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Diophantine problems
2 2 2 « ” .
r° 4+ y° = z° (the “Pythagorean” equation)

r? — Ny? =1 (“Pell’s” Equation)
N is a given integer, not a square.

23 = y? + N (One of Fermat’s challenges to English
mathematicians was to show that when N = 2 the
only positive integer solution is x = 3,y = 5.)

vV +yY = 2V (Fermat’s Last Theorem)
N is an integer > 2.

(from Diophantus:) If a rational number is the dif-
ference of two positive rational cubes then it is the
sum of two positive rational cubes.

(from a 10th century Arabic mss.) Given a natu-
ral number N, does there exist a right triangle with
rational sides and area N7 (“congruence number
problem”)



Hilbert’s 10th problem

Find an algorithm to decide whether a polynomaial equa-
tion f(x,y,z,...) =0 (with integer coefficients) has
any tnteger solutions.

Matijasevic (following work of J. Robinson, M. Davis, and
others) 1970: There is no such algorithm.

Still open: the “rational” form of Hilbert’s 10th problem:
Find an algorithm to decide whether f(x,y,z,...) =0
has any rational solutions.

Even the following is still open:

Find an algorithm to decide, given integers a, b, whether
the equation y* = x>+ ax + b has a solution in the ra-
tional numbers.



Consider the problem of finding the rational zeroes to
(absolutely irreducible) polynomial equations in two vari-
ables (with integer or rational coefficients): f(x,y) = 0.
Roughly, the problem gets harder as the degree of the f
Increases.

But the correct measure of the “difficulty” of solving
f(x,y) = 0 is the genus of the equation.

Consider the set X (C) = {(z,y) € C*: f(x,y) = 0} of
complex solutions to f(z,y) = 0. If we complete X (add
several points at 0o) and desingularize it, we get a com-
pact Riemann surface X - topologically, X isa compact
oriented surface, and we let g be its genus (the number

of holes...)
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A brief and incomplete outline of what is known about
rational solutions to f(z,y) = 0:
g=70

This is the case for example if deg f = 1 or 2. The set
of X(Q) of rational solutions to f(z,y) = 0 is either
empty or infinite. If deg f = 1, then there are infin-
itely many points (which form a “I-parameter family.”)
When deg f = 2, it is a problem to decide whether X (Q)
is empty, and the problem is solved by the “Hasse prin-
ciple:” X (Q) is non-empty if and only if there are real
solutions and p-adic solutions for each prime p, i.e.

X(Q)#0

<~
X(R) # 0 and X(Q,) # 0 for all primes p

Moreover, as soon as we have one solution (A, B) €
X(Q) we get infinitely many, and we can parametrize
them by the rational points on a line:



(A,B)

(x(t),¥(t))

(O,t)




g=1

This case occurs, for example, if f(z,y) = y*—2° —ax—0b

and z° + ax + b has distinct roots. The set X (Q) of ra-
tional solutions to f(x,y) = 0 can be finite (including
possibly empty) or infinite. There are no algorithms at
present to decide which. But if we allow “points at in-
finity” the set X(Q ), when nonempty, can be made into
an abelian group. (E.g. for f(z,y) = y* — 2° — ax — b,
there is one point at infinity, which serves as the identity
for the group.)

g>1

Remarkably little is known in general beyond one spec-
tacular result, due to Faltings: X (Q) is finite (including
possibly empty). But we have no effective procedure for
deciding whether X (Q ) is empty or for enumerating its
elements if it is non-empty.



We consider the case g = 1 in more detail.

A curve E : y?* = 23 4+ ax + b is called an elliptic curve
when —4a® — 27b* # 0 (which guarantees that the roots
of 23+ ax+b are distinct). One can make the points of E
with values in any field into a group: given points P and
() on E. we can construct the line through P and ); this
line will intersect E in a third point R, and a group law
on F is then determined by the condition P+Q+ R = O
(where O is the point at infinity and the identity of the

group).

(When P = @, we use the tangent line to the curve at
P. There are other special cases to consider as well.)

