THE GAUSS-BONNET THEOREM

CHRISTIAN SCHNELL

1. A SHORT BIOGRAPHY

Johann Carl Friedrich Gauss was born on April 30, 1777 in the German city of
Braunschweig. His precociousness (well-known from the old and tired anectdote
about his adding the numbers from 1 to 100 in a clever way) impressed the Duke of
Braunschweig, who financed Gauss’s studies at the University of Gottingen. Gauss
obtained his Doctor of Philosophy in 1799, and until 1807, when the funding from
Braunschweig ceased, had his freest and most productive time. In 1807, he became
director of the astronomical observatory at Gottingen; besides this, he also held
a professorship at the university of that city. In later years, he often complained
about his manifold duties that prevented him from doing his mathematical work.
Gauss died in Géttingen on February 23, 1855.
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FIGURE 1. A map of Germany, showing the area in which Gauss lived.

Gauss followed his maxim “Pauca sed matura.”! when publishing; accordingly,
the best source for historians of mathematics are his notebooks, where the devel-
opment of his ideas is more obvious than in his papers.

2. INTRODUCTION

Gauss’s major published work on differential geometry is contained in the “Dis-
quisitiones generales circa superficies curvas” from 1827; this short paper of only
40 pages was presented to the Kénigliche Gesellschaft der Wissenschaften in the
form of a lecture on October 8. An English translation, together with the original
Latin text and various other information, can be found in Dombrowski’s book [1].

1 “Few, but mature.”
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The surveying work that Gauss did for the Kingdom of Hannover (then in per-
sonal union with Great Britain) from 1816 on, as well as the practical aspects
of surveying, helped to make him interested in the geometry of curved surfaces.
During the 19th century, people began to make precise geological surveys, both to
determine the exact shape of the Earth (definition of the meter in France), and for
administrative reasons; when the Kingdom of Hannover was triangulated from 1821
until 1844, Gauss was in charge of first the measurements and later the evaluation
of the numerical data.

3. THE GAUSS-BONNET THEOREM ON THE SPHERE

We begin the mathematical part of this paper by looking at the Gauss-Bonnet
theorem on the simplest of curved surfaces, the sphere. We study triangles on the
two-sphere S2, which is the set of points (z,y, z) € R® with 22 + 9% + 22 = 1. If the
sides of such a triangle come to lie on great circles, and are therefore geodesics or
curves of shortest length, we call it a geodesic triangle.

Theorem 3.1. Let A be a geodesic triangle on S? with interior angles o, B,y. The
area of A equals |Al=a+ 8 +v—m.

The clever proof of this formula goes as follows. Let us label the great circles
bounding A as a,b, ¢, in such a manner that the angle « is enclosed between b
and ¢ and so forth. Together, b and ¢ divide the surface of the sphere into four
crescent-shaped pieces; the combined area of the two pieces with interior angle a
is 2-a/(27) - 47 = 4a. A similar formula holds for the the other two regions
corresponding to 8 and ~.

FIGURE 2. A geodesic triangle A on the two-sphere.

All three regions together cover the entire sphere, but A and its antipodal image
(on the opposite side of the sphere) are covered exactly three times. Therefore

da+4B +4y=4r+2-2|A] or |Al=a+B+7y—,

which is the claimed formula for the area of the triangle.
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Consequences. This simple result on the area of triangles has several interesting
consequences. First, the area of a spherical triangle depends only on it angles; this
is quite different from the case of plane triangles, which can always be rescaled.
Secondly, the sum of angles a + 8 + 7y in a spherical triangle exceeds 7; not only
that, but the discrepancy grows with the size of the triangle.

The usual laws of Euclidean geometry are thus violated on the surface of a
sphere, precisely because the sphere is not flat, but curved; this fact becomes more
and more apparent the bigger a portion of the surface one looks at. Interestingly,
by measuring the angles inside sufficiently big triangles and finding that their sum
exceeds 7, a person on the sphere can discover that he is not living in the plane
but on a curved surface.

