
Fermat’s Last Theorem

Due: Friday, June 4th

It is impossible to separate a cube into two cubes, or a fourth
power into two fourth powers, or in general, any power higher
than the second into two like powers. I have discovered a truly
marvelous proof of this, which this margin is too narrow to con-
tain.

—Pierre de Fermat

The statement above is commonly known as Fermat’s Last Theorem. It
was found written in the margins of Fermat’s copy of Arithmetica, an ancient
number theory text by Diophantus. In modern language, one might write:
If x, y, and z are nonzero integers and n is an integer greater than 2, then

xn + yn 6= zn.

It was in 1637 that Fermat made this famous note and mentioned his tanta-
lizing “truly marvelous” proof. However, no complete proof was ever found
in Fermat’s notes or papers. For nearly 400 years, mathematicians tried to
prove Fermat’s Last Theorem. Some of the greatest minds worked on this
problem, including Euler, Legendre, Gauss, Dirichlet, Kummer, and others.
While special cases were solved, the general problem resisted all attacks and
it was suspected that no complete proof would ever be found. Indeed, in a
1988 episode of Star Trek: The Next Generation, entitled The Royale, Cap-
tain Picard notes that the theorem has not yet been proved—this episode
takes place in the year 2365!

The world was astonished when in 1993, after working in secret for 7
years, Andrew Wiles announced a proof of Fermat’s last theorem at a math-
ematics conference. After a careful review of the proof, a small error was
found. Nevertheless in 1994 the proof was fixed and the rest is history.
Andrew Wiles’ proof is extremely sophisticated and consumes around 100
pages. It is a triumph of human thought and comparable only to the greatest
achievements of mankind.

The discussion that follows is modeled off of the presentation and exer-
cises found in the following texts, I encourage you to investigate them:

• Elements of Abstract Algebra by Allan Clark.

• Number Fields by Daniel Marcus

• Abstract Algebra by Ronald Solomon.
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Basic observations concerning x
n + y

n = z
n

We’ll start by having you explore some basic facts about the equation

xn + yn = zn.

Exercise 1 Given an integer n, classify all trivial integer solutions to

xn + yn = zn.

A trivial solution is one where at least one of x, y, or z is zero.

Exercise 2 Prove that given n, if there is a nontrivial integer solution to

xn + yn = zn,

then this solution is a multiple of a pair-wise relatively prime solution.

That is, every solution is a multiple of a solution x, y, z such that

(x, y) = 1, (x, z) = 1, (y, z) = 1.

Exercise 3 Explain why if there is a nontrivial solution to

xn + yn = zn,

in some euclidean domain, then this solution is a multiple of a pair-wise

relatively prime solution in this euclidean domain.

The case when n = 2: x
2 + y

2 = z
2

In this section, we seek to find integer solutions to the equation:

x2 + y2 = z2

A solution to such an equation is called a Pythagorean triple. Of particu-
lar interest to us are Pythagorean triples x, y, z that are pair-wise relatively
prime. Pythagorean triples which are pair-wise relatively prime are called
primitive Pythagorean triples. From our work in Exercise 2, we see
that that every Pythagorean triple is a multiple of a primitive Pythagorean
triple.

Exercise 4 Prove that if m ∈ Z is a perfect square, then

m ≡ 0 (mod 4) or m ≡ 1 (mod 4).
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Exercise 5 Prove that if x, y, z is a primitive Pythagorean triple, then

either x is even or y is even, but not both. Moreover, prove that z is odd.

While we want to find all Pythagorean triples in the integers, we will
actually work in the Gaussian integers, Z[i]. Starting with

x2 + y2 = z2,

we’ll factor the left-hand side to obtain

(x + yi)(x − yi) = z2.

Exercise 6 Letting x + iy be as above and π ∈ Z[i] be a prime element

such that π | (x+yi), prove that π ∤ (x−yi). Hint, use the previous exercise

to seek a contradiction by comparing how π relates to

(x + yi) + (x − yi) and (x + yi)(x − yi).

Lemma 1 Letting x+ iy be as above and u be a unit in Z[i], we may write

x + yi = uα2

for some unique α ∈ Z[i].

Proof Let π be a prime element in Z[i] such that π | (x + yi). There
exists some exponent e ∈ N such that

πe | (x + yi) and πe+1 ∤ (x + yi).

We claim that e is an even number. Since

(x + yi)(x − yi) = z2

and by Exercise 6, π ∤ (x − yi),

πe | z2 and πe+1 ∤ z2.

In particular we see that e must be even. Since Z[i] is a UFD, we obtain

x + yi = u ·
s∏

i=1

πei

i .

We’ll have that each ei is even and then can write

α =
s∏

i=1

π
ei/2

i .