A key feature of the situation: if P and () have coordi-
nates in a field F', so does P+ Q. So F(Q ), E(R), and
E(C) all become groups under this construction.



the point at infinity (O) is the identity

the lines through () are the vertical lines

reflection across the r-axis is negation

the group law is defined by “collinear points sum to Q"

44

P+Q = -R




This picture yields the following formulas:

If P = (z1,y1), @ = (x9,y9) are distinct points and
r1 # To, then the coordinates (x3,y3) of P + @ are

<<y2y1>2 <y2—3/1) y1xzy2x1>
— X1 — X2, L3 —

To — X1 To — I a2 — X1

If P and () are distinct points with 21 = x9, then P+Q =
O, the point at infinity:.

If P =@, but y1 = y» # 0, then the coordinates of
P+ Q) =2P are

Finally, if P = Q and y; = y» = 0, then P + () = 2P =
O.



The picture shows E(R). E(C) is a torus: we have
C/L ~ E(C)

for some lattice L C C, the isomorphism being given by

the Weierstrass gp-function for L.

We want to understand E(Q ).

Theorem (Mordell, 1922) E(Q) is a finitely generated
abelian group.

So BF(Q) ~T & 7Z", where T is finite abelian. T' is easy
to compute:

Theorem (Lutz, Nagell c¢. 1935) If (z,y) is a torsion
point, then x and y are integers and either y = 0 or
y* | 4a’ + 270°.

What about 7?7 (7 called the rank of E') We can compute
an upper bound for r but there’s no known bound for the
heights of the generators of F(Q ). (So unless the upper
bound is the rank, we don’t know when to stop looking.)

If P=(z,y) € F(Q), the height of P, denoted H(P),
1s the maximum size of the numerator and denominator
of x and y.



How can we determine r?7
Digression (7):

Consider E(F,) = {(z,y) € F> : y* = 2° 4+ az + b mod
pyU{O}. If p # 2 and p { 4a® + 2707, then the formulas
above make E(IF,) into a group. What is N, = #E(FF,)?
Foreach x =0,1,...,p — 1 we get

e 10 points if 2% + az + b is not a square modp
e one point if 23 + ax + b = 0 mod p
e two points if 2° + ax + b is a nonzero square modp

plus one for the point at infinity.

Since a randomly chosen nonzero element of IF), is equally
as likely to be a square as a non-square, the first and
third possibilities might tend to be equally likely, which
suggests that N, = #E(FF,) should be about p + 1. In
fact,

Theorem (Hasse, 1934) |p+1 — N,| < 2,/p. (For p >
2,p14a’ + 270°.)



In the late 1950s, Birch and Swinnerton-Dyer had the
happy thought (suggested by work of Siegel on quadratic
forms in the 1930s) that if r = rankF(Q ) is large (> 0)
then we should get more points in E(F,) than expected.

(There is a “reduction map” E(Q) — E(F),)).

Or maybe, if there are more points in lots of E(IF,)’s than
there should be, we have a better chance of being able to
“piece them together” into a rational point on E.

In any case, they tried calculating

N
mp(x) = H L
p<x p
for various elliptic curves F, on the idea (hope?) that
this would grow more rapidly when r = rg is positive.

Here are the results for some curves of the form Ej : y? =
23 — d*x:



, Np
me(z) =] d = 20974
oy P =
p<r
7
d = 1954
bog(me, (X))
34
5
3
MBL
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log log{ X}

Ficurg 2. Birch and Swinnerton-Dyer data for v* = r* — d°x

r=4

r=3

r==z

=1

(Bource: Rubin, S8ilwverberqg: Ranks of elliptic curves,

BAMS 39 4 2002)



This leads to the conjecture that log mp(x) grows like
rgloglog x:

Birch Swinnerton-Dyer Conjecture (First form):
For any elliptic curve defined over Q,
mp(z) ~ Cp(logz)"™”,
for some constant C'g, with rp the rank of £(Q ).