Our formula also shows that there can be no completely accurate map of any
part of the Earth. For say we had a map that accurately represented all lengths and
angles, of at least a small part of the Globe. Then pieces of great circles would have
to become pieces of straight lines on our map, since great circles and straight lines
are both curves of shortest length. A small geodesic triangle thus has to become
an ordinary triangle on the map, but this is clearly not possible because the angle
sums in the two triangles are not the same. (One is greater than, the other exactly
equal to, 7.)

General version of the Gauss-Bonnet theorem. On an arbitrary curved sur-
face M in R®, a similar formula for the area of geodesic triangles exists. For the
time being, we think of geodesics simply as curves of shortest length; they are the
generalization of lines or great circles to the surface M. Let A be a small geodesic
triangle on M, with interior angles «, 8,7. Then

/kdaza+ﬂ+'y—7r,
A

where k, the Gaussian curvature of M, measures how curved the surface is. We
will see below how k is defined; for now, note that the sphere, which is certainly
curved in the same way at each point, has k = 1.

4. IDEAS AND RESULTS FROM THE Disquisitiones

In this section, we finally look at some of the results from the Disquisitiones
generales circa superficies curvas. In a few places, we shall see a bit of Gauss’s
style, and of his way of proving things; it is already quite modern, but has enough
of the charming quaintness of older mathematics (e.g., use of infinitesimals) to be
interesting. The Gauss-Bonnet theorem is obviously not at the beginning of the
paper. ..

Gauss’ main point is to study the intrinsic geometry of surfaces, meaning, those
properties that do not depend on how exactly the surface sits in space. We shall
see an example of such a notion below, in the Gaussian curvature of a suface.

Object of study. In the Disquisitiones, Gauss studies what we now call orientable
surfaces in three-space.? Here is how Gauss himself defines his object of study (see

(1, p. 9)):

2An orientable surface in R3 is one on which a consistent choice of unit normal vector can be
made. A sphere is orientable, a Mobius band is not.
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A curved surface is said to possess continuous curvature at one of
its points A, if the directions of all the straight lines drawn from
A to points of the surface at an infinitely small distance from A
are deflected infinitely little from one and the same plane passing
through A. This plane is said to touch the surface at the point
A. Tf this condition is not satisfied for any point, the continuity of
the curvature is here interrupted, as happens, for example, at the
vertex of a cone. The following investigations will be restricted to
such surfaces, or to such parts of surfaces, as have the continuity
of their curvature nowhere interrupted.

The modern term for continuous curvature is differentiability; the kind of surface
considered by Gauss is thus an example of a differentiable manifold. Note that no
name is given the surface—most people nowadays would begin “A curved surface
M is said...”

The Gauss map. The first important idea is the introduction of the so-called
Gauss map (: M — S? from the surface to the two-sphere; ¢ associates to each
point the unit normal vector at that point. Gauss himself (see [1, p. 85]) mentions
astronomy in this context.

In researches in which an infinity of directions of straight lines in
space is concerned, it is advantageous to represent these directions
by means of those points upon a fixed sphere, which are the end
points of the radii drawn parallel to the lines. The centre and the
radius of this auziliary sphere are here quite arbitrary. The radius
may be taken equal to unity. This procedure agrees fundamen-
tally with that which is constantly employed in astronomy, where
all directions are referred to a fictitious celestial sphere of infinite
radius.

How curved the surface is can be seen from the behavior of (, that is, of the
normal vector to the surface. On a flat surface, the normal vector varies little; on a
highly curved surface, it varies rapidly. It is therefore reasonable that Gauss should
use ( to study the curvature of the surface.

Gaussian curvature. Gauss uses the following quantities to measure how curved
a surface is. The total curvature of a subset D C M is defined to be the area of its
image ((D) under the Gauss map, with positive (resp. negative) sign if the position
of (D) on the sphere is similar (resp. opposite) to that of D.

The measure of curvature of M at a point, on the other hand, is the limit

. area of (D)
— lim 2525\
k %n area of D

as D becomes infinitely small. Again, k is to be taken with a negative sign if (
reverses the orientation of D. Defined in a more rigorous way, k (as a function on
M) is nowadays called the Gaussian curvature. It determines the total curvature,
because if do is the surface element on M, then

total curvature of D = / kdo.
D

To illustrate these ideas, we should look at a few examples of surfaces.
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(1) A sphere of radius r. At a point (z,y,z) on the sphere, the unit normal
vector is N = (x/r,y/r, 2/r); consequently, the Gauss map ( expands area
by a factor of 1/r?, and k = 1/r?. The smaller the radius, the larger the
curvature—this certainly agrees with our intuition.

