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Diophantine problems

x2 + y2 = z2 (the “Pythagorean” equation)

x2 −Ny2 = 1 (“Pell’s” Equation)
N is a given integer, not a square.

x3 = y2 + N (One of Fermat’s challenges to English
mathematicians was to show that when N = 2 the
only positive integer solution is x = 3, y = 5.)

xN + yN = zN (Fermat’s Last Theorem)
N is an integer > 2.

(from Diophantus:) If a rational number is the dif-
ference of two positive rational cubes then it is the
sum of two positive rational cubes.

(from a 10th century Arabic mss.) Given a natu-
ral number N , does there exist a right triangle with
rational sides and area N? (“congruence number
problem”)



Hilbert’s 10th problem

Find an algorithm to decide whether a polynomial equa-
tion f (x, y, z, . . . ) = 0 (with integer coefficients) has
any integer solutions.

Matijasevič (following work of J. Robinson, M. Davis, and
others) 1970: There is no such algorithm.

Still open: the “rational” form of Hilbert’s 10th problem:
Find an algorithm to decide whether f (x, y, z, . . . ) = 0
has any rational solutions.

Even the following is still open:

Find an algorithm to decide, given integers a, b, whether
the equation y2 = x3 + ax + b has a solution in the ra-
tional numbers.



Consider the problem of finding the rational zeroes to
(absolutely irreducible) polynomial equations in two vari-
ables (with integer or rational coefficients): f (x, y) = 0.
Roughly, the problem gets harder as the degree of the f
increases.

But the correct measure of the “difficulty” of solving
f (x, y) = 0 is the genus of the equation.

Consider the set X(C) = {(x, y) ∈ C2 : f (x, y) = 0} of
complex solutions to f (x, y) = 0. If we complete X (add
several points at ∞) and desingularize it, we get a com-
pact Riemann surface X̂ ; topologically, X̂ is a compact
oriented surface, and we let g be its genus (the number
of holes...)





A brief and incomplete outline of what is known about
rational solutions to f (x, y) = 0:

g = 0

This is the case for example if deg f = 1 or 2. The set
of X(Q ) of rational solutions to f (x, y) = 0 is either
empty or infinite. If deg f = 1, then there are infin-
itely many points (which form a “1-parameter family.”)
When deg f = 2, it is a problem to decide whether X(Q )
is empty, and the problem is solved by the “Hasse prin-
ciple:” X(Q ) is non-empty if and only if there are real
solutions and p-adic solutions for each prime p, i.e.

X(Q ) 6= ∅
⇐⇒

X(R) 6= ∅ and X(Q p) 6= ∅ for all primes p

Moreover, as soon as we have one solution (A, B) ∈
X(Q ) we get infinitely many, and we can parametrize
them by the rational points on a line:





g = 1

This case occurs, for example, if f (x, y) = y2−x3−ax−b
and x3 + ax + b has distinct roots. The set X(Q ) of ra-
tional solutions to f (x, y) = 0 can be finite (including
possibly empty) or infinite. There are no algorithms at
present to decide which. But if we allow “points at in-
finity” the set X(Q ), when nonempty, can be made into
an abelian group. (E.g. for f (x, y) = y2 − x3 − ax− b,
there is one point at infinity, which serves as the identity
for the group.)

g > 1

Remarkably little is known in general beyond one spec-
tacular result, due to Faltings: X(Q ) is finite (including
possibly empty). But we have no effective procedure for
deciding whether X(Q ) is empty or for enumerating its
elements if it is non-empty.



We consider the case g = 1 in more detail.

A curve E : y2 = x3 + ax + b is called an elliptic curve
when −4a3 − 27b2 6= 0 (which guarantees that the roots
of x3+ax+b are distinct). One can make the points of E
with values in any field into a group: given points P and
Q on E, we can construct the line through P and Q; this
line will intersect E in a third point R, and a group law
on E is then determined by the condition P +Q+R = O
(where O is the point at infinity and the identity of the
group).

(When P = Q, we use the tangent line to the curve at
P . There are other special cases to consider as well.)

A key feature of the situation: if P and Q have coordi-
nates in a field F , so does P + Q. So E(Q ), E(R), and
E(C) all become groups under this construction.





