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Lecture by Dan File∗

Notes by Steven Miller† with Dan File

Abstract

These notes are based on a lecture given by Dan File Lecturer on Wednes-
day, November 12, 2003, and were LaTeX-ed in real time by Steven J. Miller
and additions were made by Dan File.

1 History of the Fundamental Theorem of Algebra

D’Alembert (1746) observed that ifp(x) is a polynomial with real coefficients
andz is a solution, thenz is also a solution. His intent was to integrate rational
functions by means of partial fractions. His observation permitted him to separate
any real polynomial into linear and quadratic terms and hence find antiderivatives.

Euler became interested in this problem: Euler worked on the quartic and
quintic. For the quartic, Euler showed that there was an x-intercept. He was
relying on the fact that if you have rootsβi (i ∈ {1, 2, 3, 4}), then−(β1 · · · β4)

2

is negative. This is fine if theβs are real or in complex conjugate pairs, but had
some trouble with the quntic.

Nicolas Bernouli claimed thatx4 − 4x3 + 2x2 + 4x + 4 is irreducible overR,
but Euler factored it.
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x4−4x3 +2x2 +4x+4 = (x2−

√
2±

√
4 + 2

√
7)x+(1±

√
4 + 2

√
7+

√
7)),

(1)
where above the two factors come from taking the+ sign each time, or the−

sign each time. Note factoring a quartic into two real quadratics is different than
trying to find four complex roots.
Definition: A function f is analytic on an open subsetR ⊂ C if f is complex
differentiable everywhere onR; f is entire if it is analytic on all ofC.

2 Proof of the Fundamental Theorem via Liouville

Theorem 2.1 (Liouville). If f(z) is analytic and bounded in the complex plane,
thenf(z) is constant.

We now prove

Theorem 2.2 (Fundamental Theorem of Algebra).Let p(z) be a polynomial
with complex coefficients of degreen. Thenp(z) hasn roots.

Proof. It is sufficient to show anyp(z) has one root, for by division we can then
write p(z) = (z − z0)g(z), with g of lower degree.

Note that if

p(z) = anz
n + an−1z

n−1 + · · ·+ a0, (2)

then as|z| → ∞, |p(z)| → ∞. This follows as

p(z) = zn ·
∣∣∣an +

an−1

z
+ · · ·+ a0

zn

∣∣∣ . (3)

Assumep(z) is non-zero everywhere. Then1
p(z)

is bounded when|z| ≥ R.

Also, p(z) 6= 0, so 1
p(z)

is bounded for|z| ≤ R by continuity. Thus, 1
p(z)

is
a bounded, entire function, which must be constant. Thus,p(z) is constant, a
contradiction which impliesp(z) must have a zero (our assumption).

[Lev]
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3 Proof of the Fundamental Theorem via Rouche

Theorem 3.1 (Rouche).If f andh are each analytic functions inside and on a
domainC with bounding curve∂C, and|h(z)| < |f(z)| on∂C, thenf andf + h
have the same number of zeros inC.

We now prove the Fundamental Theorem of Algebra:

Proof. Let

p(z) = anz
n + an−1z

n−1 + · · ·+ a0

f(z) = anz
n

h(z) = p(z)− f(z) = an−1z
n−1 + · · ·+ a0. (4)

On the circle|z| = R, |f(z)| = |an|Rn, and

|h(z)| ≤ |an−1|Rn−1 + ... + |a1|R + |a0|.

MakeR large enough so that

|an−1|+ ... + |a1|+ |a0|
|an|

< R.

Then|h(z)| < |f(z)| holds on the boundary of the circle centered at the origin of
radiusR. Sincef clearly hasn zeros, we are done.

[Saff]

4 Proof of the Fundamental Theorem via Picard’s
Theorem

Theorem 4.1. If there are two distinct points that are not in the image of an entire
functionp(z) (ie, ∃z1 6= z2 such that for allz ∈ C, p(z) 6= z1 or z2), thenp(z) is
constant.

We now prove the Fundamental Theorem of Algebra:
Let p(z) be a non-constant polynomial, and assumep(z) is never0.

Claim 4.2. If p(z) is as above,p(z) does not take on one of the values1
k

for k ∈ N.
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Proof. Assume not. Thus,∃zk ∈ C such thatp(zk) = 1
k
. If we take a circle

D centered at the origin with sufficiently large radius, then|p(z)| > 1 for all z
outsideD. Thus, eachzi ∈ D. By Bolzano-Weierstrasss, as all the pointszk ∈ D,
we have a convergent subsequence. Thus, we havezni

→ z′. But

p(z′) = lim
ni→∞

p(zni
) = 0. (5)

Thus, there must be somek such thatp(z) 6= 1
k
. Since there are two distinct

values not in the image of p, by Picard’s Theorem it is now constant. This con-
tradicts our assumption thatp(z) is non-constant. Therefore,p(z0) = 0 for some
z0.

Remark 4.3. One can use a finite or countable version of Picard. Rather than
missing just two points, we can modify the above to work if Picard instead stated
that if we miss finitely many (or even countably many) points, we are constant.
Just look at the method above, gives1

k1
. We can then find another larger one,

say 1
k2

. And so on. We can even get uncountably many such points by looking at
numbers such asπ

k
(using now the transcendence ofC is 1).