(2) A plane. Since the normal vector to a plane is everywhere the same, ( is a
constant map, and k = 0.

(3) A cylinder. Now the image of { is a great circle, which has zero area, and
so k = 0. A cylinder is therefore not curved in Gauss’s sense, although
it certainly looks curved. The reason, as we shall see below, is that the
cylinder can be flattened out, and is, at least locally, equivalent to the
plane.

(4) A saddle. A look at Figure 3 shows that the Gauss map reverses the
direction of curves; this means that a saddle-shaped surface has negative
curvature.

FIGURE 3. The behavior of the normal map on a saddle-shaped surface.

A computation. Gauss derives several formulas for the measure of curvature k&,
depending on how the surface M is presented. Out of curiosity, let us try to follow
one of his computations.

Say the surface is given in the form z = z(z,y). Let X,Y,Z stand for the
components of the unit normal vector to the surface.

Let do be the area of an infinitesimal triangle on the curved surface, and dX
the area of the corresponding triangle on the unit sphere. Then Zdo and Zd¥ are,
respectively, the areas of the projections of the two triangles to the z,y-plane; this
is because the vector with components X,Y, Z is both the normal vector at a point
on the surface, and the normal vector at the corresponding point on the sphere.

Suppose that when the triangle on the surface is projected to the z,y-plane, its
points have coordinates

z,, z + dz,y + dy, z+ 6,y + oy,

respectively; then Zdo = (dz - dy — dy - §z) /2.
In like manner, Zd¥ = (dX - 0Y — dY - 6X)/2, and therefore the measure of
curvature at this point on the surface is

dS _ dX -8Y —dY -6X

k:%_ dx - dy — dy - 0x
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But since X,Y, Z are functions of the quantities z,y, we have

0X oX 0X 0X
X = —— —_ X = - -
d o dx + 3y dy, ¢ o ox + 3y oy, etc.;

when these values are substituted, the expression above becomes

k e — .
or Oy Oy Ox
Gauss’s other interpretation of k. To have better notation, let us now write
the equation for the surface as z = f(z,y). If we denote partial derivatives by
subscripts, then the normal vector to M is the normalized cross product of (1,0, f;)
and (0,1, fy),
1

X,Y,Z) = ——————
R ey

(_fm; _fya 1)'
From this, one easily finds that
— f:c:cfyy - a21y
A+ 2+

Take now a fixed point P on the surface, and adjust the coordinate system (by
translating and rotating) to make

P = (07070)7 fw(0,0) = fy(0,0) =0, fwy(oao) =0.
If we put T' = fz2(0,0) and V' = £,,,(0,0), then

1 1
flz,y) = §T£U2 + §Vy2 + terms of higher order;

on the other hand, the Gaussian curvature at P is now simply
k=TV.

This admits of the following interpretation. Suppose the surface M is cut with
planes containing the normal vector at P, which is (0,0,1) in our coordinates. The
sections are plane curves, whose curvature at P, as plane curves, can easily be
computed. For example, if we cut with the plane 2 = 0, the resulting curve is

1
(0, Y, §Vy2 + terms of higher order),

and the curvature at P of this curve equals V. If we cut with the plane y = 0, the
value of the curvature is similarly T'.

For any other plane, the value of this sectional curvature is between min(7T, V)
and max(T, V); therefore, as Gauss observes, k is the product of the largest and the
smallest sectional curvature at each point; this is closer to the modern definition of
Gaussian curvature.

The Theorema egregium. In the case when M, or a part of M, is given as the
image of an open set in R? under a map?®, Gauss also derives a longer, but “most
productive” formula for k.

