The Conjecture
of
Birch
and
Swinnerton-Dyer

(Overheads for a talk at Ohio State, 11/10/2005; they weren't used due to technical difficulties)

Warren Sinnott

Diophantine problems

$$x^2 + y^2 = z^2$$
 (the "Pythagorean" equation)

$$x^2 - Ny^2 = 1$$
 ("Pell's" Equation)
N is a given integer, not a square.

 $x^3 = y^2 + N$ (One of Fermat's challenges to English mathematicians was to show that when N=2 the only positive integer solution is x=3,y=5.)

$$x^N + y^N = z^N$$
 (Fermat's Last Theorem)
 N is an integer > 2 .

(from Diophantus:) If a rational number is the difference of two positive rational cubes then it is the sum of two positive rational cubes.

(from a 10th century Arabic mss.) Given a natural number N, does there exist a right triangle with rational sides and area N? ("congruence number problem")

Hilbert's 10th problem

Find an algorithm to decide whether a polynomial equation f(x, y, z, ...) = 0 (with integer coefficients) has any integer solutions.

Matijasevič (following work of J. Robinson, M. Davis, and others) 1970: There is no such algorithm.

Still open: the "rational" form of Hilbert's 10th problem: Find an algorithm to decide whether f(x, y, z, ...) = 0 has any rational solutions.

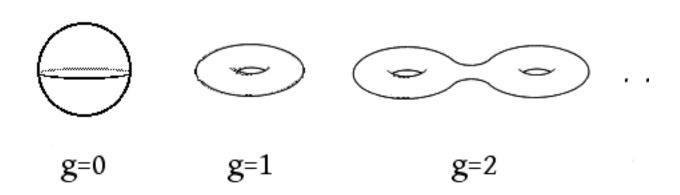
Even the following is still open:

Find an algorithm to decide, given integers a, b, whether the equation $y^2 = x^3 + ax + b$ has a solution in the rational numbers.

Consider the problem of finding the rational zeroes to (absolutely irreducible) polynomial equations in two variables (with integer or rational coefficients): f(x,y) = 0. Roughly, the problem gets harder as the degree of the f increases.

But the correct measure of the "difficulty" of solving f(x,y) = 0 is the *genus* of the equation.

Consider the set $X(\mathbb{C}) = \{(x,y) \in \mathbb{C}^2 : f(x,y) = 0\}$ of complex solutions to f(x,y) = 0. If we complete X (add several points at ∞) and desingularize it, we get a compact Riemann surface \hat{X} ; topologically, \hat{X} is a compact oriented surface, and we let g be its genus (the number of holes...)



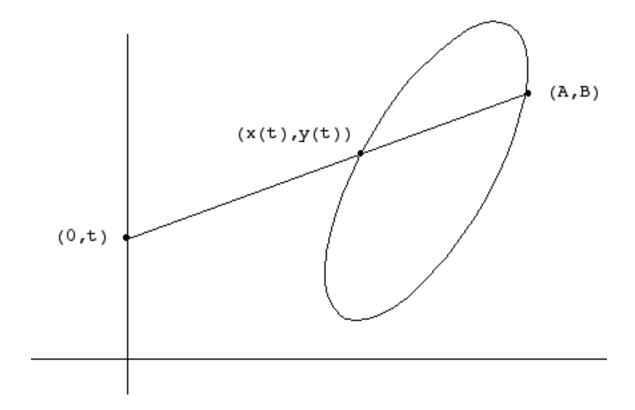
A brief and incomplete outline of what is known about rational solutions to f(x, y) = 0:

$$g = 0$$

This is the case for example if $\deg f = 1$ or 2. The set of $X(\mathbb{Q})$ of rational solutions to f(x,y) = 0 is either empty or infinite. If $\deg f = 1$, then there are infinitely many points (which form a "1-parameter family.") When $\deg f = 2$, it is a problem to decide whether $X(\mathbb{Q})$ is empty, and the problem is solved by the "Hasse principle:" $X(\mathbb{Q})$ is non-empty if and only if there are real solutions and p-adic solutions for each prime p, i.e.

