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Chapter 1

Rings

Definition 1 A ring is a set R with two operations: + called addition and ·
called multiplication such that:

(i) (R,+) is an abelian group with identity element denoted by 0.

(ii) Multiplication is associative:

a · (b · c) = (a · b) · c

(iii) Multiplication distributes over addition:

a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a

(iv) Multiplication is commutative:

a · b = b · a

(v) There is a multiplicative identity denoted by 1:

a · 1 = a

Remark Depending on the source one reads, the definition of a ring might be
restricted to items (i)–(iii) above. In that case, what is defined above would
be called a commutative ring with identity. Henceforth when we write ring we
mean a commutative ring with identity.

1.1) Identify which of the following sets are rings. Give a careful explanation
of why the set in question is a ring or is not a ring.

(i) The integers, Z.

(ii) The even integers, 2Z = {2 · n : n ∈ Z}.

(iii) The odd integers.
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(iv) The rational numbers, Q.

(v) The integers modulo 2, Z2.

(vi) The integers modulo 6, Z6.

(vii) The positive rational numbers, Q+.

(viii) The real numbers, R.

(ix) The polynomials with coefficients in R in one variable, R[x].

(x) The polynomials with coefficients in R in two variables, R[x, y].

(xi) The power series with coefficients in R in one variable, R[[x]].

(xii) The set Z × Q where

(a, b) + (c, d) = (a + c, b + d) and (a, b) · (c, d) = (a · c, b · d)

(xiii) Is the set of 2 × 2 matrices with entries in Z a noncommutative ring?

(xiv) The Gaussian integers,

Z[i] = {a + bi : a, b ∈ Z}.

(xv) The integers adjoin the square-root of 2,

Z[
√

2] = {a + b
√

2 : a, b ∈ Z}.

(xvi) The set of continuous functions from R to R.

1.2) Prove the following basic facts about rings:

(i) a · 0 = 0 and 0 · a = 0. Hint: Start with a · 0 = a · (0 + 0).

(ii) a · (−b) = −(a · b) and (−a) · b = −(a · b).

(iii) (−a)(−b) = ab.

1.3) In each case, prove that the set of integers Z is a ring when “addition” is
defined by ✢ and “multiplication” is defined by ⋆:

(i) a ✢ b = a + b − 1 and a ⋆ b = ab − (a + b) + 2.

(ii) a ✢ b = a + b + 1 and a ⋆ b = ab + a + b.

1.4) Given any two rings R and S, prove that R × S is a ring where

(a, b) + (c, d) = (a + c, b + d) and (a, b) · (c, d) = (a · c, b · d)

The ring R × S with this “addition” and “multiplication” is called the direct
product ring of R and S. Note, sometimes this is written R ⊕ S.
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1.5) Prove that the set of ordered pairs in Z × Z is a ring when “addition” is
defined by ✢ and “multiplication” is defined by ⋆:

(a, b) ✢ (c, d) = (a + c, b + d) and (a, b) ⋆ (c, d) = (ac − bd, ad + bc).

Definition 2 A field (F,+, ·) is a commutative ring with identity along with
the condition that F − {0} is also an abelian group under multiplication.

2.1) Write out all the specific conditions that are necessary for F to be a field.

2.2) Draw a Venn diagram showing the relationship between groups, rings, and
fields. Be very careful about specifying the relevant operations. Give relevant
and revealing examples for each section of the diagram.

2.3) Let a and b be elements of a field F . Prove that if a · b = 0, then a is zero
or b is zero. Is the same statement true for rings in general? If so, give a proof.
If not, give a counterexample.

2.4) When is Zn definitely not a field?

2.5∗) Describe a field with four elements.

2.6∗) Can you find a field with six elements?

2.7) Let F be a field. Find some quality inherent in F that is necessary and
sufficient to make the set of ordered pairs in F × F a field when “addition” is
defined by ✢ and “multiplication” is defined by ⋆:

(a, b) ✢ (c, d) = (a + c, b + d) and (a, b) ⋆ (c, d) = (ac − bd, ad + bc).

Hint: What if F = R? What if F = C? Keep on going!

Definition 3 Given a ring R, a unit is an element u such that there exists an
element v with u · v = 1.

3.1) List the units in the following rings:

(i) Z

(ii) Q

(iii) C

(iv) Z5

(v) Z6

(vi) Give a conjecture for the units in Zn

3.2) Prove that if u is a unit and v is a unit, then u · v is a unit.

3.3) Give an example of a ring with a unit a such that a2 = 1 and a 6= ±1.
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3.4) Prove that if a 6= ±1 and a2 = 1, then (a + 1)(a − 1) = 0.

Definition 4 A zero-divisor is a nonzero element in a ring z ∈ R such that
there is some nonzero a ∈ R with

a · z = 0.

4.1) Prove that a field cannot contain zero-divisors.

4.2) Prove that if ab is a zero-divisor then either a is a zero-divisor or b is a
zero-divisor.

4.3) Can a zero-divisor have a multiplicative inverse? Prove your conclusion.

4.4) If z2 = 0, prove that z + 1 and z − 1 are invertible. Give an example of a
ring R and an element z where this is the case.

4.5) Let R and S be rings. Prove that the direct product ring R × S always
will have zero-divisors. See (1.4).

Definition 5 An integral domain, often called a domain, is a ring contain-
ing no zero-divisors.

5.1) Prove that the following are equivalent:

(i) R is an integral domain.

(ii) For a, b ∈ R if a · b = 0, then a = 0 or b = 0.

(iii) For a, b, c ∈ R if a 6= 0, then

ab = ac ⇒ b = c.

(iv) R − {0} is closed under multiplication.

Remark Property (iii) above is called the cancellation property of domains.

5.2) Prove that a field is an integral domain.

5.3) Give examples of integral domains along with examples of rings that are
not integral domains.

5.4) Draw a Venn diagram showing the relationship between rings, integral
domains, and fields. Be very careful about specifying the relevant operations.
Give relevant and revealing examples for each section of the diagram.

5.5) Explain why Z[i], Z[
√

3], and Z[
√
−5] are all integral domains.

5.6) Let R be an integral domain and consider a nonzero element a ∈ R. Define
a map ϕ : R → R such that:

x 7→ ax

Prove that ϕ is an injection.
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Theorem 5.7 Every finite integral domain is a field.

Sketch of Proof Let R be the finite integral domain and consider any nonzero
element a ∈ R. Now consider the set {an : n ∈ N}. �

5.8) Given a finite field, give a basic strategy for finding a multiplicative inverse
of an element.

Definition 6 Given a ring R with n, d ∈ R, we say d divides n, denoted d|n,
if

n = dq

where q ∈ R. What do we write if d does not divide n?

6.1) Prove the following:

(i) If a|b and b|c, then a|c.

(ii) a|b if and only if a|(−b).

(iii) a|0.

Definition A nonzero element p of a ring R is called prime if it is not a unit
and

p|ab ⇒ p|a or p|b
for all a, b ∈ R.