3Since M is a differentiable manifold, every point on M has a neighborhood for which that is
the case.
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Suppose f = (f1, f2, f3) is an isomorphism of U C R? to some open set in M.
Using coordinates p and q on U, we may define

5= (50 = () + (5) "+ ()
_ (01 Oy _0n Oh O 0f 3fs O
_<6p’6q>_6p 3q+5p 3q+8p dq

= (50, 50) = () (" + ()
dq’ 9q oq oq 0q /"’
In modern usage, these three quantities are part of a metric on the surface. A
slightly old-fashioned way of writing this metric is as

ds? = Edp® + 2Fdpdq + Gdg?;

the length element ds is used when measuring lengths on M.
Gauss manages to express k purely in terms of E, F' and G, and their first and
second partial derivatives. He then writes (see [1, p. 39]):

Thus the formula of the preceding article leads of itself to the re-
markable

Theorem. If a curved surface is developed upon any other sur-
face whatever, the measure of curvature in each point remains un-
changed.

The word “remarkable” is a translation of “egregium” in the original Latin text; the
theorem is still known as the Theorema egregium. This result is important because
it shows that the Gaussian curvature k is intrinsic to the surface; it depends only
on the metric, that is, on how lengths are measured inside the surface, but not on
how the surface sits in its ambient space R?.

Geodesics. Geodesics on a curved surface play a similar role as lines in the plane,
at least locally. In any sufficiently small region U of the surface, any two points
can be joined inside U by a unique geodesic, which is the curve of smallest length
between those two points. On a sphere, for example, the great circles are geodesics;
since we usually have two ways, a long one and a short one, to move between two
points on a great circle, it is clear that not every geodesic is a path of shortest
length. Geodesics are more like “critical points” for curve length.

In the sections of the Disquisitiones that treat geodesics, Gauss proves that a
curve v: [0,1] = M on a surface is a normal geodesic, meaning a geodesic with
constant velocity ||¥||, if and only if the second derivative, or acceleration, ¥ is
always perpendicular to the surface.

Let us see how this works in the case of the sphere. For any curve 7 on the
sphere, we have [|v|| = 1, and then by differentiation (7,%) = 0. Thus v and ¥ are
everywhere orthogonal.

As we said, any geodesic is a great circle, and is thus contained in a plane, and
so 4 is always a linear combination of v and +. If the geodesic is in addition normal,
the relation ||%|| = 1 shows that # is also orthogonal to <, and therefore a multiple
of v and perpendicular to the sphere.

If, on the other hand, % is perpendicular to the sphere, and in particular to 4,
then a simple computation shows that both [|¥|| and the vector v x % are constant,
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which means that the curve has constant velocity and lies entirely in a plane. It is
then a great circle, and thus a normal geodesic.

Gauss also establishes the following very interesting lemma; it allows him to
use geodesical polar coordinates, which are a major ingredient in his proof of the
Gauss-Bonnet theorem. Fix a point P on the surface, and consider a small open
neighborhood U of P. For any point ) € U sufficiently close to P, we can find
a unique geodesic contained in U and connecting P and @; if this geodesic is
parametrized by arc length, we can use its length to define the geodesic distance
from P to ). All points @ at a fixed distance to P form a geodesic circle.

Gauss’ Lemma. Any sufficiently small geodesic circle around P is perpendicular
to all geodesics through P.

This is well illustrated by circles on the surface of a sphere.

5. A SIMPLE PROOF OF THE GAUSS-BONNET THEOREM

Here, we give a simple proof of the general Gauss-Bonnet theorem, essentially
following an article by Mark Levi [3]. The argument is also very computational,
but of course totally different from the one used by Gauss in the Disquisitiones.

The version we are going to prove is the following.

Theorem 5.1. Let M C R3 be an orientable surface, and let R be o sufficiently
small open subset of M diffeomorphic to a disc, with smooth boundary ~y: [0,1] —
M. We assume that vy is positively oriented and let kg be its geodesic curvature.

Then
/ kdo—l—/kgds = 27.
R ¥

The geodesic curvature of a curve -y in M is defined as follows: to compute &g
at a point P on the curve, project the curve to the tangent plane to M at P, and
take the curvature of the resulting plane curve at the point P. From this, it is not
hard to get a formula for k,. Say n(t) is the unit normal vector to the surface M
at the point y(¢). Let w = ||y(¢)|| be the speed of the curve, and U (t) = y(¢t)/w(t)
its unit tangent vector. Then

(UnxU)=w- k.

