Diophantus and Fermat

Michael Chmutov

Diophantus "Arithmetic", Book II, Problem 8:

Given a number which is a square, write it as a sum of two other squares.

Find the integer solutions of the equation

$$x^2 + y^2 = z^2$$

On the other hand, it is impossible for a cube to be written as the sum of two cubes or a forth power to be written as the sum of two fourth powers or, in general, for any number which is a power greater than the second to be written as a sum of two like powers.

I have a truly marvelous demonstration of this proposition which this margin is too narrow t_0

C0111111

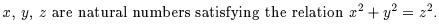
Fermat's Last Theorem: The equation

$$x^n + y^n = z^n$$

has no (nontrivial) integer solutions for $n \geq 3$.

Fermat: The case n = 4.

Pythagorean triples



A triple
$$(x, y, z)$$
 is called *primitive* if $GCD(x, y, z) = 1$.

$$\begin{cases}
GCD(x,y) = 1 \\
GCD(x,z) = 1 \\
GCD(y,z) = 1
\end{cases}$$

Since $(2n)^2 \equiv 0 \pmod{4}$ and $(2n+1)^2 \equiv 1 \pmod{4}$ the right hand side, z^2 , is congruent to to either 1 or 0 modulo 4. Hence precisely one of x or y must be even. Assume that x is even and y is odd.

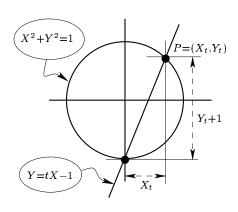
Proposition 1. Given any primitive Pythagorean triple (x, y, z) there exist relatively prime positive integers p, q, such that p > q, p and q have opposite parities, and

$$x = 2pq, y = p^2 - q^2, z = p^2 + q^2$$

Any Pythagorean triple gives a rational point $X = \frac{x}{z}$, $Y = \frac{y}{z}$ on the unit circle $X^2 + Y^2 = 1$.

1

Rational parametrization of the unit circle.



A point $P = (X_t, Y_t)$ on the unit circle determines a number t which is the slope of the line thorugh the points (0, -1) and P. And conversely, a number t determines a point $P = (X_t, Y_t)$ on the unit circle as the second point of the intersection of the slope t stright line thorugh the point (0, -1) with the unit circle. This gives a one-to-one correspondence between points on the unit circle and real numbers t (together with infinity corresponding to the point (0, 1)). In formulas it can be written as follows.

- from point to slope: $P = (X_t, Y_t) \longrightarrow t = \frac{Y_t + 1}{X_t}$
- from slope to point: A stright line with slope t through the point (0,-1) has an equation Y=tX-1. Pluging it into the circle equation we get $(t^2+1)X^2-2tX+1=1$, which is equivalent to $X((t^2+1)X-2t)=0$. The solution X=0 corresponds to the point (0,-1). The second solution $X=\frac{2t}{t^2+1}$ gives the X-coordinate of the point P. So the correspondence is

$$t \longrightarrow \left(X_t = \frac{2t}{t^2 + 1}, Y_t = \frac{t^2 - 1}{t^2 + 1}\right)$$
 (1)

Since the both way correndences are given by rational functions we have a one-to-one correspondence between rational points on the unit circle and rational slopes t.

In particular, for a primitive Pythagorean triple (x, y, z) with even x the corresponding slope will be rational and greater than 1. Write it in lowest terms t = p/q. Then p and q are two relatively prime numbers, and p > q. Pluging the value t = p/q into equations (1) we obtain

$$\frac{x}{z} = \frac{2pq}{p^2 + q^2}, \qquad \frac{y}{z} = \frac{p^2 - q^2}{p^2 + q^2}$$

Then the primitivity of the triple (x, y, z) implies that

$$x = 2pq,$$
 $y = p^2 - q^2,$ $z = p^2 + q^2$

The case n = 4 of the Last Theorem

Proposition 2. The equation $x^4 + y^4 = z^2$ has no (nontrivial) integer solutions.

PROOF. For a contradiction, suppose that there are solutions. Choose a solution (x, y, z) with positive x, y, z, and with the smallest possible value of z. We are going to construct another solution with a smaller value of z. This would be the contradiction with our choice which proves the proposition.

The triple (x^2, y^2, z) is a primitive Pythagorean triple. This follows from the minimality of z. Therefore there exist relatively prime positive integers p, q, such that p > q, p and q have opposite parities, and

$$x^{2} = 2pq$$

$$y^{2} = p^{2} - q^{2}$$

$$z = p^{2} + q^{2}$$

The second of these equations can be written as $y^2 + q^2 = p^2$ and it follows, since p and q are relatively prime, that (y, q, p) is a primitive Pythagorean triple. The number y is odd. Then q is even, and

$$q = 2ab$$

$$y = a^2 - b^2$$

$$p = a^2 + b^2$$

for some relatively prime numbers $a, b \ (a > b > 0)$ of the opposite parity. Thus

$$x^2 = 2pq = 4ab(a^2 + b^2) .$$

Hence $ab(a^2 + b^2)$ must be a square (of half of the even number x). But the numbers ab and $a^2 + b^2$ are relatively prime because a and b are relatively prime. So ab and $a^2 + b^2$ must both be the squares. But then, since ab is a square and a and b are relatively prime, a and b must both be the squares, say $a = x'^2$ and $b = y'^2$. Therefore $x'^4 + y'^4 = z'^2$, where $z'^2 = a^2 + b^2$. So we've found another solution (x', y', z') of our equation. It is primitive because a, b, and $a^2 + b^2$ are pairwise relatively prime. Moreover,

$$z' < z'^2 = a^2 + b^2 = p < p^2 < p^2 + q^2 = z$$
.

This contradicts to the minimality of z.