$$X(\mathbb{Q}\,) \neq \emptyset$$
 \iff
$$X(\mathbb{R}) \neq \emptyset \text{ and } X(\mathbb{Q}_p) \neq \emptyset \text{ for all primes } p$$

Moreover, as soon as we have one solution $(A, B) \in X(\mathbb{Q})$ we get infinitely many, and we can parametrize them by the rational points on a line:



$$g = 1$$

This case occurs, for example, if $f(x,y) = y^2 - x^3 - ax - b$ and $x^3 + ax + b$ has distinct roots. The set $X(\mathbb{Q})$ of rational solutions to f(x,y) = 0 can be finite (including possibly empty) or infinite. There are no algorithms at present to decide which. But if we allow "points at infinity" the set $X(\mathbb{Q})$, when nonempty, can be made into an abelian group. (E.g. for $f(x,y) = y^2 - x^3 - ax - b$, there is one point at infinity, which serves as the identity for the group.)

Remarkably little is known in general beyond one spectacular result, due to Faltings: $X(\mathbb{Q})$ is *finite* (including possibly empty). But we have no effective procedure for deciding whether $X(\mathbb{Q})$ is empty or for enumerating its elements if it is non-empty.

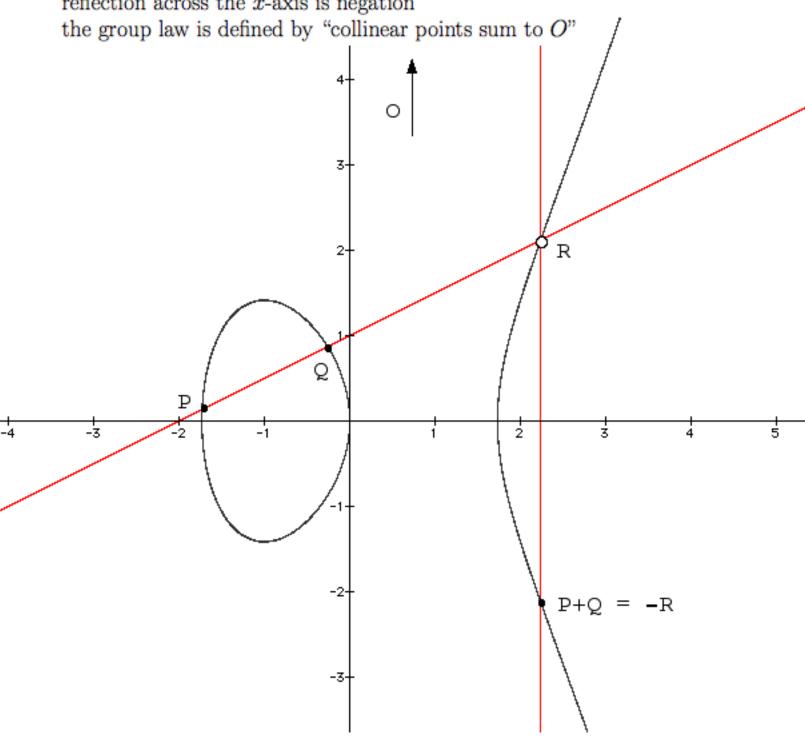
We consider the case g = 1 in more detail.

A curve $E: y^2 = x^3 + ax + b$ is called an *elliptic curve* when $-4a^3 - 27b^2 \neq 0$ (which guarantees that the roots of $x^3 + ax + b$ are distinct). One can make the points of E with values in any field into a group: given points P and Q on E, we can construct the line through P and Q; this line will intersect E in a third point R, and a group law on E is then determined by the condition P + Q + R = O (where O is the point at infinity and the identity of the group).

(When P = Q, we use the tangent line to the curve at P. There are other special cases to consider as well.)