This picture yields the following formulas:

If P = (x1, y1), Q = (x2, y2) are distinct points and
x1 6= x2, then the coordinates (x3, y3) of P + Q are((

y2 − y1

x2 − x1

)2

− x1 − x2,

(
y2 − y1

x2 − x1

)
x3 −

y1x2 − y2x1

x2 − x1

)
If P and Q are distinct points with x1 = x2, then P +Q =
O, the point at infinity.

If P = Q, but y1 = y2 6= 0, then the coordinates of
P + Q = 2P are

((
3x2

1 + a

2y1

)2

− 2x1,

(
3x2

1 + a

2y1

)
x3 + y1 −

(
3x2

1 + a

2y1

)
x1

)
Finally, if P = Q and y1 = y2 = 0, then P + Q = 2P =
O.



The picture shows E(R). E(C) is a torus: we have

C/L ' E(C)

for some lattice L ⊆ C, the isomorphism being given by
the Weierstrass ℘-function for L.

We want to understand E(Q ).

Theorem (Mordell, 1922) E(Q ) is a finitely generated
abelian group.

So E(Q ) ' T ⊕ Zr, where T is finite abelian. T is easy
to compute:

Theorem (Lutz, Nagell c. 1935) If (x, y) is a torsion
point, then x and y are integers and either y = 0 or
y2 | 4a3 + 27b2.

What about r? (r called the rank of E) We can compute
an upper bound for r but there’s no known bound for the
heights of the generators of E(Q ). (So unless the upper
bound is the rank, we don’t know when to stop looking.)

If P = (x, y) ∈ E(Q ), the height of P , denoted H(P ),
is the maximum size of the numerator and denominator
of x and y.



How can we determine r??

Digression (?):

Consider E(Fp) = {(x, y) ∈ F2
p : y2 ≡ x3 + ax + b mod

p} ∪ {O}. If p 6= 2 and p - 4a3 + 27b2, then the formulas
above make E(Fp) into a group. What is Np = #E(Fp)?
For each x = 0, 1, . . . , p− 1 we get

• no points if x3 + ax + b is not a square modp
• one point if x3 + ax + b ≡ 0 mod p
• two points if x3 + ax + b is a nonzero square modp

plus one for the point at infinity.

Since a randomly chosen nonzero element of Fp is equally
as likely to be a square as a non-square, the first and
third possibilities might tend to be equally likely, which
suggests that Np = #E(Fp) should be about p + 1. In
fact,

Theorem (Hasse, 1934) |p + 1 − Np| ≤ 2
√

p. (For p >
2, p - 4a3 + 27b2.)



In the late 1950s, Birch and Swinnerton-Dyer had the
happy thought (suggested by work of Siegel on quadratic
forms in the 1930s) that if r = rankE(Q ) is large (> 0)
then we should get more points in E(Fp) than expected.

(There is a “reduction map” E(Q ) → E(Fp)).

Or maybe, if there are more points in lots of E(Fp)’s than
there should be, we have a better chance of being able to
“piece them together” into a rational point on E.

In any case, they tried calculating

πE(x) =
∏
p≤x

Np

p
.

for various elliptic curves E, on the idea (hope?) that
this would grow more rapidly when r = rE is positive.
Here are the results for some curves of the form Ed : y2 =
x3 − d2x:





This leads to the conjecture that log πE(x) grows like
rE log log x:

Birch Swinnerton-Dyer Conjecture (First form):

For any elliptic curve defined over Q ,

πE(x) ∼ CE(log x)rE ,

for some constant CE, with rE the rank of E(Q ).



Another digression (?): zeta and L-functions:

The Riemann zeta function ζ(s) has a number of striking
properties — an expression as a product (“Euler prod-
uct”) over the primes, analytic continuation to C (except
for a simple pole at s = 1), a functional equation relating
ζ(s) and ζ(1− s).

The Euler product has the form

ζ(s) =
∏

p

(
1− 1

ps

)−1

=
∏

maximal ideals P of Z

(
1− 1

[Z : P ]s

)−1

If k is an number field, then we can define analogously

ζk(s) =
∏

maximal ideals p of o

(
1− 1

[o : p]s

)−1

—which has the same striking properties.