Another digression (7): zeta and L-functions:

The Riemann zeta function (s) has a number of striking
properties — an expression as a product (“Euler prod-
uct”) over the primes, analytic continuation to C (except
for a simple pole at s = 1), a functional equation relating

((s) and ¢(1 — s).
The Euler product has the form

w-11(-3)’
- I ()

maximal ideals P of Z

If k£ is an number field, then we can define analogously

aor= I <1 o :113]3) _1

maximal ideals p of o

—which has the same striking properties.



Quite generally, if A is any ring of finite type over Z
(ie. A = Zlay,...,a,] for some a; € A and with Z=
the image of Z in A), then A/P is a finite field for any
maximal ideal of A, so that we could define

o= T (i)

maximal ideals P of A

and ask about its properties.

E.g. take A =F|x|:

wida= I (1- p(djgﬁ)s)l

monic irreducibles 7(x

1
- Z p(deg m)s

monic polynomials m(z)
00
.
n=0

and therefore (now taking A = Z|x|)

((Z[x),s) = () ] [ <Fyla], ) = C(s = 1)



If we take A = [z, y]/(y*> — 2 —ax —b), we get a “zeta
function” attached to the elliptic curve £ mod p. In the
1930s, Hasse showed that

1 — ayx + pa?

S = T

where x = p~°, and a, = p+1— N,. (This is not exactly
Ca(s), but takes into account the point at co.)

(Note that the zeroes of ((E/F,, s) occur where p~* is a root of 1 —a,z + pz?.
If you use Hasse’s estimate |a,| < 2,/p, you find that the zeroes of ((E/IF),, s)
occur on the line R(s) = 1/2.)

Hasse suggested multiplying these ((E/F,, s) together to
get

(E/Q,s) =] (E/Fps)

= ((s)((s — 1) H 1—ap®+p—

p

(the “x” means that things need to be adjusted at the
finite number of primes p where p = 2 or p | 4a® + 27b°)



(Note that this function is essentially (A, s), where now
A=Zzyl/(y* — 2’ — ax — ).

The function

LE/Q,s)= ][0 —ap™+p')"

p
is called the Hasse-Weil L-function of E. It only con-

verges for R(s) > 3/2, but if we formally set s = 1 we

find
L(E/Q,1 H v

since N, = p+ 1 — a,. This Suggests that L(E/Q,1)
should vanish if rg > 0 and perhaps should vanish to or-
der rg. This is the second form of the Birch Swinnerton-
Dyer Conjecture:



Birch Swinnerton-Dyer Conjecture (Second Form):

For any elliptic curve defined over Q,

ords—1 L(E/Q,s) =rg
with rp the rank of E(Q).

Note that this presumes that L(E/Q,s) can be analyt-
ically continued at least to s = 1; it is now known that
L(E/Q,s) can be analytically continued to the entire
complex plane, for all elliptic curves defined over QQ, by
work of Wiles, Taylor, Breuil, Conrad, and Diamond.



Here’s a heuristic argument that relates the two forms,
and “explains” the growth rate (logz)": the usual zeta
function has a simple pole at s = 1; and standard argu-
ments allow one to deduce from this that

1 L
H (1—];> ~ log x

p<x

[l (1 ‘%) ~ T

p<w
which arises from 1/((s)", which has a zero of order r at
s = 1. By analogy one might expect

P
H logaz

p<x p
if L(F,s) has a zero of order r at s = 1.

and therefore

(the “a~” above means the ratio tends to a nonzero con-
stant.)



What’s known?

o [f ords_1 L(E/Q,s) =0 or 1, then the second form
of the conjecture is valid. (Gross, Zagier, and Koly-
vagin)

So, for example, if L(E/Q,1) # 0, then the only
rational solutions to the equation y? = 2% + ax + b
correspond to torsion points and can therefore be
determined by the Lutz/Nagell theorem.

And if L(E/Q,1) =0 but L'(E/Q,1) # 0, then
there is a rational solution P = (zg,yo) to y* =
23 + ax + b such that every solution is a multiple of
P plus a torsion point ( “multiple” and “plus” in the
sense of the group law on F).

e The first form implies the second. (Dorian Golfeld)