A key feature of the situation: if P and Q have coordinates in a field F, so does P + Q. So $E(\mathbb{Q})$, $E(\mathbb{R})$, and $E(\mathbb{C})$ all become groups under this construction.

the point at infinity (O) is the identity the lines through O are the *vertical* lines reflection across the *x*-axis is negation the group law is defined by "collinear point



This picture yields the following formulas:

If $P = (x_1, y_1)$, $Q = (x_2, y_2)$ are distinct points and $x_1 \neq x_2$, then the coordinates (x_3, y_3) of P + Q are

$$\left(\left(\frac{y_2-y_1}{x_2-x_1}\right)^2-x_1-x_2,\left(\frac{y_2-y_1}{x_2-x_1}\right)x_3-\frac{y_1x_2-y_2x_1}{x_2-x_1}\right)$$

If P and Q are distinct points with $x_1 = x_2$, then P+Q = O, the point at infinity.

If P = Q, but $y_1 = y_2 \neq 0$, then the coordinates of P + Q = 2P are

$$\left(\left(\frac{3x_1^2 + a}{2y_1} \right)^2 - 2x_1, \left(\frac{3x_1^2 + a}{2y_1} \right) x_3 + y_1 - \left(\frac{3x_1^2 + a}{2y_1} \right) x_1 \right)$$

Finally, if P = Q and $y_1 = y_2 = 0$, then P + Q = 2P = O.

The picture shows $E(\mathbb{R})$. $E(\mathbb{C})$ is a torus: we have $\mathbb{C}/L \simeq E(\mathbb{C})$

for some lattice $L \subseteq \mathbb{C}$, the isomorphism being given by the Weierstrass \wp -function for L.

We want to understand $E(\mathbb{Q})$.

Theorem (Mordell, 1922) $E(\mathbb{Q})$ is a finitely generated abelian group.

So $E(\mathbb{Q}) \simeq T \oplus \mathbb{Z}^r$, where T is finite abelian. T is easy to compute:

Theorem (Lutz, Nagell c. 1935) If (x, y) is a torsion point, then x and y are integers and either y = 0 or $y^2 \mid 4a^3 + 27b^2$.

What about r? (r called the rank of E) We can compute an upper bound for r but there's no known bound for the heights of the generators of $E(\mathbb{Q})$. (So unless the upper bound is the rank, we don't know when to stop looking.)

If $P = (x, y) \in E(\mathbb{Q})$, the height of P, denoted H(P), is the maximum size of the numerator and denominator of x and y.

How can we determine r??

Digression (?):

Consider $E(\mathbb{F}_p) = \{(x,y) \in \mathbb{F}_p^2 : y^2 \equiv x^3 + ax + b \mod p\} \cup \{O\}$. If $p \neq 2$ and $p \nmid 4a^3 + 27b^2$, then the formulas above make $E(\mathbb{F}_p)$ into a group. What is $N_p = \#E(\mathbb{F}_p)$? For each $x = 0, 1, \ldots, p-1$ we get

- no points if $x^3 + ax + b$ is not a square mod p
- one point if $x^3 + ax + b \equiv 0 \mod p$
- two points if $x^3 + ax + b$ is a nonzero square mod p

plus one for the point at infinity.

Since a randomly chosen nonzero element of \mathbb{F}_p is equally as likely to be a square as a non-square, the first and third possibilities might tend to be equally likely, which suggests that $N_p = \#E(\mathbb{F}_p)$ should be about p+1. In fact,

Theorem (Hasse, 1934) $|p+1-N_p| \le 2\sqrt{p}$. (For $p > 2, p \nmid 4a^3 + 27b^2$.)

In the late 1950s, Birch and Swinnerton-Dyer had the happy thought (suggested by work of Siegel on quadratic forms in the 1930s) that if $r = \operatorname{rank} E(\mathbb{Q})$ is large (> 0) then we should get more points in $E(\mathbb{F}_p)$ than expected.

(There is a "reduction map" $E(\mathbb{Q}) \to E(\mathbb{F}_p)$).

Or maybe, if there are more points in lots of $E(\mathbb{F}_p)$'s than there should be, we have a better chance of being able to "piece them together" into a rational point on E.

