Math 581: Homework 4 Due: Friday, May 21st

- 1) Use the Euclidean algorithm to find the generator of the principal ideal $(x^3 + x, x^2 + x + 1) \subseteq \mathbb{Z}_2[x]$.
- 2) Let R be a nonzero ring. Prove that the following are equivalent:
 - (a) R is a field.
 - (b) The only ideals in R are (0) and (1).
 - (c) Every homomorphism of R into a nonzero ring S is injective.
- **3)** Prove that $\mathbb{Z}_3 \times \mathbb{Z}_5 \simeq \mathbb{Z}_{15}$.
- **4)** Prove or disprove that $\mathbb{Z}_3 \times \mathbb{Z}_6 \simeq \mathbb{Z}_{18}$.
- **5)** Given a domain R, prove that $F(F(R)) \simeq F(R)$. Use this isomorphism to explain why

$$\frac{a/b}{c/b} = \frac{a}{c}.$$

- **6)** Prove that $\mathbb{Z}_n \simeq \mathbb{Z}/(n)$. Carefully explain the distinction between \mathbb{Z}_n and $\mathbb{Z}/(n)$.
- 7) Prove that $\mathbb{R}[x]/(x^2+1)$ is isomorphic to \mathbb{C} .
- 8) Give two different methods for finding $2^{999} \pmod{5}$, one using Fermat's Little Theorem and the other using basic problem solving methods.