A nonzero element p of a ring R is called irreducible if it not a unit and

p = a · b ⇒ a or b is a unit

for all a, b ∈ R.

6.2) What does it mean to say an element n is not prime?

6.3) If R is a domain, prove that every prime element is irreducible. Hint, if
p = ab, then p|ab (why?).

6.4∗) Are prime elements always irreducible?

6.5∗) Are irreducible elements always prime?

6.6) Prove or disprove: Given a, b ∈ Z

a|bn ⇒ a|b

where n ∈ N. What can you say if a is prime?

6.7) Given a prime p, prove that Zp is an integral domain. Use (5.7) to conclude
that Zp is a finite field. Note, this is an indirect proof. While we show that
inverses to nonzero elements exist, we give no hint as how to actually find them!
Can you think of a direct proof of the fact that Zp is a field?
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Definition 7 The characteristic of a ring R is the least positive integer n
such that

1 + 1 + · · · + 1
︸ ︷︷ ︸

n times

= 0.

If there is no such positive integer, then we say that R has characteristic 0.

7.1) Prove that if an integral domain has a finite characteristic, then its char-
acteristic is a prime number.

7.2) Prove that in a domain of positive characteristic p, the so-called Freshman

Binomial Theorem holds:
(a + b)p = ap + bp

Definition 8 A polynomial ring R[x] is the set of all formal sums

anxn + an−1x
n−1 + · · · + a1x + a0

where n is a nonnegative integer and each ai ∈ R.

8.1) Perform the following computations in Z[x], Z3[x], and in Z2[x]:

(i) x + x

(ii) (x + 1)(x + 1)

(iii) (x + 1)3

8.2) Let R be an integral domain. Prove that R[x] is an integral domain.

8.3) Let R be an integral domain and let p(x) and q(x) be nonzero elements of
R[x]. Prove that

deg(p(x) · q(x)) = deg(p(x)) + deg(q(x)).

Is this result necessarily true if R is not an integral domain? Give a proof or
counterexample to justify your claim.

8.4) Let R be an integral domain. Prove that the units of R[x] are exactly the
units of R.

8.5) Describe an infinite integral domain of characteristic p.

Theorem 9 Every finite field has order pn for some prime p and some natural
number n.

Sketch of Proof Consider a finite field F .

(i) Explain why F must have finite prime characteristic.
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(ii) Explain why the set

k =

{
n∑

i=1

1 : n ∈ N

}

⊆ F

is an integral domain of prime order. Conclude that k is a finite field, see
(5.7).

(iii) Prove that F is a k-vector space. You may need to refer to your linear
algebra text for help!

(iv) Explain why F is a finite dimensional vector space over k.

(v) If the dimension of F over k is 1, how many elements does F have? What
if the dimension is 2? What if the dimension is n?

(vi) Use the steps above to explain why every finite field has order pn for some
prime p and some natural number n.

Note, this is a non-constructive proof. While we show that finite fields have
order pn, see (2.6), we give no indication as how to actually find finite fields of
order pn. At this point, for some values of p and n these objects may not even
exist! Can you think of a way to construct fields of order pn? �

9.1) Prove that Z3[i] is a finite field. How many elements does it have?

9.2) Prove that Z7[
3
√

2] is a finite field. How many elements does it have?
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Chapter 2

Division

Definition 10 Given a ring R, an ideal I of R is an additive subgroup of R
where the following condition holds:

x ∈ R and a ∈ I ⇒ x · a ∈ I

10.1) Prove that the set {0} is always an ideal.

10.2) Prove that every ideal contains zero.

10.3) Let R be a ring and I be an ideal of R. Prove that if 1 ∈ I, then I = R.

10.4) Prove that a ring R is a field if and only if the only ideals of R are {0}
and R.

10.5) Identify which of the following sets are ideals. Give a careful explanation
of why the set in question is an ideal or is not an ideal.

(i) 4Z = {4n : n ∈ Z} ⊆ Z

(ii) (8Z ∩ 12Z) ⊆ Z

(iii) The subset of Z[x] consisting of the set of polynomials whose constant
term is a multiple of 7.

(iv) The subset of Z[x] consisting of the set of polynomials whose x2 is a
multiple of 7.

(v) The subset of Z[x] consisting of the set of polynomials consisting only of
even degree terms.

(vi) The subset of Z[x] consisting of the set of polynomials with no terms of
degree less than 4.

(vii) The subset of Z[x] consisting of the set of polynomials whose coefficients
sum to zero.
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(viii) The subset of Z[x] consisting of the set of polynomials whose first deriva-
tive with respect to x is zero when evaluated at zero.

(ix) {(n, n) : n ∈ Z} ⊆ Z × Z

(x) {(7n, 0) : n ∈ Z} ⊆ Z × Z

(xi) {(m,n) : m + n is even} ⊆ Z × Z

(xii) {(2m, 3n) : m,n ∈ Z} ⊆ Z × Z

10.6) List all the ideals of Z12.

10.7) List all the ideals of Z3 × Z3.

10.8) Let ℓ = {(a, b) ∈ R2 : 3a + 2b = 4} be a line in R2. Prove that

I = {f(x, y) ∈ R[x, y] : f(a, b) = 0 for all (a, b) ∈ ℓ}

is an ideal of R[x, y].

10.9) Let S2 = {(a, b, c) ∈ R3 : a2 + b2 + c2 = 1} be the unit sphere in R3.
Prove that

I = {f(x, y, z) ∈ R[x, y, z] : f(a, b, c) = 0 for all (a, b, c) ∈ S2}

is an ideal of R[x, y, z].

10.10) Let I and J be ideals of R.

(i) Prove that I + J = {a + b : a ∈ I and b ∈ J} is an ideal of R.

(ii) Prove that IJ = {∑ aibj : ai ∈ I and bj ∈ J} is an ideal of R.

(iii) Prove that I ∩ J is an ideal of R.

10.11) Find a ring R along with two ideals I and J such that I ∪ J is not an
ideal of R.

10.12) Summarize the conclusions of (10.10) and (10.11).

10.13) Let I and J be ideals of R. Prove that:

IJ ⊆ (I ∩ J)

Give an example of where IJ 6= (I ∩ J).

10.14∗) For m,n ∈ Z, when is it the case that

(m · n)Z = mZ ∩ nZ?

10.15) Given a ring R, if a ∈ R, we write (a) to denote the smallest ideal of R
containing a. On the other hand, we write aR to denote all the multiples of a.
Prove that:

(a) = {ar : r ∈ R} = aR
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10.16) Given a ring R, if X ⊆ R, we write (X) to denote the smallest ideal of
R containing the subset X. Prove that

(X) =

{
n∑

i=1

airi : ri ∈ R, ai ∈ X, and n is some nonnegative integer

}

.

We call X a generating set for the ideal. Note, X could be infinite!

