Syllabus for Math 2173

Math 2173=Engineering Mathematics Semester III: (3 semester credit hours)										
	т	e)	tbook sec	tions from	J	Stewart:				
	CA	L	CULUS: E	arly Transco	eı	ndentals, 6E				
	Part		ne = 21 Da	ys: Multivar	ia	ible Integral Calcu	ulus;			
					_					
	Davs		Section#	# of pages	-					
	3		14.6	9		(Review of) Direc	tional Deriva	atives and the	Gradient Vecto	r
			14.7	8		Maximum and Mi	nimum Value	es		
			14.8	5		Lagrange Multipli	ers			
	3		15.1	7		Double Integrals	over Rectan	gles		
			15.2	4		Iterated Integrals		0		
			15.3	6		Double Integrals	over Genera	I Regions		
	3		15.4	5		Double Integrals i	in Polar Coo	rdinates: Char	nge of Coordina	ates
			15.6	8		Triple Integrals				
			15.7	3		Triple Integrals in	Cylindrical (Coordinates		
	3		15.8	4		Triple integrals in	Spherical C	oordinates		
			15.9	7		Change of Variab	les in Multip	le Integrals		
			Midterm 1							
	4		16.1	5		Vector Fields				
			16.2	5		Line Integrals (3-I	D)			
			16.2	4		Line Integrals (2-I	D)			
			16.3	8		The Fundamental	I Theorem to	or Line Integral	s; Independen	ce of Path
			Midterm 2							
Partial # Of				6.0769231		Average number	of assigned	pages/lecture		
Lect. Days=	13				_					
Part Tw	0= 11		octuro Dav	vs: 2 nd Orde		Constant Coeffic	cient O D F	'e		
Tart IW	0-11	Ē				Constant Coenic	CIEIR O.D.L.	3		
	Т	e)	ktbook sed	tions from	J	. Stewart:				
	CA	L	CULUS: E	arly Transc	eı	ndentals, 6E				
Manainan Although Ct.			notivation f	or the differe		tial aquations in C	Contine 0.1 in	eveellent bi	a abarastarizat	ion
vvaring: Autougn Stewart's motivation for the differential equations in Section 9.1 is excellent, his characterization										
"mathematical models" in Section 1.2 are examples of a fundamental error, namely, the fallacy of context dropping.										
The context being dropped from all his statements (about population growth, motion of a spring, etc) is that a valid										
mathematical characterization of any observed phenomenon necessarily has (a) a well-defined (explicit or implicit)										
domain of a	appilca		tive proces	a well-defin	le h	d accuracy. As a (is differential equi	consequence	e of his unfami	to characterizir	
them in term	s of th	e	subjectivity	inherent in	"r	nodels" whose ev	vanescence	is characterize	ed by the motto	
"here today, g	jone to	m	orrow".		Ì				,	·
Implicitly (or ex	cplicitly	()	branding so	cientific know	Ν	edge as intrinsica	Illy transient	would violate	the truth in labe	eling principle.
					_					
	1		9.1	4	_	Modeling with Dif	terential Equ	lations lethod		
			0.2	0	-			letilou		
	1	Ге	xtbook Se	ctions from	۱I	Boyce & DiPrima	a:			
Elementary	/ Diff'l	E	q'ns or fro	om Element	a	ry Diff'l Eq'ns an	d Boundary	v Value Prob's	6 (9 th Edition)	
	1		3.1	7		Homogeneous Ec	quations with	Constant Co	efficients	
	1	\vdash	1/2 OF 3.2	5		Solutions of Lines	ar Homogene	eous Equation	s, the Wronski	an
	1		3.3	5		Complex Roots of	f the Charac	teristic Equation	on	
	1		3.4	5		Repeated Roots;	Reduction o	f Order		
	1		Midterm 3							
	1	\vdash	3.5	9		Nonhomogeneous	s Equations;	Method of Un	determined Co	efficients
Week 11	1	\vdash	3.7	11 8		Forced Vibrations		alions		
	•	\vdash	5.0	0	-					
Partial # of				5.9090909						
Lect. Days=	11									
Tot # of		\vdash								
Lect Davs	2/	\vdash			_					
Rec'n. Days	16									
Grand Total # of days	40									
credit hours	2.857	\vdash			_					
(+0,0/10)		1								