
Geometry and Arithmetic

Due: Friday, April 30th

As long as algebra and geometry have been separated, their
progress have been slow and their uses limited; but when these
two sciences have been united, they have lent each mutual forces,
and have marched together towards perfection.

—Joseph Louis Lagrange

About a century before the time of Euclid, Plato—a student of Socrates—
declared that the compass and straightedge should be the only tools of the
geometer. Why would he do such a thing? For one thing, both the the
compass and straightedge are fairly simple instruments. One draws circles,
the other draws lines—what else could possibly be needed to study geome-
try? Moreover, rulers and protractors are far more complex in comparison
and people back then couldn’t just walk to the campus bookstore and buy
whatever they wanted. However, there are other reasons:

(i) Compass and straightedge constructions are independent of units.

(ii) Compass and straightedge constructions are theoretically correct.

(iii) Combined, the compass and straightedge seem like powerful tools.

Compass and straightedge constructions are independent of units.

Whether you are working in centimeters or miles, compass and straightedge
constructions work just as well. By not being locked to set of units, the
constructions given by a compass and straightedge have certain generality
that is appreciated even today.

Compass and straightedge constructions are theoretically correct.

In mathematics, a correct method to solve a problem is more valuable than
a correct solution. In this sense, the compass and straightedge are ideal
tools for the mathematician. Easy enough to use that the rough drawings
that they produce can be somewhat relied upon, yet simple enough that the
tools themselves can be described theoretically. Hence it is usually not too
difficult to connect a given construction to a formal proof showing that the
construction is correct.
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Combined, the compass and straightedge seem like powerful tools.

No tool is useful unless it can solve a lot of problems. Without a doubt, the
compass and straightedge combined form a powerful tool. Using a compass
and straightedge, we are able to solve many problems exactly. Of the prob-
lems that we cannot solve exactly, we can always produce an approximate
solution.

For the ancient Greeks, arithmetic was done geometrically. When one
reads The Elements by Euclid, one gets the feeling that not only is the
author trying to lay a rigorous foundation to geometry—he is also trying
to make numbers real objects, realized as lengths. Isn’t it wonderful that
a book which seems rather abstract to most, actually has such a concrete
goal? In this project, our goal is to start to understand what numbers can
be obtained through compass and straightedge alone.

The discussion that follows is modeled off of the presentation and exer-
cises found in the following texts, I encourage you to investigate them:

• Elements of Abstract Algebra by Allan Clark.

• What is Mathematics? by Richard Courant and Herbert Robbins.

• Abstract Algebra by Ronald Solomon.

We’ll start by giving the rules of compass and straightedge constructions:

Rules for Compass and Straightedge Constructions

(i) You may only use a compass and straightedge.

(ii) You must have two points to draw a line.

(iii) You must have a point and a line segment to draw a circle. The point
is the center and the line segment gives the radius.

(iv) Points can only be placed in two ways:

(a) As the intersection of lines and/or circles.

(b) As a free point, meaning the location of the point is not impor-
tant for the final outcome of the construction.
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Constructible Numbers

What figures can we construct with compass and straightedge alone? This
this a difficult problem to think about. Instead, we will think about con-

structible numbers. Imagine a line with two points on it:

0 1

Label the left point 0 and the right point 1. If we think of this as a starting
point for a number line, then a constructible number is nothing more than a
point we can obtain on the above number line using one of the construction
techniques above starting with the points 0 and 1.

Definition. Denote the set of numbers constructible by compass and straight-
edge with C. We’ll call C the set of constructible numbers.

We seek the answer to the following question: Exactly what numbers
are in C? We won’t completely answer this question, but we’ll make a good
start!

If we could use constructions to make the operations +, −, ·, and ÷,
then we would be able to say a lot more. In fact we will do just this. In
the following constructions, the segments of length 1, a, and b are as given
below:

a1 b

Construction (Addition) Adding is simple, use the compass to extend the

given line segment as necessary.

a b

a+b

Construction (Subtraction) Subtracting is easy too:

a−b

Exercise 1 What does our number line look like at this point?

We still have some more operations:
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Construction (Multiplication) This construction is based on the idea of

similar triangles. Start with given segments of length a, b, and 1:

(i) Make a small triangle with the segment of length 1 and segment of

length b.

(ii) Now place the segment of length a on top of the unit segment with

one end at the vertex.

(iii) Draw a line parallel to the segment connecting the unit to the segment

of length b starting at the other end of segment of length a.

(iv) The length from the vertex to the point that the line containing b
intersects the line drawn in Step (iii) is of length a · b.

a

1

b

ab

Exercise 2 Prove that this construction actually multiplies two numbers.

Give a relevant and revealing example.