In any case, they tried calculating

$$\pi_E(x) = \prod_{p \le x} \frac{N_p}{p}.$$

for various elliptic curves E, on the idea (hope?) that this would grow more rapidly when $r = r_E$ is positive. Here are the results for some curves of the form $E_d: y^2 = x^3 - d^2x$:

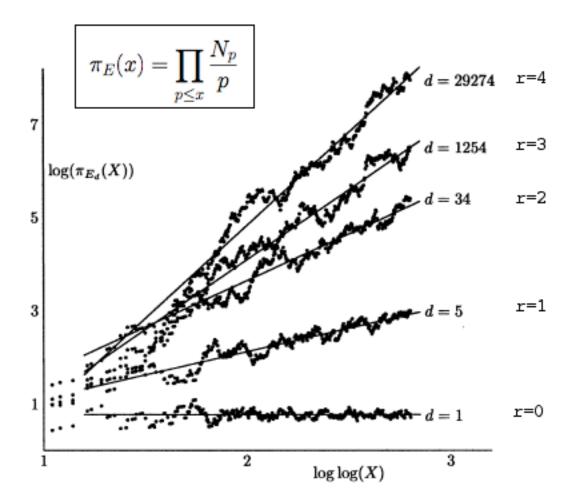


Figure 2. Birch and Swinnerton-Dyer data for $y^2 = x^3 - d^2x$

(Source: Rubin, Silverberg: Ranks of elliptic curves, BAMS 39 4 2002)

This leads to the conjecture that $\log \pi_E(x)$ grows like $r_E \log \log x$:

Birch Swinnerton-Dyer Conjecture (First form):

For any elliptic curve defined over \mathbb{Q} ,

$$\pi_E(x) \sim C_E(\log x)^{r_E},$$

for some constant C_E , with r_E the rank of $E(\mathbb{Q})$.

Another digression (?): zeta and L-functions:

The Riemann zeta function $\zeta(s)$ has a number of striking properties — an expression as a product ("Euler product") over the primes, analytic continuation to \mathbb{C} (except for a simple pole at s=1), a functional equation relating $\zeta(s)$ and $\zeta(1-s)$.

The Euler product has the form

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

$$= \prod_{\text{maximal ideals } P \text{ of } \mathbb{Z}} \left(1 - \frac{1}{[\mathbb{Z}:P]^s}\right)^{-1}$$

If k is an number field, then we can define analogously

$$\zeta_k(s) = \prod_{\text{maximal ideals } \mathfrak{p} \text{ of } \mathfrak{o}} \left(1 - \frac{1}{[\mathfrak{o} : \mathfrak{p}]^s}\right)^{-1}$$

—which has the same striking properties.

Quite generally, if A is any ring of finite type over \mathbb{Z} (i.e. $A = \overline{\mathbb{Z}}[a_1, \ldots, a_n]$ for some $a_i \in A$ and with $\overline{\mathbb{Z}}=$ the image of \mathbb{Z} in A), then A/P is a finite field for any maximal ideal of A, so that we could define

$$\zeta(A,s) = \prod_{\text{maximal ideals } P \text{ of } A} \left(1 - \frac{1}{[A:P]^s} \right)^{-1}$$

and ask about its properties.

E.g. take $A = \mathbb{F}_p[x]$:

$$\zeta(\mathbb{F}_p[x], s) = \prod_{\text{monic irreducibles } \pi(x)} \left(1 - \frac{1}{p^{(\deg \pi)s}}\right)^{-1}$$

$$= \sum_{\text{monic polynomials } m(x)} \frac{1}{p^{(\deg m)s}}$$

$$= \sum_{n=0}^{\infty} p^n \frac{1}{p^{ns}}$$

$$= \frac{1}{1 - \frac{1}{p^{s-1}}}.$$

and therefore (now taking $A = \mathbb{Z}[x]$)

$$\zeta(\mathbb{Z}[x], s) = (!) \prod_{p} \zeta(\mathbb{F}_p[x], s) = \zeta(s - 1)$$

If we take $A = \mathbb{F}_p[x,y]/(y^2-x^3-ax-b)$, we get a "zeta function" attached to the elliptic curve $E \mod p$. In the 1930s, Hasse showed that

$$\zeta(E/\mathbb{F}_p, s) = \frac{1 - a_p x + p x^2}{(1 - x)(1 - p x)}$$

where $x = p^{-s}$, and $a_p = p + 1 - N_p$. (This is not exactly $\zeta_A(s)$, but takes into account the point at ∞ .)