There is also a version of the Gauss-Bonnet theorem allowing piecewise smooth
boundaries; it is derived from the result above by rounding off the corners.

Theorem 5.2. Let M C R3 be an orientable surface, and let R be a sufficiently
small open subset of M diffeomorphic to a disc, with piecewise smooth boundary
consisting of smooth curves v;: [0,1] = M meeting at points P;, fori=1,2,... n.
Let kg denote the geodesic curvature along each of the curves, and let a; be the
change in direction from v;—1 to v; at P; (see Figure 4 below). Then

/ kdo—l—i/ kgds—}—iai = 2.
R i=1 7% i=1

The remainder of this section gives a full proof for Theorem 5.1—well, nearly.
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FI1GURE 4. The change of direction between ~y; and ;1.

Vector identities. We state a few useful identities for inner products and cross
products of vectors in R®. Let a,b,c,... be arbitrary vectors in R?; the inner
product of a and b is written (a,b), the cross product a X b.

ax (bxc)=(a,c)b—(a,b)c
(a x b,¢c) = (c x a,b)
(a X b,C X d) = (a,c)(b, d) - (aa d)(ba C)

These will be used repeatedly throughout the proof. ..

Curves and dual curves. We begin by defining the notion of a (closed) directed
curve on the sphere S%. Such a curve is a pair ¢ = (n,T), with both n and T
smooth maps from [0,1] to S? satisfying n(0) = n(1) and T(0) = T(1), and such
that T'(t) is always parallel to 7n(t). In other words, ¢ consists of a closed curve n
on the sphere, together with a choice of unit tangent vector T'. Note that n and T
are always perpendicular (because n is a unit vector).

Given a curve ¢ = (n,T), we define its dual curve to be ¢* = (n*,T*) = (n x
T,—T). This is again a closed directed curve:

n=axT+nxT=nxT,

which is parallel to T* because both n and T' are perpendicular to T* = —T.
The reason for putting T* = —T instead of just T is to make (¢*)* = ¢; indeed,

n*xT*"=—-(nxT)xT=Tx(nxT)=n.

At this point, the reader should check that if ¢ is a great circle on the sphere,
then ¢* is a point—but with a tangent vector T* that rotates around once as ¢
moves from 0 to 1.

Length and area of directed curves. The length of a directed curve ¢ = (n,T)
will be defined as

() = /0 . T,

In case n is never zero, [(c) = [||n||dt if T and 7 always point in the same direction;
then I(c) is the usual length of the curve defined by n. If n and T point in opposite
directions, I(c) acquires a negative sign.

In case the region bounded by the curve ¢ is diffeomorphic to a disc, we can also
define the area A(c) of c¢. Since ¢ will be the boundary of two separate regions, we
have to be clear about which of the two we mean. The region bounded by c¢ shall
always be the one to the left of ¢; in other words, the one that lies in the direction
of n xT.
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Now say ¢ bounds a region diffeomorphic to a disc; we parametrize the region
by a map n = n(t,7): [0,1]> — S? with n(t,0) = n(t) and n(t,1) constant (corre-
sponding to the center of the disc), and define its area as

// ng X N, n)dtdr,

where n; and n, denote partial derivatives. It is an easy exercise in calculus to see
that this gives the correct area.

Another good exercise is to compute the area of a circle ¢ on the surface of the
unit sphere, as well as the length of its dual curve ¢*, and to verify the conclusion
of the following theorem in this special case.

The Dual Cones Theorem. If a closed directed curve ¢ = (n,T) bounds a region
diffeomorphic to a disc, then l(c*) + A(c) = 2.

The idea of the proof is simple: deform ¢ into a point and show that I(c*) + A(c)
remains constant in the process. When c¢ is nearly a point, ¢* is nearly a great
circle, which gives the formula.

Let us now make this precise. We consider only the case when c is a smooth curve,
that is, when 7 is nowhere zero (the general case can be handled by perturbing the
curve a little bit). With this assumption, n = ¢||n||T for a fixed e = £1.

