Math 581: Homework 1 Due: Friday, April 9th

1) Prove that $\mathbb{Z} \times \mathbb{Z}$ is a ring. Also prove that $\mathbb{Z} \times \mathbb{Z}$ is not a domain.

2) Prove that $\mathbb{Q}[\sqrt{2}]$ is a field.

3) Prove or disprove that $\mathbb{Z}_5[i]$ is a field.

4) Let *F* be a field. Find some quality inherent in *F* that is sufficient to make the set of ordered pairs in $F \times F$ a field when "addition" is defined by * and "multiplication" is defined by *:

$$(a, b) * (c, d) = (a + c, b + d)$$
 and $(a, b) * (c, d) = (ac - bd, ad + bc).$

Hint: What if $F = \mathbb{R}$? What if $F = \mathbb{C}$? Keep on going!

5) Find the units in \mathbb{Z}_n for n = 2, 3, 4, 5, 6, 7, 8. Make a conjecture.

6) Prove that in a domain of characteristic *p*, the so-called *Freshman Bino-mial Theorem* holds:

$$(a+b)^p = a^p + b^p$$

7) Solve the following equation

$$x^3 + x^2 + x + 1$$

over \mathbb{R} , \mathbb{C} , \mathbb{Q} , \mathbb{Z}_5 , \mathbb{Z}_3 , and \mathbb{Z}_2 .

8) Let R be an integral domain and let p(x) and q(x) be nonzero elements of R[x]. Prove that

$$\deg(p(x) \cdot q(x)) = \deg(p(x)) + \deg(q(x))$$

Is this result necessarily true if R is not an integral domain? Give a proof or counterexample to justify your claim.