10.17) An ideal I is called a principal ideal if it is generated by a single
element. Prove that the following ideals are principal ideals:

(i) (3, 6, 9) ⊆ Z

(ii) (−18, 9) ⊆ Z

(iii) Z as an ideal of Z

(iv) (2, 3) ⊆ Z

(v) (12, 18) ⊆ Z

10.18) Can you think of a ring with an ideal that is not principal?

10.19) Consider f, g ∈ R[x] where R is a domain.

(i) Prove that given two polynomials f and g

deg(f+g) 6 max{deg(f),deg(g)} and deg(f ·g) = deg(f)+deg(g).

(ii) Prove or disprove: The ideal (2, x) is not principal in Z[x].

(iii) Prove or disprove: The ideal (2, x) is not principal in F [x] where F is a
field.

Theorem 11 (Division Theorem) Given any integer n and a nonzero integer
d, there exist unique integers q and r such that

The above space has intentionally been left blank for you to fill in. Remember
with division we are trying to fill in the following diagram:

d
q Rr

)
n where

d is the divisor
n is the dividend
q is the quotient
r is the remainder
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11.1) How do you know when integers n, d, q, and r satisfy the above property?
Write this into the Division Theorem above.

11.2) We will prove that the quotient and remainder in the Division Theorem
are unique.

(i) Suppose that (q1, r1) and (q2, r2) both satisfied the conditions of the Di-
vision Theorem for a divisor n and dividend d. Use these two equations
to produce a third equation relating d, q1, q2, r1, and r2.

(ii) If q1 6= q2 explain why |r1 − r2| > |d|.

(iii) Prove uniqueness of the quotient and remainder in the Division Theorem.

11.3) We will prove that the quotient and remainder in the Division Theorem
exist.

(i) Prove the existence of q and r if n = 0.

(ii) Prove the existence of q and r if d|n.

(iii) Suppose that n 6= 0 and d ∤ n. Consider the set:

S = {n − dk : k ∈ Z} ∩ N

Explain why S is not empty.

(iv) Explain why S has a least element.

(v) Call the least element found above r, explain why r < |d|.

(vi) Explain how to choose q satisfying the conditions of the Division Theorem.

11.4) Using our work above, write a complete proof of the Division Theorem.

11.5) Formulate and prove a version of the Division Theorem for integers allow-
ing negative remainders. Will you be able to preserve uniqueness of the quotient
and remainder? Give a proof or counterexample.

Definition 12 Given a ring R, g is called a greatest common divisor of
two elements a and b provided that

(i) g|a and g|b.

(ii) If d is an element where d|a and d|b, then d|g.

12.1) Given n ∈ Z, what is (n, 0)? Prove your conclusion.

12.2) Prove that if n is any integer, then (a + n · b, b) = (a, b).

12.3) If g = (a, b) and u is a unit, prove that gu is also a greatest common
divisor of a and b.
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12.4) Given nonzero a, b ∈ Z, we will prove that g = (a, b) is the smallest

positive integer such that
g = a · m + b · n

for some integers m and n.

(i) Let S = {x ∈ N : x = a ·m + b · n for m,n ∈ Z}. Prove that S has a least
element, call it d.

(ii) Prove that d|x for all x ∈ S.

(iii) Prove that d|a and d|b, explain why 1 6 d 6 g.

(iv) Recall that d = a · m + b · n, and prove that g|d. Explain why we must
conclude that d = g.

12.5) Let a, b, and c be nonzero integers. Suppose that

a|bc and (a, b) = 1.

Prove that a|c.

12.6) We will prove that in the integers, all irreducible elements are prime, see
(6.5). Let p be irreducible and let a, b ∈ Z such that p|ab.

(i) Suppose that p ∤ a, explain why (a, p) = 1.

(ii) Write 1 = am + pn, multiply both sides by b.

(iii) Can you finish it from here?

Remark The statements of (12.4), (12.5), and (12.6) are all sometimes referred
to as Euclid’s Lemma.

12.7) Prove that if (m,n) = 1, then

in ≡ jn (mod m) ⇒ i ≡ j (mod m).

Theorem 12.8 (Euclidean Algorithm) We can easily compute the GCD of
two numbers using the following algorithm:
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The above space has intentionally been left blank for you to fill in.

12.9) Study the following calculations:

22 = 6 · 3 + 4

6 = 4 · 1 + 2

4 = 2 · 2 + 0 ∴ (22, 6) = 2

33 = 24 · 1 + 9

24 = 9 · 2 + 6

9 = 6 · 1 + 3

6 = 3 · 2 + 0 ∴ (33, 24) = 3

42 = 16 · 2 + 10

16 = 10 · 1 + 6

10 = 6 · 1 + 4

6 = 4 · 1 + 2

4 = 2 · 2 + 0 ∴ (42, 16) = 2

Explain how the above algorithm works and write it under the Euclidean
Algorithm above.

12.10) We will prove that when working with integers, the Euclidean Algorithm
will always produce the GCD of two numbers.

(i) Prove that the remainders found in the Euclidean Algorithm form a de-
creasing sequence.

(ii) Prove that this sequence must terminate with a final remainder of zero.

(iii) Proceed by induction on the number of steps in the Euclidean Algorithm.
If there are two steps:

a = b · q1 + g

b = g · q2 + 0

Prove that any divisor of both a and b is necessarily a divisor of g. Explain
why this proves that g = (a, b).
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(iv) Now suppose that any time we have n + 1 equations:

a = b · q1 + r1

b = r1 · q2 + r2

...

rn−2 = rn−1 · qn + rn

rn−1 = rn · qn+1 + 0

that rn = (a, b). Prove that when we have n + 2 equations, rn+1 = (a, b).

(v) Explain how we have proved that when working with integers, the Eu-
clidean Algorithm will always produce the GCD of two numbers.

12.11) Prove that if x = am + bn and d is a common divisor of a and b, then
d|x. What does this say about the GCD of a and b?

12.12) Each of the following ideals of Z is principal, use the Euclidean algorithm
to find the generator.

(i) (12, 16) ⊆ Z

(ii) (12, 17) ⊆ Z

(iii) (12, 18) ⊆ Z

(iv) (12, 16, 24) ⊆ Z

(v) (12, 16, 24, 35) ⊆ Z

12.13) Explain why the notation (a, b) for the GCD of a and b along with the
notation (a, b) for the ideal generated by a and b is not confusing at all.

12.14) Prove that for m,n ∈ Z if (m,n) = 1, then

(m · n)Z = mZ ∩ nZ.

See (10.13) and (10.14).

Definition 13 A Diophantine equation is an equation where one insists
that the solutions are integers.