As in the definition of A(c), we parametrize the region bounded by ¢ by a map
n =n(t,7): [0,1]?> = S? with n(t,0) = n(t), and n(t, 1) constant. We can also view
this map n as giving us a family of curves ¢t — n(t, 7), starting at the original curve
and ending at a point P. To make the argument work, we require three conditions.

e n(t,7) should be a diffecomorphism as long as 7 # 1.

e The various curves ¢ — n(t, 7) should have non-zero tangent vector, at least
for T # 1.

e The behavior near the point P should be nice, say all curves with 7 close
to 1 should be small circles centered at P.

In this case, we can extend T smoothly to the unit square by setting T'(¢,7) =
eng/||ng|| for 7 # 1; since all curves for 7 close to 1 are small circles, the map can
be extended to 7 = 1 by continuity.

For each 7 € [0,1], we then have a directed curve

Cr = (n(t: T),T(t,’l’));
cg = ¢, while ¢; is a point. We also have the dual curves

ck = (n*(t,T),—T(t,T)) = (n(t,r) x T(t, 1), =T(t, T)),

T

and the third item above guarantees that ci is a great circle.
Consider first the area A(c;), as a function of 7. Clearly,

1,1
A(CT):// (ng X n,,n)dtdr,
T JO
d

1 1
—A(er) = —/ (ng X np,n)dt = —6/ [[ne||(T % nr,n)dt
dr 0

=—a/ nel|(n x T, mr)dt = —s/ Inel|(n*, ns )dt.
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Next, let us compute the length of ¢ as a function of 7.

1 1 1
lcr) =/ (ny,—T)dt = —/ (n® xng,n" xT)dt =/ (n* x ng,n)dt.
0 0 0
Again, we compute the derivative and simplify.

1 1 1
il(c;‘_) = / (n¥ x nf,n)dt +/ (n* x ny ., n)dt +/ (n* x ny,n;)dt;
dr 0 0 ’ 0

in the first integral, all three vectors are orthogonal to n* and so the inner product
is zero; the same is true in the third integral, but with n. Thus we may continue

1 1 1
:/ (n* x 0, m)dt = —/ (ni % n:,n)dt—/ (n* x n*, ne)dt,
0 0 0

using integration by parts. This may be further simplified as

1 1 1
== [ xnzndt = = [ nxnt wde = = [ nn)lmdat,
0 0 0

because ny = ¢||ny||T.

But now we get from n* = n x T that nf =n, x T +n x T;, and so (n,n’) =
(n,n, xT) = (T xn,n;) = —(n*,n,). Substituting into the result of our long
computation above gives

d * 1 *
(5.2) e =< [ on) e
T 0
From (5.1) and (5.2), we see that

2 (ite3) + Alen)) =0,

in other words, the value of the sum does not change while the curve is being
deformed into a point. The formula in the theorem now follows easily: ¢; is a
point, with zero area, while ¢} is a great circle, of length 27; therefore

I(c*)+ A(e) = U(c}) + Aey) = 2.

The proof of Theorem 5.1. As in the statement of the theorem, let v be the
given curve on the surface M. At each point v(¢), let n(t) be the unit normal vector
to the surface; n thus gives a curve in the two-sphere S2. Finally, let w(t) = ||y(¢)]]
be the speed of v and U(t) = v(t)/w(¢) the unit tangent vector to .

At this point, we shall have to make the following technical assumption: The
Gauss map ¢ should be submersive at a certain point of the region R (which means
that the normal vector n moves in all directions); this will imply that ¢ maps a
small neighborhood of that point diffeomorphically to a small open set in the two-
sphere. Also, R itself should lie well inside that neighborhood, which will certainly
be the case if R is “sufficiently small”. This condition can always be achieved by
moving the surface a little bit, but we shall not worry about this point here.

The image of R under the Gauss map ( is then also diffeomorphic to a disc, and
we will be able to apply the Dual Curves Theorem below.