Hence, (x + yi) = uα2. �
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Now set α = a + bi and note that the only units in Z[i] are ±1 and ±i.
We now see that one of the following will hold:

(x + yi) = uα2 = a2 + 2abi − b2 (u = 1) (1)

(x + yi) = uα2 = −a2 − 2abi + b2 (u = −1) (2)

(x + yi) = uα2 = a2i + 2ab − b2i (u = i) (3)

(x + yi) = uα2 = −a2i − 2ab + b2i (u = −i) (4)

Exercise 7 Explain why WLOG we may ignore equations (3) and (4).

Grouping the real terms and imaginary terms together we conclude that
if x, y, and z are Pythagorean triples, then

x = ±(a2 − b2), y = ±2ab, z = ±(a2 + b2).

This classifies all Pythagorean triples. Note that it was critical to this ar-
gument that Z[i] is a UFD.

The case when n = 4: x
4 + y

4 6= z
4

If x4 + y4 = z4 has a nontrivial integer solution, then so does x4 + y4 = w2.
WLOG w is a positive integer. Let x, y, and w be a solution with the
smallest possible value for w.

Exercise 8 Prove that WLOG, x is odd.

Exercise 9 Explain why we may write

x2 = a2 − b2, y2 = 2ab, w = a2 + b2,

with a and b positive, (a, b) = 1, and exactly one of a or b being even.

Exercise 10 Explain why we may write

x = c2 − d2, b = 2cd, a = c2 + d2,

with c and d positive, (c, d) = 1, and exactly one of c or d being even.

Exercise 11 Prove that c, d, and a are pairwise relatively prime. Noting

that y2 = 4acd, conclude that c, d, and a are all perfect squares, say

c = r2, d = s2, a = t2.

Exercise 12 Explain why we must conclude that r4 + s4 = t2, and that

t < w.

Exercise 13 Explain how we have proved that x4 + y4 = z4 has no non-

trivial integer solutions.
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The case when n = 3: x
3 + y

3 6= z
3

While Fermat’s Last Theorem for n = 4 boiled down to understanding
Pythagorean triples, Fermat’s Last Theorem for n = 3 is a bit trickier.
We’ll start the proof with the following exercise from our text:

Exercise 14 Show that the ring Z[ω], where

ω = e2πi/3 = −1

2
+

√
−3

2

is equal to the set

{a + bω : a, b ∈ Z}.

Exercise 15 Given a detailed plot of 1, ω, and ω2 in the complex plane.

Exercise 16 Prove that Z[ω] is a euclidean domain where

ω = e2πi/3 = −1

2
+

√
−3

2

and d(a + bω) = a2 − ab + b2. Hint, see the proof of the fact that Z[i] is

a euclidean domain and think about the following elementary claim from

geometry: Given a rhombus of side length a, any point in the rhombus is at

most of distance a from any corner.

We will now prove that the equation

x3 + y3 = z3

has no nontrivial solutions in Z[ω]. Since Z ⊂ Z[ω], this will prove Fermat’s
Last Theorem for n = 3. Note that by Exercise 2 and Exercise 3, we need
only prove that there cannot be a pair-wise relatively prime solution in Z[ω].
The next exercise will give some indication as to why we have chosen to work
in Z[ω].

Exercise 17 Prove that in Z[ω]

x3 + y3 = (x + y)(xω + yω2)(xω2 + yω).

Exercise 18 Prove that

(x + y) + (xω + yω2) + (xω2 + yω) = 0.
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At this point, we’ll need some more experience working in Z[ω] before we
can proceed. We’ll start by setting λ = 1 − ω and considering the following
exercise:

Exercise 19 Prove that λ is a prime number in Z[ω].

Exercise 20 Compute λ2 and use this to prove that λ | 3, and hence 3 is

not prime in Z[ω].

Lemma 2 Every number in Z[ω] is congruent to 0, 1, or −1 modulo λ.

Proof Note that since λ = 1 − ω, we have that ω = 1 − λ. Hence given
a + bω ∈ Z[ω], we have

a + bω = a + b(1 − λ)

= a + b − bλ.

Hence a + bω ≡ a + b (mod λ). Since λ divides 3, our congruence is estab-
lished. �

Exercise 21 Prove that given any α ∈ Z[ω], λ divides the product:

α · (α + 1) · (α − 1)

From this we obtain the following lemma:

Lemma 3 Given ξ ∈ Z[ω], if λ does not divide ξ, then

ξ3 ≡ ±1 (mod λ4).

Proof By Lemma 2, ξ ≡ ±1 (mod λ). In other words, ξ = ±1 + αλ. So

ξ3 ∓ 1 = (ξ ∓ 1)(ξ ∓ ω)(ξ ∓ ω2) (⋆)

= (±1 + αλ ∓ 1)(±1 + αλ ∓ ω)(±1 + αλ ∓ ω2)

= (αλ)(±1 + αλ ∓ ω)(±1 + αλ ∓ ω2).

