ∩ ker(q2) ⊂ Z(G). Since projection
of F on each of the factors is surjective, there exists g ∈ G2 such that

Lie(F ) = {(X,Ad(g)X) : X ∈ Lie(SL2(K))}

Since U ⊂ F , we have that Ad(g)
�

0 1
0 0

�
=

�
0 1
0 0

�
. Therefore g ∈ Z(G)W ∩ G2.

Therefore we can choose w ∈ W such that wH{1,2}w
−1 ⊂ F ⊂ Z(G)wH{1,2}w

−1.
This proves the proposition in all the cases.

Now from the above result it is straightforward to deduce the following:

Corollary 10.2. — The singular set S(U,Γ) consists of those x ∈ G/Γ such that Fx
is compact for some proper closed subgroup F of G containing U .
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10.2. Ergodic U -invariant measures on G/Γ. — The following description of U -ergodic
measures was obtained in [12, 17, 19]

Theorem 10.3 (Ratner, Margulis-Tomanov). — Let λ be a U -invariant U -ergodic prob-
ability measure on G/Γ. Then there exists a closed subgroup F of G containing U and
a point x ∈ G/Γ such that Fx ∼= F/Fx is compact and λ is the unique F -invariant
probability measure supported on Fx.

In particular, by Corollary 10.2, if λ(S(U,Γ)) = 0 then λ is G-invariant.

Proof of Theorem 6.3. — We intend to prove this result by induction on n.
If x ∈ S(U,Γ) then there exists w ∈ W and J ∈ C such that if we put F = wHJw−1

then Ux ⊂ Fx, Fx is compact, and F ∼= SL2(K)k, where k = |J | ≤ n− 1. Since

Fx ∼= F/Fx =
�

J∈J

wHJw−1/(wHJw−1)x

and wHJw−1 ∼= SL2(K), we can replace G by F and the result follows from the
induction hypothesis.

Therefore now we can assume that x ∈ G/Γ � S(U,Γ). We put xi = x for all i.
Choose any sequence Ti →∞ in K. Then by (43) and (44) we have that µi = µTi for
all i. Now by passing to a subsequence we may assume that µi → µ for some µ ∈M;
that is, for any f ∈ C(G/Γ),

lim
i→∞

�

G/Γ
f dµi =

�

G/Γ
f dµ.

By Lemma 6.2 we have that µ is U -invariant. By Theorem 6.1 we have that
µ(S(U,Γ)) = 0. Therefore in view of the decomposition of an invariant measure
into its ergodic components, we have that λ(S(U,Γ)) = 0 for almost all U -ergodic
components λ of µ. Therefore by Theorem 10.3 almost all U -ergodic components of
µ are G-invariant. Hence µ is G-invariant.
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