[Boas, 1935]

5 Proof of the Fundamental Theorem via Cauchy’s
Integral Theorem

Theorem 5.1 (Cauchy Integral Theorem).Letf(z) be analytic inside on on the
boundary of some regionC. Then∫

∂C

f(z)dz = 0. (6)

We now prove the Fundamental Theorem of Algebra:

Proof. Without loss of generality letp(z) be a non-constant polynomial and as-
sumep(z) = 0. Forz ∈ R, assumep(z) ∈ R. (Otherwise, considerp(z)p(z)).

Therefore,p(z) doesn’t change signs forz ∈ R, or by the Intermediate Value
Theorem it would have a zero.∫ 2π

0

dθ

p(2 cos θ)
6= 0. (7)
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This follows from our assumption thatp(z) is of constant sign for real argu-
ments, bounded above from0. This integral equals the contour integral

1

i

∫
|z|=1

dz

zp(z + z−1)
=

1

i

∫
|z|=1

zn−1

Q(z)
, (8)

where

Q(z) = znp(z + z−1). (9)

If z 6= 0, Q(z) 6= 0.
If z = 0, thenQ(z) 6= 0 since

p(z + z−1) = an(z + z−1)n + · · ·
znp(z + z−1) = zn

(
· · · anz

−n
)

+ · · ·
= an + z(· · · ). (10)

Thus,Q(z) = an, which is non-zero. Hence,Q(z) 6= 0, and consequently
zn−1

Qz
is analytic. By the Cauchy Integral Formula1

i

∫
|z|=1

zn−1

Q(z)
6= 0. Thus, a

contradiction!

[Boas 1964]

6 Proof of the Fundamental Theorem via Maximum
Modulus Principle

Theorem 6.1 (Maximum (Minimum) Modulus Principle). No entire function
attains its maximum in the interior.

We now prove the Fundamental Theorem of Algebra:

Proof. Assumep(z) is non-constant and never zero.∃M such that|p(z)| ≥ |a0| 6=
0 if |z| > M . Since|p(z)| is continuous, it achieves its minimum on a closed in-
terval. Letz0 be the value in the circle of radiusM wherep(z) takes its minimum
value.

So|p(z0)| ≤ |p(z)| for all z ∈ C, and in particular|p(z0)| ≤ |p(0)| = |a0|.
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Translate the polynomial. Letp(z) = p((z − z0) + z0); let p(z) = Q(z − z0).
Note the minimum ofQ occurs atz = 0: |Q(0)| ≤ |Q(z)| for all z ∈ C.

Q(z) = c0 + cjz
j + · · ·+ cnz

n, (11)

wherej is such thatcj is the first coefficient (afterc0) that is non-zero. I must
showQ(0) = 0. Note if c0 = 0, we are done.

We may rewrite such that

Q(z) = c0 + cjz
j + zj+1R(z). (12)

We will extract roots. Let

reiθ = −c0

cj

. (13)

Further, let

z1 = r
1
j e

iθ
j . (14)

So,
cjz

j = −c0. (15)

Let ε > 0 be a small real number. Then

Q(εz1) = c0 + cjε
jzj

1 + εj+1zj+1
1 R(εz1)

|Q(εz1)| ≤ |c0 + cjε
jzj

j |+ εj+1|z1|j+1|R(εz1)|
|c0| − εj|c0|+ εj+1|z1|j+1N, (16)

whereN is chosen such thatN > |R(εz1)|, andε is chosen so that

εj+1|z1|j+1 < εj|c0|.

Thus,

|Q(εz1)| < |c0|, (17)

but this was supposed to be our minimum. Thus, a contradiction!

[Fefferman]
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7 Proof of the Fundamental Theorem via Radius of
Convergence

We now prove the Fundamental Theorem of Algebra: As always,p(z) is a non-
constant polynomial. Consider

f(z) =
1

p(z)
= b0 + b1z + · · · , (18)

and

p(z) = anz
n + · · ·+ a0, a0 6= 0. (19)

Lemma 7.1. ∃c, r ∈ C such that|bk| > crk for infinitely manyk.

Now, 1 = p(z)f(z). Thus,a0b0 = 1. This is our basis step. Assume we
have some coefficient such that|bk| > crk. We claim we can always find another.
Suppose there are no more. Then the coefficient ofzk+n in p(z)f(z) is

a0bk+n + a1bk+n−1 + · · ·+ anbk = 0. (20)

Thus, as we have|bj| > crj in this range, we have the coefficient satisfies

|a0|rn + |a1|rn−1 + · · ·+ |an−1|r ≤ |an| (21)

if

r ≤ min{1, |an|
|a0|+ · · ·+ |an−1|

. (22)

This will give that

|bk| =
|a0bk+n + · · ·+ an−1bk+1|

|an|

≤ |a0bk+n|+ · · ·+ |an−1bk+1|
|an|

≤ crk (23)

for sufficiently small.
Let z = 1

r
. Then

∣∣bkz
k
∣∣ =

|bk|
rk

> c. (24)
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This is true for infinitely manyk, hence the power series diverges, contradict-
ing the assumption that the function is analytic and its power series converges
everywhere.

[Velleman]
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