With some algebra we may write

(αλ)(±1 + αλ ∓ ω)(±1 + αλ ∓ ω2) = αλ · (α ± 1)λ · (α ∓ 1)λ (⋆⋆)

= λ3 · α · (α ± 1) · (α ∓ 1).

By the exercise above, λ divides α · (α ± 1) · (α ∓ 1) and hence λ4 divides
ξ3 ∓ 1, showing that ξ3 ≡ ±1 (mod λ4). �
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Exercise 22 Carefully explain the lines (⋆) and (⋆⋆) above.

Corollary 4 If x, y, and z are elements of Z[ω] such that

x3 + y3 + z3 = 0,

then at least one of x, y, or z are divisible by λ.

Proof Seeking a contradiction, suppose that none of x, y, or z are divisible
by λ. In this case,

x3 ≡ ±1 (mod λ4), y3 ≡ ±1 (mod λ4), z3 ≡ ±1 (mod λ4).

Since λ4 clearly divides 0, λ4 must divide the right-hand side of the equation
above, namely x3 + y3 + z3. Examining the values of the norm d of Z[ω],
1 6 d(x3 + y3 + z3) 6 9, but d(λ) = 3 and so d(λ4) = 81. Hence λ4 cannot
divide x3 + y3 + z3, a contradiction. �

Exercise 23 Prove that if x, y, z ∈ Z[ω] is a nontrivial solution for

x3 + y3 = z3,

then WLOG λ | z.

Exercise 24 Explain why if x, y, z ∈ Z[ω] is a nontrivial solution for

x3 + y3 = z3

where λ | z, then there is a minimal positive integer e along with a solution

x′, y′, z′ where λe | z′ and λe+1 ∤ z′.

We are now ready to finish our proof. Seeking a contradiction, if Fermat’s
Last Theorem is false for n = 3 in Z[ω], then there exists a minimal positive
integer e along with a solution x3 + y3 = z3 such that:

(a) x, y, and z are pair-wise relatively prime in Z[ω].

(b) λe | z and λe+1 ∤ z.

We will arrive at a contradiction by showing that e as described above
cannot be minimal. Considering a minimal solution, x, y, z ∈ Z[ω], by Ex-
ercise 17 we have that

(x + y)(xω + yω2)(xω2 + yω) = z3.

Since λ | z, we see that λ | (x + y)(xω + yω2)(xω2 + yω).
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Exercise 25 Since (x, y) = 1, there exists u, v ∈ Z such that

ux + vy = 1.

Briefly explain how the fact that λ is prime along with the following com-

putation

λ = (v − uω)(x + y) + ω2(v − u)(xω + yω2),

λ = (vω − u)(xω + yω2) + (uω − v)(xω2 + yω),

λ = ω2(v − u)(xω2 + yω) + (u − vω)(x + y),

shows that λ is the GCD of (x + y), (xω + yω2), and (xω2 + yω).

Exercise 26 Prove that there exist α, β, γ ∈ Z[ω] such that

(x + y) = λα, (xω + yω2) = λβ, (xω2 + yω) = λγ,

with α, β, and γ pair-wise relatively prime in Z[ω].

The upshot of the exercises above is that

(x + y)(xω + yω2)(xω2 + yω) = z3

λα · λβ · λγ = z3

αβγ =
z3

λ3
.

Since α, β, and γ are pair-wise relatively prime in Z[ω], they all must be
perfect cubes. Here it is of crucial importance that Z[ω] is a UFD. Hence
there exist x0, y0, and z0 pair-wise relatively prime in Z[ω] such that

x3
0 = α, y3

0 = β, z3
0 = γ.

Exercise 27 Prove that α + β + γ = 0.

We have now found pair-wise relatively prime x0, y0, z0 ∈ Z[ω] such that

x3
0 + y3

0 + z3
0 = 0.

By Corollary 4, we see that λ must divide one of these elements.

Exercise 28 Explain why we must conclude that λe+1 | z.

Exercise 29 Explain how we have just proved that x3 + y3 = z3 has no

nontrivial integer solutions.
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Final thoughts

In the proof of Fermat’s Last Theorem for n = 3, it was essential that we
had unique factorization in Z[ω]. One obstacle to finding a general proof
is the fact that Kummer rings, rings of the form Z[ζn] where ζn = e2πi/n,
are not necessarily UFD’s. Andrew Wiles avoided this obstacle by taking
a completely different approach—he proved the Taniyama-Shimura Conjec-
ture. Interestingly enough, Wiles’ proof of Fermat’s Last Theorem actually
only covers the cases when n > 5. Hence, the work we did above is still a
necessary part of the proof.

We have now classified all Pythagorean triples and completed proofs of
Fermat’s Last Theorem for n = 3, and n = 4. We have given but one proof
of each of these results. Other proofs exist—and they are fascinating.
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