Quite generally, if A is any ring of finite type over Z
(i.e. A = Z̄[a1, . . . , an] for some ai ∈ A and with Z̄=
the image of Z in A), then A/P is a finite field for any
maximal ideal of A, so that we could define

ζ(A, s) =
∏

maximal ideals P of A

(
1− 1

[A : P ]s

)−1

and ask about its properties.

E.g. take A = Fp[x]:

ζ(Fp[x], s) =
∏

monic irreducibles π(x)

(
1− 1

p(deg π)s

)−1

=
∑

monic polynomials m(x)

1

p(deg m)s

=

∞∑
n=0

pn 1

pns

=
1

1− 1
ps−1

.

and therefore (now taking A = Z[x])

ζ(Z[x], s) = (!)
∏

p

ζ(Fp[x], s) = ζ(s− 1)



If we take A = Fp[x, y]/(y2−x3−ax−b), we get a “zeta
function” attached to the elliptic curve E mod p. In the
1930s, Hasse showed that

ζ(E/Fp, s) =
1− apx + px2

(1− x)(1− px)

where x = p−s, and ap = p+1−Np. (This is not exactly
ζA(s), but takes into account the point at ∞.)

(Note that the zeroes of ζ(E/Fp, s) occur where p−s is a root of 1−apx+px2.

If you use Hasse’s estimate |ap| ≤ 2
√

p, you find that the zeroes of ζ(E/Fp, s)

occur on the line <(s) = 1/2.)

Hasse suggested multiplying these ζ(E/Fp, s) together to
get

ζ(E/Q , s) =

∗∏
p

ζ(E/Fp, s)

= ζ(s)ζ(s− 1)

∗∏
p

1− app
−s + p1−2s

(the “∗” means that things need to be adjusted at the
finite number of primes p where p = 2 or p | 4a3 + 27b2)



(Note that this function is essentially ζ(A, s), where now
A = Z[x, y]/(y2 − x3 − ax− b).)

The function

L(E/Q , s) =

∗∏
p

(1− app
−s + p1−2s)−1

is called the Hasse-Weil L-function of E. It only con-
verges for <(s) > 3/2, but if we formally set s = 1 we
find

L(E/Q , 1) =

∗∏
p

p

Np
,

since Np = p + 1 − ap. This suggests that L(E/Q , 1)
should vanish if rE > 0 and perhaps should vanish to or-
der rE. This is the second form of the Birch Swinnerton-
Dyer Conjecture:



Birch Swinnerton-Dyer Conjecture (Second Form):

For any elliptic curve defined over Q ,

ords=1L(E/Q , s) = rE

with rE the rank of E(Q ).

Note that this presumes that L(E/Q , s) can be analyt-
ically continued at least to s = 1; it is now known that
L(E/Q , s) can be analytically continued to the entire
complex plane, for all elliptic curves defined over Q , by
work of Wiles, Taylor, Breuil, Conrad, and Diamond.



Here’s a heuristic argument that relates the two forms,
and “explains” the growth rate (log x)r: the usual zeta
function has a simple pole at s = 1; and standard argu-
ments allow one to deduce from this that∏

p≤x

(
1− 1

p

)−1

≈ log x

and therefore ∏
p≤x

(
1− 1

p

)r

≈ 1

(log x)r
,

which arises from 1/ζ(s)r, which has a zero of order r at
s = 1. By analogy one might expect

∗∏
p≤x

p

Np
≈ 1

(log x)r
,

if L(E, s) has a zero of order r at s = 1.

(the “≈” above means the ratio tends to a nonzero con-
stant.)



What’s known?

• If ords=1L(E/Q , s) = 0 or 1, then the second form
of the conjecture is valid. (Gross, Zagier, and Koly-
vagin)
So, for example, if L(E/Q , 1) 6= 0, then the only

rational solutions to the equation y2 = x3 + ax + b
correspond to torsion points and can therefore be
determined by the Lutz/Nagell theorem.
And if L(E/Q , 1) = 0 but L′(E/Q , 1) 6= 0, then

there is a rational solution P = (x0, y0) to y2 =
x3 + ax + b such that every solution is a multiple of
P plus a torsion point (“multiple” and “plus” in the
sense of the group law on E).

• The first form implies the second. (Dorian Golfeld)