The condition above implies that n is never zero on R or on its boundary, and
we can therefore work with the directed curve ¢ = (n,T) = (n,n/||n||) and its dual
c¢* = (n*,T*) = (n*,—T). For the sake of brevity, let us write m =n* =n x T.
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.

.

FIGURE 5. The tangent plane to M at (t), which is also the
tangent plane to S% at n(t).

The main idea is to introduce the angle () between the two unit vectors U(t)
and m(t). We have cos 8 = (U,m), and from there by differentiation
(5.3) —B-sin 8 = (U, m) + (U, ).

Each of the two terms can be expressed using other quantities we know.

First, U is a unit vector, and so U is perpendicular to U. It can thus be written
as a linear combination of n and n x U, and our formula for the geodesic curvature
tells us the component UnxU = wkyn x U in the direction of n x U. On the other
hand, m is perpendicular to n, and so

(U,m) = (Unxv, m) = wky(n x U,ym) = wky(n x Uyn x T) = wky (U, T);
refering to Figure 5 above, we see that this equals

= WKy - sin B

since sin 8 = (U, T).
Secondly, we note that the dual curve ¢* has n* = m parallel to T*; this allows
us to write

i = (1, T*)T* = —(1n, T*)T.
From this we conclude that
(U,m) = —(m, T*)(U,T) = — (1, T*) sin B.
Thus (5.3) above becomes

B =(m,T*) —wky = (m, T") — [|7]| -
Now integrate this over [0, 1] and use the fact that 5(0) = 5(1) to get

1 1 1
0:/ Bdt:/ (m,T*)dt—/ ||f'y||f£gdt:l(c*)—//~cgds.
0 0 0 ¥

By the Dual Cones Theorem, I(c*) = 2w — A(c); but the region bounded by ¢
(which was defined using the normal vector n(t) to the surface) is exactly the
image of R under the Gauss map, hence A(c) = [}, kdo is the total curvature of R.
So altogether, we have

O:2W—A(c)—/fegds:27r—/kda—/fcgds,
v R v

which is the result we were after.
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6. A TOPOLOGICAL VERSION

Lastly, we shall look at yet another version of the Gauss-Bonnet theorem. As
before, we let M be a compact orientable surface in R?; instead of the integral of
the Gaussian curvature k£ over small triangles, we shall now consider

total curvature of M = / kdo.
M

To compute this integral, triangulate the surface M by using small triangles (not
necessarily geodesic, but small enough for Theorem 5.2 to apply on each triangle).
Say this triangulation has V' vertices, E edges, and F faces. We label the vertices
Py, P,,..., Py, and assume that the degree of P;, meaning the number of edges
coming into Pj, is d;.

We now take the sum of all the identities provided by Theorem 5.2, over all
triangles. Then:

(1) All integrals of the form [}, kdo can be combined into [, kdo.

(2) The integrals fw kyds cancel in pairs, since each edge occurs twice, but with
opposite orientations.

(3) We sum all the changes in direction a; by considering one vertex P; at a
time. If the change in direction is a;, then the angle enclosed between the
edges is m—a;, and all these sum up to 27 at each P; since the triangles cover
M. As there are V vertices in the triangulation, we get Y (7 —a;) = 27V,
or equivalently, > o; = 7). d; — 27V

Altogether, we have to sum over F triangles, and thus obtain the following
formula.

14
/ kd0—|—7r2dj — 21V =2nF.
M j=1
But each edge connects exactly two vertices, and so we have
di+ds+---+dy =28

for the sum of all the degrees. Substitute this into the other equation to get
/ kdo =2n(V — E+ F) = 2r - x(M).
M

We have written x(M) = V — E + F; this quantity, usually called the Euler
characteristic of M, is independent of how we triangulate the surface—in fact, we
have shown that it is equal to a quantity that depends only on M. What is more
surprising is that x(M) is actually a topological invariant of M, meaning it does
not even depend on the Riemannian metric on the surface. It can be shown that
x(M) = 2 — 2g, where g is the genus (or number of handles) of the surface M.

The reader should ponder the following interesting fact: while we defined the
Gaussian curvature via the embedding of the surface in R2, it turned out to depend
only on the surface itself. Now its integral over M depends only on the topology of
M.
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