
Math 1165: Homework Due: Friday, October 26th

1) A baby blue whale weighs 303.89 pounds 3.5 months after birth and 476.78 pounds on its first birthday. Assuming that the weight of the whale grows at a constant rate,

- (a) Make a graph showing the relationship of the weight to the age of the whale. Put the age (in months) on the x-axis, and the weight on the y-axis.
- (b) Connecting the dots from the first part, you should get a line. What is the slope of the line and what does it represent in the story and what is the unit for the slope?
- (c) Without finding the whale's birth weight, predict (using arithmetic!) how much the whale weighs 6.78 months after birth.
- (d) Without finding the whale's birth weight, predict (using arithmetic!) when will the whale weigh 1000 pounds.
- (e) Write an equation describing the relationship between the weight and the age of the whale. Again, do this without finding the whale's birth weight.
- (f) Find the *y*-intercept of the line. What does it represent in the story?
- (g) Find the *x*-intercept of the line. What does it represent in the story?

In each case, explain your reasoning.

2) Below, we are given a sequence of "rowhouses" made by toothpicks:

- (a) How many toothpicks will it take to make rowhouse 0? How many toothpicks will it take to make rowhouse 5?
- (b) Give an algebraic expression for the number of toothpicks in rowhouse n.

(c) Give a pictorial argument explaining why your expression is valid for **any** numbered rowhouse.

In each case, explain your reasoning.

3) Considering the rowhouses from the problem above, what is the total number of toothpicks will it take to make all the rowhouses starting with rowhouse 1 and going to rowhouse 128? Explain your reasoning.