13.1) Study the following calculations:

22 = 6 · 3 + 4 ⇔ 22 − 6 · 3 = 4

6 = 4 · 1 + 2 ⇔ 6 − 4 · 1 = 2

4 = 2 · 2 + 0

6 − 4 · 1 = 2

6 − (22 − 6 · 3) · 1 = 2

6 · 4 + 22(−1) = 2
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33 = 24 · 1 + 9 ⇔ 33 − 24 · 1 = 9

24 = 9 · 2 + 6 ⇔ 24 − 9 · 2 = 6

9 = 6 · 1 + 3 ⇔ 9 − 6 · 1 = 3

6 = 3 · 2 + 0

9 − 6 · 1 = 3

9 − (24 − 9 · 2) · 1 = 3

9 · 3 + 24 · (−1) = 3

(33 − 24 · 1) · 3 + 24 · (−1) = 3

33 · 3 + 24 · (−4) = 3

Explain how to solve Diophantine equations of the form

ax + by = g

where g = (a, b).

13.2) For each of the following Diophantine equations, give a solution or explain
why no solution exists.

(i) 20x + 13y = 1

(ii) 20x + 13y = 2

(iii) 18x + 17y = 5

(iv) 18x + 22y = 14

(v) 18x + 22y = 5

13.3) Explain how to solve Diophantine equations of the form

ax + by = c.

Also explain how to identify when such an equation has no solution.

13.4) We will construct multiplicative inverses in Zp.

(i) Consider x ∈ Zp where x 6= 0. Explain why (x, p) = 1.

(ii) Use (12.4) to give an equation relating x and p.

(iii) Explain how you have found an inverse for x in Zp.

13.5) Find the following ring elements:

(i) Find the multiplicative inverse of 9 in Z11.

(ii) Find the multiplicative inverse of 5 in Z13.

(iii) Find the multiplicative inverse of 7 in Z17.

(iv) Find the multiplicative inverse of 5 in Z12.

(v) Find the multiplicative inverse of 7 in Z24.
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13.6) Given an integer n, explain which elements in Zn have multiplicative
inverses.

Definition 14 An integral domain where every ideal is principal is called a
principal ideal domain or a PID.

14.1) We will prove that Z is a principal ideal domain.

(i) Explain why an ideal I ⊆ Z has a least positive element.

(ii) Call the least positive element found above a ∈ I. Explain why a neces-
sarily divides any other element of I.

(iii) Explain why (a) = I.

14.2) Give some examples of PID’s and also give some nonexamples of PID’s.

14.3) Write down an ideal of Z generated by an infinite number of elements.
Explain how you know that one element will suffice to generate this ideal.

14.4) Compare/contrast the methods used to solve (12.12) and (14.1).

14.5) What properties of the integers are needed to ensure that the technique
of (14.1) will produce a principal ideal?

14.6) Prove that if R is a PID, then all irreducible elements are prime, see (6.5).
Hint, see (12.6).

Definition 15 An integral domain R is called a euclidean domain if there
is a function d : R − {0} → N such that

(i) For all nonzero a and b, d(a) 6 d(ab).

(ii) For all a, b ∈ R with b 6= 0, we can find q and r in R such that

a = bq + r, d(r) < d(b) or r = 0.

Theorem 15.1 Prove that every euclidean domain is a PID.

Sketch of Proof See (14.1). �

Theorem 15.2 (Polynomial Division Theorem) Let F be a field and consider
any polynomial n(x) ∈ F [x] and a nonzero polynomial d(x). Then there exist
unique polynomials q(x) and r(x) such that

n(x) = d(x)q(x) + r(x) with r(x) = 0 or deg(r) < deg(d).

15.3) Prove that the quotient and remainder in the Polynomial Division The-
orem are unique.

(i) Suppose that (q1, r1) and (q2, r2) both satisfied the conditions of the the-
orem for a divisor n(x) and dividend d(x). Use these two equations to
produce a third equation relating d, q1, q2, r1, and r2.
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(ii) If q1 6= q2 explain why deg(r1 − r2) > deg(d).

(iii) Prove uniqueness of the quotient and remainder in the Polynomial Division
Theorem.

15.4) We will prove that the quotient and remainder in the Polynomial Division
Theorem exist.

(i) Prove the existence of q(x) and r(x) if deg(n(x)) = 0.

(ii) Prove the existence of q(x) and r(x) if d(x)|n(x).

(iii) Suppose that deg(n(x)) 6= 0 and d(x) ∤ n(x). Consider the set:

S = {1 + deg(n(x) − d(x)k(x)) : k(x) ∈ F [x]}

Explain why S is not empty.

(iv) Explain why S has a least element.

(v) Use the least element found above to obtain an element r(x) and explain
why deg(r) < deg(d). Hint, suppose that deg(r) > deg(d) and consider
the polynomial

s(x) = r(x) − cxdeg(r)−deg(d) · d(x)

for some suitable value of c.

(vi) Explain how to choose q(x) satisfying the conditions of the Polynomial
Division Theorem.

15.5) Explain why a polynomial ring over a field in a single variable is a eu-
clidean domain.

15.6) Is Z[x] a euclidean domain? Prove your claim.

15.7) Is F [x, y] a euclidean domain? Prove your claim.

15.8) Prove that the polynomial xn − 1 ∈ Q[x] is divisible by the polynomial
xm − 1 if and only if m|n.

15.9) Factor the polynomials x − 1, x2 − 1, x3 − 1, . . . , x12 − 1 into as many
factors with rational coefficients as possible. Can you find a pattern? Can you
predict the number of irreducible factors of xn − 1 in Q[x]?

15.10) We will prove that the ring of Gaussian integers Z[i] is a euclidean
domain and hence is a PID.

(i) Very briefly explain why the Gaussian integers are a domain.

(ii) Prove that d(a+bi) = a2+b2 satisfies (i) from the definition of a euclidean
domain.
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(iii) To see (ii) from the definition of a euclidean domain, we wish to show that
given α, β ∈ Z[i] with β 6= 0, there exists γ and ρ such that

α = βγ + ρ, where d(ρ) < d(β) or ρ = 0.

(iv) Prove the existence of γ and ρ if α = 0.

(v) Prove the existence of γ and ρ if β = ±1,±i.

(vi) Suppose that α 6= 0 and d(β) > 1. Consider the set:

S = {d(α − βδ) : δ ∈ Z[i]}

Explain why S is not empty.

(vii) Explain why S has a least element. Use this element to produce an element
in Z[i], call it ρ.

(viii) If you plot β in the complex plane, explain why i is merely a 90◦ counter-
clockwise rotation.

(ix) Noting that
β · (a + bi) = β · a

︸︷︷︸

scales by α

+ β · bi
︸ ︷︷ ︸

rotates 90◦

and scales by b

draw a lattice in the complex plane representing complex multiples of β.

(x) Explain why d(ρ) < d(β) and how to choose γ.

15.11) Prove that Z[ω] is a euclidean domain where

ω = e2πi/3 = −1

2
+

√
−3

2

and d(a + bω) = a2 − ab + b2. Hint, see (15.10) and think about the following
elementary claim from geometry: Given a rhombus of side length a, any point
in the rhombus is at most of distance a from any corner.