(Note that the zeroes of $\zeta(E/\mathbb{F}_p, s)$ occur where p^{-s} is a root of $1 - a_p x + p x^2$. If you use Hasse's estimate $|a_p| \leq 2\sqrt{p}$, you find that the zeroes of $\zeta(E/\mathbb{F}_p, s)$ occur on the line $\Re(s) = 1/2$.)

Hasse suggested multiplying these $\zeta(E/\mathbb{F}_p, s)$ together to get

$$\zeta(E/\mathbb{Q}, s) = \prod_{p}^{*} \zeta(E/\mathbb{F}_{p}, s)$$

$$= \zeta(s)\zeta(s-1) \prod_{p}^{*} 1 - a_{p}p^{-s} + p^{1-2s}$$

(the "*" means that things need to be adjusted at the finite number of primes p where p=2 or $p\mid 4a^3+27b^2$)

(Note that this function is essentially $\zeta(A, s)$, where now $A = \mathbb{Z}[x, y]/(y^2 - x^3 - ax - b)$.)

The function

$$L(E/\mathbb{Q}, s) = \prod_{p}^{*} (1 - a_p p^{-s} + p^{1-2s})^{-1}$$

is called the Hasse-Weil *L*-function of *E*. It only converges for $\Re(s) > 3/2$, but if we formally set s=1 we find

$$L(E/\mathbb{Q},1) = \prod_{p}^{*} \frac{p}{N_p},$$

since $N_p = p + 1 - a_p$. This suggests that $L(E/\mathbb{Q}, 1)$ should vanish if $r_E > 0$ and perhaps should vanish to order r_E . This is the second form of the Birch Swinnerton-Dyer Conjecture:

Birch Swinnerton-Dyer Conjecture (Second Form):

For any elliptic curve defined over \mathbb{Q} , ord_{s=1} $L(E/\mathbb{Q}, s) = r_E$ with r_E the rank of $E(\mathbb{Q})$.

Note that this presumes that $L(E/\mathbb{Q}, s)$ can be analytically continued at least to s=1; it is now known that $L(E/\mathbb{Q},s)$ can be analytically continued to the entire complex plane, for all elliptic curves defined over \mathbb{Q} , by work of Wiles, Taylor, Breuil, Conrad, and Diamond.

Here's a heuristic argument that relates the two forms, and "explains" the growth rate $(\log x)^r$: the usual zeta function has a simple pole at s = 1; and standard arguments allow one to deduce from this that

$$\prod_{p \le x} \left(1 - \frac{1}{p} \right)^{-1} \approx \log x$$

and therefore

$$\prod_{p \le x} \left(1 - \frac{1}{p} \right)^r \approx \frac{1}{(\log x)^r},$$

which arises from $1/\zeta(s)^r$, which has a zero of order r at s=1. By analogy one might expect

$$\prod_{p \le x}^* \frac{p}{N_p} \approx \frac{1}{(\log x)^r},$$

if L(E, s) has a zero of order r at s = 1.

(the " \approx " above means the ratio tends to a nonzero constant.)

What's known?

• If $\operatorname{ord}_{s=1}L(E/\mathbb{Q},s)=0$ or 1, then the second form of the conjecture is valid. (Gross, Zagier, and Kolyvagin)

So, for example, if $L(E/\mathbb{Q}, 1) \neq 0$, then the only rational solutions to the equation $y^2 = x^3 + ax + b$ correspond to torsion points and can therefore be determined by the Lutz/Nagell theorem.

And if $L(E/\mathbb{Q}, 1) = 0$ but $L'(E/\mathbb{Q}, 1) \neq 0$, then there is a rational solution $P = (x_0, y_0)$ to $y^2 = x^3 + ax + b$ such that every solution is a multiple of P plus a torsion point ("multiple" and "plus" in the sense of the group law on E).

• The first form implies the second. (Dorian Golfeld)