Construction (Division) This construction is also based on the idea of

similar triangles. Again, you start with given segments of length a, b, and

1:

(i) Make a triangle with the segment of length a and the segment of length

b.

(ii) Put the unit along the segment of length a starting at the vertex where

the segment of length a and the segment of length b meet.

(iii) Make a line parallel to the third side of the triangle containing the

segment of length a and the segment of length b starting at the end of

the unit.

(iv) The distance from where the line drawn in Step (iii) meets the segment

of length b to the vertex is of length b/a.
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a

1

b

b/a

Exercise 3 Prove that this construction actually divides two numbers.

Give a relevant and revealing example.

Exercise 4 What does our number line look like at this point?

Exercise 5 Explain why the constructible numbers form a field. What can

you tell me about this field at this point?

Construction (Square-Roots) Start with given segments of length a and

1:

(i) Put the segment of length a immediately to the left of the unit segment

on a line.

(ii) Bisect the segment of length a + 1.

(iii) Draw an arc centered at the bisector that starts at one end of the line

segment of length a + 1 and ends at the other end.

(iv) Construct the perpendicular at the point where the segment of length

a meets the unit.

(v) The line segment connecting the meeting point of the segment of length

a and the unit to the arc drawn in Step (iii) is of length
√

a.

a 1
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Exercise 6 Prove that this construction actually produces a square-root.

Give a relevant and revealing example.

Exercise 7 Prove that
√

2 is not rational.

Exercise 8 Prove that
√

p is not rational for every integer prime p.

OK, so how do we talk about a field that contains both Q and
√

2?
Simple, use this notation:

Q(
√

2) = {the smallest field containing both Q and
√

2}

Exercise 9 Let F be a field. Prove that if x ∈ F and
√

x /∈ F , then

F [
√

x] = {a + b
√

x : a, b ∈ F}

is a field. Prove further that F [
√

x] = F (
√

x).

Theorem 1 The use of compass and straightedge alone on a field F can

at most produce numbers in a field F (
√

α) where α ∈ F .

Exercise 10 Can you explain why the above theorem is true? Hint, there

are three cases to consider:

(i) The intersection of two lines.

(ii) The intersection of a line and a circle.

(iii) The intersection of two circles.

Exercise 11 Which of the following numbers are constructible?

3.1415926,
16
√

5,
3
√

27,
6
√

27.

3
√

2 is Not Constructible

We are going to give an elementary proof explaining why the cube root of
two is not constructible with compass and straightedge alone. In a future
mathematics course you might see another proof.

Exercise 12 Sketch a plot of x3 − 2.

Exercise 13 How many real roots does x3 − 2 have? How many complex

roots does x3 − 2 have?

Exercise 14 Prove that
3
√

2 is not rational.
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We know that 3
√

2 /∈ Q. We also know that we can construct larger and
larger fields:

Q = F0 ⊂ F1 ⊂ F2 · · · ⊂ Fℓ ⊂ · · · ⊂ C
where each Fi+1 = Fi(

√
αi) with αi ∈ Fi and

√
αi /∈ Fi.

Seeking a contradiction, we will suppose that there is some δ ∈ C with
δ3 − 2 = 0. Let ℓ be the least positive integer such that there is some Fℓ

with δ ∈ Fℓ.

Exercise 15 Explain why every number in Fℓ can be expressed as

p + q
√

α

where p, q ∈ Fℓ−1, α ∈ Fℓ−1, with
√

α /∈ Fℓ−1.

Hence we may write δ as

δ = p + q
√

α

Exercise 16 Use the Binomial Theorem to expand δ3 − 2:

(p + q
√

α)3 − 2

Exercise 17 Collect like terms to write

(p + q
√

α)3 − 2

as

P + Q
√

α

Exercise 18 A little bird told me that at this point we must conclude that:

P + Q
√

α = 0

Remind me, why is the above statement true again?

Exercise 19 If P + Q
√

α = 0 and Q 6= 0, then we can write

√
α =

−P

Q

is this a problem? What must we conclude about Q? Now what must we

conclude about P?

Exercise 20 Repeat Exercises 16–19 above, this time replacing δ with

γ = p − q
√

α.

Exercise 21 We must conclude that δ and γ are both real roots of x3 − 2.

Is this a problem? Where do we go from here?

Exercise 22 Give a brief summary of how we proved that the cube-root

of two is not constructible.
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Final thoughts

We have hopefully given you a taste of compass and straightedge construc-
tions and also proved that the cube-root of two is not constructible. The
proof we gave was elementary in nature, all you needed to complete the
proof was guts and basic algebra skill. Perhaps in a future mathematics
course you will see a more elegant and powerful approach to this problem.
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