15.12) Prove that a PID will satisfy the ascending chain condition (ACC) on
ideals: Given any ascending chain of ideals

I0 ⊆ I1 ⊆ · · · ⊆ In ⊆ · · ·

there exists a value m such that

Im = Im+1 = Im+2 = · · ·

15.13) Explain factorization of integers in terms of ascending chains of ideals.

15.14) Each of the following ideals of Z2[x] is principal, use the Euclidean
algorithm to find the generator.
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(i) (x2 + 1, x2 + x) ⊆ Z2[x]

(ii) (x3 + x, x2 + x) ⊆ Z2[x]

(iii) (x3 + x + 1, x2 + x) ⊆ Z2[x]

(iv) (x5 + x2 + x, x4 + x, x3 + x2) ⊆ Z2[x]

15.15∗) Are there principal ideal domains that are not euclidean domains?

15.16) Given any euclidean domain R, prove Euclid’s Lemma (all three forms)
for R. See (12.4), (12.5), and (12.6).

15.17) Draw a Venn diagram showing the relationship between rings, integral
domains, fields, principal ideal domains, and euclidean domains. Give relevant
and revealing examples for each section of the diagram. You might need to leave
some “mystery” in your diagram!

Definition 16 An integral domain R is called a unique factorization do-

main (or UFD) if every nonzero, nonunit element x ∈ R has the following two
properties:

(i) x can be written as a finite product of irreducible elements.

(ii) The product is unique up to order and multiplication by units.

16.1) Explain why every field is a UFD.

16.2) We will show that every nonunit integer has a factorization into irre-
ducible elements. Let B be the set of integers whose absolute value is greater
than 1 that do not factor into irreducible elements.

(i) How do we know that B has a least element ℓ?

(ii) Explain why ℓ is not irreducible.

(iii) Explain why ℓ = m · n where m,n < ℓ.

(iv) What can you conclude about m and n? What does this say about ℓ?

16.3) We will show that if a nonunit integer has a factorization into irreducible
elements, then this factorization is unique up to ordering and units.

(i) Let n be the number with the smallest absolute value such that it has two
distinct factorizations into units u, v, and irreducibles:

n = u · p1 · p2 · · · pr = v · q1 · q2 · · · qs

By Euclid’s Lemma (12.6), we have that p1|q1q2 · · · qs implies that p1|qi

for some i. Hence p1 = qi.

(ii) Finish the proof.
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Remark Exercises (16.2) and (16.3) prove that Z is a UFD. If we restrict
ourselves to the natural numbers, then we can avoid the issue with units. The
theorem that states that factorization is unique in the natural numbers is called
the Fundamental Theorem of Arithmetic.

Theorem 16.4∗ Every PID is a UFD.

Corollary Every euclidean domain is a UFD.

16.5) Factor x4 + 1 in Z[i] and in Z[
√

2]. Note, both rings are UFD’s.

16.6) We will show that in R = Z[
√
−5], some numbers can factor into irre-

ducible elements in two different ways.

(i) Define a function

N : R − {0} → N

a + b
√
−5 7→ a2 + 5b2

Prove that N(α) · N(β) = N(αβ).

(ii) Prove that µ is a unit in R if and only if N(µ) = 1.

(iii) Prove that 2, 3, 1 +
√
−5, and 1 −

√
−5 are all irreducible in R.

(iv) Find two distinct factorizations of 6 into irreducible elements in R.

(v) Could it be the case that there are units u, v ∈ Z[
√
−5] with u·2 = 1±

√
−5

and v · 3 = 1 ∓
√
−5?

Explain why Z[
√
−5] is not a UFD, and hence not a euclidean domain.

16.7) Draw a Venn diagram showing the relationship between rings, integral
domains, fields, principal ideal domains, euclidean domains, and unique factor-
ization domains. Give relevant and revealing examples for each section of the
diagram. You might need to leave some “mystery” in your diagram!
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Chapter 3

Quotient Rings and

Homomorphisms

Definition 17 Given a ring R and an ideal I ⊆ R, we can form a new ring
called the quotient ring R/I. The elements of R/I consist of left additive
cosets of I with addition and multiplication defined as follows:

(a + I) + (b + I) = (a + b) + I

(a + I) · (b + I) = (ab) + I

17.1) Let R = Z6 and let I = (2). Explicitly write out the elements of R/I.

17.2) Let R = Z9 and let I = (3). Explicitly write out the elements of R/I.

17.3) Let R = Z3 × Z4 and let I = ((2, 3)). Explicitly write out the elements
of R/I.

17.4) Let R = Z and let I = (6). Explicitly write out the elements of R/I.
Explain how R/I is in essence Z6.

Definition 18 An equivalence relation ∼ on a set R is a a subset of R×R
satisfying the following three conditions:

(i) Reflexivity: x ∼ x for all x ∈ R.

(ii) Symmetry: If x ∼ y, then y ∼ x.

(iii) Transitivity: If x ∼ y and y ∼ z, then x ∼ z.

Given an equivalence relation, the set [x] = {y ∈ R : y ∼ x} is called the
equivalence class of x.

18.1) Given an ideal I ⊆ R, prove that x + I = y + I if and only if x ∈ y + I.

18.2) Given an ideal I ⊆ R, prove that x + I = y + I if and only if x − y ∈ I.
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18.3) Given an ideal I ⊆ R, prove that

x + I = y + I

is an equivalence relation on the set of cosets of I.

18.4) Given an ideal I ⊆ R, prove that the operations defined on the left cosets
of I are well-defined. That is, prove that if

a + I = b + I and c + I = d + I,

then
(a + I) + (c + I) = (b + I) + (d + I).

A similar statement should be shown for multiplication of cosets of I.

18.5) Suppose we dreamed up a new operation ⋆ on fractions:

a

b
⋆

c

d
=

max(a, c)

max(b, d)

Prove that ⋆ is not well-defined over Q.

18.6) Given a ring R and an ideal I, prove that R/I is a ring.

18.7) Let R = Z[x] and let I = (x2 + 1). Working in R/I, take x, square it,
add 1 to it. What do you have? Is this strange?

Definition 19 Let R be a domain and consider

F (R) = {(a, b) : a, b ∈ R and b 6= 0}

where
(a, b) ≡ (c, d) ⇔ ad = bc,

along with the following operations:

(a, b) + (c, d) = (ad + bc, bd) and (a, b) · (c, d) = (ac, bd)

F (R) is called the field of fractions of R.

19.1) Does F (R) look familiar? It should!

19.2) In the definition of F (R), why do we insist that R be a domain.

19.3) Prove that ≡ is an equivalence relation on F (R).

19.4) Prove that “addition” and “multiplication” are well-defined for F (R).

19.5) Prove that F (R) is a field.

19.6) Describe F (F (R)).
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Definition 20 A homomorphism of rings is a map ϕ : R → S such that for
all a, b ∈ R:

(i) ϕ(1R) = 1S .

(ii) ϕ(a +R b) = ϕ(a) +S ϕ(b).

(iii) ϕ(a ·R b) = ϕ(a) ·S ϕ(b).

20.1) Let ϕ : R → S be a homomorphism of rings. Prove that

ϕ(0) = 0.

20.2) Let ϕ : R → S be a homomorphism of rings. Prove that

ϕ(−a) = −ϕ(a).

20.3) Let ϕ : R → S be a homomorphism of rings. Prove that ϕ maps units to
units and zerodivisors to zerodivisors.

20.4) Prove that the inclusion Z →֒ Z[x] is a ring homomorphism.

20.5) Prove that the map ϕ : Z → Z2 via

ϕ(x) =

{

0 if x is even,

1 if x is odd,

is a surjective homomorphism of rings.

20.6) Prove that the map ϕ : Z → Z3 via

ϕ(x) =







0 if x ≡ 0 (mod 3),

1 if x ≡ 1 (mod 3),

2 if x ≡ 2 (mod 3),

is a surjective homomorphism of rings.

20.7) Prove that a homomorphism of rings ϕ : Z → Zn can be defined by
setting ϕ(1) = 1.

20.8) Prove that the map ϕ : Q[x] → Q via

ϕ(f) = f(0)

is a surjective homomorphism of rings.

Definition 21 Let ϕ : R → S be a homomorphism of rings. The kernel of ϕ
is defined as

Ker(ϕ) = {x ∈ R : ϕ(x) = 0}.
The image of ϕ is defined as

Im(ϕ) = {ϕ(x) ∈ S : x ∈ R}.
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21.1) Given a ring homomorphism ϕ : R → S, prove that ϕ is injective if and
only if Ker(ϕ) = (0).

21.2) Given a ring homomorphism ϕ : R → S, prove that Ker(ϕ) is an ideal of
R.

21.3) Give an example showing that Im(ϕ) is not necessarily an ideal of S.

21.4) Given a ring homomorphism ϕ : R → S, prove that Im(ϕ) is a ring.

21.5) Let R be a nonzero ring. Prove that the following are equivalent:

(i) R is a field.

(ii) The only ideals in R are (0) and (1).

(iii) Every homomorphism of R into a nonzero ring S is injective.

21.6) Let R be a ring of characteristic n. Prove that the map ϕ : Z → R defined
by

ϕ(x) =







1 + · · · + 1
︸ ︷︷ ︸

x times

if x > 0,

0 if x = 0,

−1 − · · · − 1
︸ ︷︷ ︸

−x times

if x < 0.

is a homomorphism of rings. Compute Ker(ϕ) for relevant and reveling values
of n.

21.7∗) Determine the number of ring homomorphisms between Zn and Zm.

Definition 22 An isomorphism of rings is a bijective homomorphism of rings.
We say two rings R and S are isomorphic if there is an isomorphism between
them. In this case we write R ≃ S.

22.1) Prove that Z2 × Z3 ≃ Z6.

22.2) Prove that Z3 × Z5 ≃ Z15.

22.3) Prove or disprove that Z3 × Z6 ≃ Z18.

22.4∗) Make a conjecture about when Zm × Zn ≃ Zm·n. Can you prove your
conjecture? Can you further state a “simpler” ring that is isomorphic to Zm ×
Zn? Can you prove this?

22.5) Prove that the rings Z[x] and Q[x] are not isomorphic.

22.6) Given an injective ring homomorphism ϕ : R → S, prove that Im(ϕ) is a
ring that is isomorphic to R.

22.7) Prove that if F is a field and ϕ : F → R is a surjective homomorphism
of rings, then F ≃ R.
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22.8) Given a domain R, prove that the set {(a, 1) : a ∈ R} is a subring of
F (R), see (19), that is isomorphic to R.

22.9) Given a domain R, prove that F (F (R)) ≃ F (R), see (19). Use this
isomorphism to explain why

a/b

c/b
=

a

c
.

Theorem 23 (First Isomorphism Theorem) If ϕ : R → S is a homomorphism
of rings, then

R/Ker(ϕ) ≃ Im(ϕ).

Sketch of Proof Let ϕ : R → S be a homomorphism of rings.

(i) Define θ : R/Ker(ϕ) → Im(ϕ) via

a + Ker(ϕ) 7→ ϕ(a).

(ii) Prove that θ is well-defined.

(iii) Prove that θ is a homomorphism.

(iv) Prove that θ is bijective.

Explain how we have just proved the First Isomorphism Theorem. �

23.1) Prove that Zn ≃ Z/(n). Carefully explain the distinction between Zn

and Z/(n).

23.2) Given a, b, c, d,m ∈ Z, prove that if

a ≡ b (mod m) and c ≡ d (mod m)

then

(a + c) ≡ (b + d) (mod m) and (a · c) ≡ (b · d) (mod m).

Explain how we have in fact already done this, see (18.4).

23.3) Explain what a GCD of two polynomials is. Hint, see the definition.

23.4) Explain how to perform the Euclidean Algorithm in F [x] where F is a
field. Give some relevant and revealing examples.

23.5) Prove Euclid’s Lemma (all three forms) for polynomials whose coefficients
are in a field. See (12.4), (12.5), and (12.6).

23.6) Do any of the forms of Euclid’s Lemma hold in Z[x]?

23.7) Let F [x] be a polynomial ring over a field. Prove that F [x]/(p(x)) is a
field if and only if p(x) is irreducible, see (14.6).

25



23.8) Prove that R[x]/(x2 + 1) is isomorphic to C.

23.9) Prove that Q[x]/(x2 − 2) is isomorphic to Q(
√

2).

23.10) Prove that F = Z2[x]/(x2 + x + 1) is a finite field. What is the order of
F? See (2.5).

23.11) Prove that F = Z2[x]/(x3 + x + 1) is a finite field. What is the order of
F? See (2.5).
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Chapter 4

Solving Equations

Theorem 24 (Fermat’s Little Theorem) Let a ∈ Z and let p be a prime.
Then p divides ap − a.

Sketch of Proof Proceed by induction on |a| and use (7.2). Hint, start with
a = 0. �

24.1) Explain how Fermat’s Little Theorem could be restated as: If p is a prime
and p ∤ a, then ap−1 ≡ 1 (mod p). Compare this with (5.7) and (5.8).

24.2) Compute the following:

(i) 314 (mod 7)

(ii) 398 (mod 7)

(iii) 3100 (mod 11)

24.3) Give two different methods for finding 2999 (mod 5), one using Fermat’s
Little Theorem and the other using basic problem solving methods.

Definition 25 Let φ(n) be defined to be the number of units of Zn. This is
sometimes written as:

φ(n) = |Z∗
n| or φ(n) = |Un|

The function φ is called the Euler φ-function.

25.1) Give a completely elementary description of the Euler φ-function.

25.2) Try to solve (21.7).

25.3) Compute φ(p) when p is prime and prove that your answer is correct.

25.4) Compute φ(pn) when p is prime and prove that your answer is correct.
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Theorem 25.5 Let m,n ∈ N with (m,n) = 1, then

φ(mn) = φ(m) · φ(n).

Sketch of Proof Consider the following array of natural numbers:

1 2 · · · ℓ · · · m
m + 1 m + 2 · · · m + ℓ · · · 2m
2m + 1 2m + 2 · · · 2m + ℓ · · · 3m

...
...

...
...

(n − 1)m + 1 (n − 1)m + 2 · · · (n − 1)m + ℓ · · · nm

(i) Explain why every entry in a given column is congruent to the same ele-
ment modulo m.

(ii) Explain why each column contains a different element modulo m. Also
explain why each element of Zm is accounted for in each row.

(iii) Explain why

im + r ≡ jm + r (mod n) ⇒ i ≡ j (mod n).

Hint, use Euclid’s Lemma.

(iv) Explain why every entry in a given column is distinct modulo n. Also
explain why each element of Zn is accounted for in each column.

Finish the proof of the above theorem. �

25.6) Given any natural number n ∈ N, explain how to compute φ(n) and give
a formula.

Theorem 25.7 (Chinese Remainder Theorem) Let m,n ∈ N with (m,n) = 1.
Then given y, z ∈ Z there is a unique integer x between 1 and mn satisfying

x ≡ y (mod m) and x ≡ z (mod n).

Sketch of Proof Use the idea from (25.5). �

25.8) Given two integers m and n such that (m,n) = 1, prove that

Z/(mn) ≃ Z/(m) × Z/(n),

see (22.4). Hints:

(i) Define a map ϕ : Z → Z/(m) × Z/(n) via

x 7→ (x + (m), x + (n))

(ii) Prove ϕ is a homomorphism of rings.
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(iii) Prove that ϕ is surjective.

(iv) Compute Ker(ϕ).

(v) See (12.14).

Use the First Isomorphism Theorem (23) to complete the proof.

25.9) Explain how the result of the above exercise is the Chinese Remainder
Theorem in disguise.

Theorem 26 (Descartes’ Factor Theorem) If α is a root of a nonzero poly-
nomial f(x) whose coefficients are in a field, then (x − α) is a factor of f(x).

Sketch of Proof Use the Division Theorem for polynomials, see (15.2). �

26.1) We will prove that a nonzero polynomial of degree n over a field has at
most n roots via induction on n.

(i) Prove the theorem when n = 0.

(ii) Now consider the case when the degree of the polynomial is positive. How
many roots could this polynomial have? Zero? One? More?

(iii) Finish this proof.

Definition Letting F be a field, define the formal derivative of a polynomial
f(x) ∈ F [x] as follows:

f(x) = anxn + an−1x
n−1 + · · · + a2x

2 + a1x + a0

f ′(x) = n · anxn−1 + (n − 1) · an−1x
n−2 + · · · + 2 · a2x + a1

26.2) Prove the product rule for formal derivatives.

26.3) Prove that f(x) and its formal derivative f ′(x) have a common root in F
if and only it is a multiple root of f(x).

26.4) Let f(x) be a polynomial over a field F whose derivative is 0. Prove that
if F has characteristic 0, then f(x) is a constant polynomial. What can one say
when F has positive characteristic p?

26.5) Derive the quadratic formula.

26.6) Explain why one might say the complex numbers are not required for
“solving” quadratic equations.

26.7) Explain how to solve cubic equations.

26.8) Explain why complex numbers are required for solving cubic equations.

Theorem 26.9∗ (Fundamental Theorem of Algebra) Every nonconstant poly-
nomial in C[x] has at least one root z ∈ C.

29



26.10) Prove that a polynomial of positive degree n in C[x] has exactly n roots
in C.

26.11) Show that every polynomial of positive degree in R[x] can be factored
as a product of polynomials in R[x] each with degrees 1 or 2.

Definition 27 An element α is said to be algebraic over a field F if α is the
root of some nonzero polynomial in F [x].

27.1) Give some relevant and revealing examples of numbers that are algebraic
over fields.

27.2) Prove that the sum, c + α, and the product, cα, of a rational number c
and and algebraic number α are algebraic numbers over Q.

Definition If α is algebraic over a field F , then a nonzero polynomial of least
degree having α as a root is called a minimal polynomial for α.

27.3) Explain why every element that is algebraic over a field has a minimal
polynomial.

27.4) Prove that if α is algebraic over a field F , then a polynomial m(x) is
minimal polynomial for α if and only if m(α) = 0 and m(x) is irreducible.

27.5) Prove that if α is algebraic over a field F , then a minimal polynomial for
α divides every polynomial in F [x] having α as a root.

27.6) Prove that if α is algebraic over a field F , then two minimal polynomials
differ by a constant factor.

27.7) Find minimal polynomials for the following elements and fields:

(i)
√

2 over Q

(ii) i over Q

(iii)
√

2 +
√

3 over Q

(iv)
√

2 +
√

3 over Q(
√

2)

(v) i
√

2 over Q

(vi) i
√

2 over Q(
√

2)

Theorem 27.8 Given a field F and an element α algebraic over F with some
minimal polynomial m(x) ∈ F [x], then

F [x]/(m(x)) ≃ F (α).

Sketch of Proof Consider the map ϕ : F [x]/(m(x)) → F (α) via

f(x) + (m(x)) 7→ f(α).
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(i) Construct a homomorphism ϕ : F [x] → F [α].

(ii) Explain why ϕ is surjective.

(iii) Compute Ker(ϕ).

(iv) Use the First Isomorphism Theorem (23).

(v) Explain why F [x]/(m(x)) is a field and why F [α] is a field.

(vi) Explain why F [α] = F (α).

Explain how we have just proved the theorem. �

Definition 28 Let

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0

be a polynomial in Z[x]. The content of f , denoted by c(f) is the GCD of the
coefficients of f .

28.1) Given f(x) ∈ Q[x], prove that there exists d ∈ Z such that c(d ·f(x)) = 1.

28.2) Prove that if f, g ∈ Z[x], then

c(fg) = c(f) · c(g).

Theorem 28.3 (Gauss’ Lemma) Let f(x) be a polynomial in Z[x] with c(f) =
1. If f(x) is irreducible in Z[x], then f(x) is irreducible in Q[x].

Sketch of Proof Prove the contrapositive of the statement and clear denom-
inators when necessary. �

28.4) Prove that if a polynomial factors in Z[x], then it factors in Zp[x] for
some prime p. Is the converse true? Give a proof or counterexample.

28.5) Prove a polynomial that factors in Z[x] also factors in Zp[x] if its de-
gree in Z[x] is equal to its degree in Zp[x]. Explain why the condition on the
degree of the polynomial is necessary. Is the converse true? Give a proof or
counterexample.

28.6) Prove that if a polynomial is irreducible in Zp[x], then it is irreducible in
Z[x].

28.7) Consider a polynomial f(x) ∈ Z[x] and a prime p. Prove that if the image
of f(x) in Zp[x] (call it f(x)) is irreducible and deg(f) = deg(f), then f(x) is
irreducible in Z[x].

Theorem 28.8 The ring Z[x] is a UFD.

Sketch of Proof Explain why Q[x] is a UFD and use Gauss’ Lemma. �
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28.9) Prove that there are infinitely many irreducible (prime) numbers in N.

28.10) Let F be a finite field. Prove that there is a polynomial of positive
degree in F [x] with no roots in F .

28.11) Prove there are an infinite number of irreducible polynomials in F [x]
where F is any field.

28.12) Let F be a field with α ∈ F . Prove that f(x) ∈ F [x] is irreducible if
and only if the polynomial g(x) = f(x + α) is also irreducible.

28.13) Determine whether the following polynomials are irreducible in the rings
indicated. For those that are reducible, determine their factorization into irre-
ducible polynomials.

(i) x2 + x + 1 in Z2[x].

(ii) x3 + x + 1 in Z3[x].

(iii) x4 + 1 in Z5[x].

(iv) x4 + 10x2 + 1 in Z[x]

(v) x4 + 10x + 1 in Z[x].

(vi) x4 + 2x2 + 1 in Z[x].

28.14) Find all irreducible polynomials of degree less than 5 in Z2[x].

28.15) How many irreducible quadratic polynomials are there over a finite field
of n elements?

Theorem 29 (DeMoivre’s Theorem) Let α be any nonzero complex number.
Then the equation

xn − α = 0

has exactly n distinct roots, all of which are complex numbers.

Sketch of Proof We will give a direct proof of DeMoivre’s Theorem without

appealing to the Fundamental Theorem of Algebra.

(i) Prove that eiθ = cos(θ) + i sin(θ).

(ii) Prove that any complex number a + bi can be expressed as Reiθ where
R ∈ R and θ ∈ [0, 2π).

(iii) Explain why if α = R(cos(θ) + i sin(θ)), then

n
√

R · e
i(θ+2kπ)

n

is a root of xn − α.

(iv) Plot the roots on the unit circle, how many are there?
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Explain how we have proved the theorem. �

Definition For n ∈ N, let
ζn = e2πi/n

In this case we call ζk
n an nth-root of unity, where k ∈ N.

29.1) Prove that ζk
nζk

n = 1, where ζk
n is the complex conjugate of ζk

n. Explain
what this means geometrically.

29.2) Prove that the set

Kn = {ζk
n = e2kπi/n : k ∈ N}

is a cyclic group under multiplication. Further prove that Kn ≃ Zn as groups.

29.3) If n = 2m, prove that

xn − 1 = (x − 1)(x + 1)q1(x) · · · qm−1(x)

where qi(x) are distinct irreducible polynomials in R[x]. Hint, see (26.11).

29.4) If n = 2m + 1, prove that

xn − 1 = (x − 1)q1(x) · · · qm(x)

where qi(x) are distinct irreducible polynomials in R[x]. Hint, see (26.11).

Definition A number ζ is called a primitive nth root of unity if

ζn = 1 and ζm 6= 1

for all m < n where m,n ∈ N.

Theorem 29.5 A number ζk
n, where 1 6 k 6 n, is a primitive nth root of

unity if and only if (k, n) = 1.

Sketch of Proof (⇒) Seek a contradiction supposing that ζk
n is a primitive

nth root of unity and that (k, n) 6= 1.
(⇐) Seek a contradiction supposing (k, n) = 1 and ζk

n is not a primitive nth
root of unity. Use the fact that the order of ζn in Kn is n and Euclid’s Lemma
(12.5). �

29.6) Prove that given a prime p ∤ n, the primitive nth roots of unity are given
by

{ζkp
n : 1 6 k 6 n}.

29.7) Prove that there are exactly φ(n) primitive roots of unity in C.

Definition 30 The nth cyclotomic polynomial is defined as:

Φn(x) =
∏

(k,n)=1
k<n

(x − ζk
n)
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30.1) What is the degree of Φn(x)?

30.2) Carefully explain each step shown below:

xn − 1 =

n∏

k=1

(x − ζk
n)

=
∏

d|n

∏

(k,d)=1

ζk

d
∈Kn

(x − ζk
d )

=
∏

d|n

Φd(x).

Corollary The upshot of the above exercise is that

Φn(x) =
xn − 1

∏

d|n Φd(x)

30.3) Given a prime p, compute Φp(x).

30.4) Compute Φn for n = 1, . . . , 10.

30.5) Prove that

n =
∑

d|n

φ(d).

Theorem 30.6 The nth cyclotomic polynomial Φn(x) is a monic polynomial
in Z[x] for all n ∈ N.

Sketch of Proof Proceed by induction on n.

(i) Check the case when n = 1.

(ii) Now suppose our statement holds for all values less than n.

(iii) Noting that

xn − 1 =
∏

d|n

Φd(x) = Φn(x) ·
∏

d|n
d6=n

Φd(x).

Hence
∏

d|n
d6=n

Φd(x) divides xn−1 in Q(ζn)[x]. Explain why this is also true

in Q[x]. Big hint, see the Division Theorem for polynomials, see (15.2).
Use this theorem in Q(ζn)[x] and Q[x] utilizing uniqueness!

Explain how to finish the proof. Hint, use (28). �

Theorem 30.7 The nth cyclotomic polynomial Φn(x) is irreducible in Q[x]
for all n ∈ N.

Sketch of Proof Seeking a contradiction, suppose that Φn(x) is not irre-
ducible.
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(i) Explain why we may assume that Φn(x) is reducible in Z[x].

(ii) Explain why we may assume that Φn(x) = f(x) ·g(x) where f(x) and g(x)
are monic polynomials in Z[x] with

deg(f) < φ(n) and deg(g) < φ(n).

Hint, use (28).

(iii) Explain why we may assume that f is a minimal polynomial for ζn.

Now we claim that given a prime p ∤ n, ζp
n is also a root of f(x). Further seek

another contradiction, and suppose that ζp
n is not a root of f(x).

(i) Explain why ζp
n is a root of g(x).

(ii) Explain why f(x)|g(xp) and write g(xp) = f(x) ·h(x), where h(x) ∈ Q[x].

(iii) Explain why we may conclude that h(x) is a monic polynomial Z[x], use
(28).

(iv) Reduce the equation g(xp) = f(x) · h(x) modulo p, writing the image of
the polynomials f , g, and h as f , g, and h:

g(xp) = f(x) · h(x)

(v) Explain how to use the Freshman Binomial Theorem (7.2), or Fermat’s
Little Theorem (24), to conclude that

g(x)p = f(x) · h(x)

(vi) Explain how the fact that Zp[x] is a UFD allows us to conclude that f
and g have a common factor.

(vii) Explain why we must conclude that xn − 1 has a multiple root modulo
p. Further explain why f and g both have x as a factor, see (4). Explain
why this is a contradiction.

Thus we conclude that ζp
n is a root of f(x). Since this argument will work for any

prime p with p ∤ n, we can show that every primitive nth root of unity is a root
of f , see (29.6). This will show that Φn(x) = f , and is hence irreducible. �
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