Math 331: Homework 1
Due: Friday, September 5th

1 (2.1.7) Prove that if P and Q are distinct points in \mathbb{H}, then they cannot lie simultaneously on both aL and cL_r for some choice of a, c, and r.

2 (2.1.19) Some finite geometries are defined pictorially:

![Diagram of geometries](image)

Answer the following questions:

(a) In each example list the set of lines.

(b) Which of these geometries are abstract geometries?

(c) Which of these geometries are incidence geometries?

3 (2.1.20) Let $\{S, \mathcal{L}\}$ be an abstract geometry and assume that $S_1 \subseteq S$. We define an S_1-line to be any subset of S_1 of the form $l \cap S_1$ where $l \in \mathcal{L}$ and where $l \cap S_1$ has at least two points. Let \mathcal{L}_1 be the collection of all S_1-lines. Prove that $\{S_1, \mathcal{L}_1\}$ is an abstract geometry. $\{S_1, \mathcal{L}_1\}$ is called the geometry induced from $\{S, \mathcal{L}\}$.

4 (2.1.21) If $\{S_1, \mathcal{L}_1\}$ is the geometry induced from an incidence geometry $\{S, \mathcal{L}\}$, prove that $\{S_1, \mathcal{L}_1\}$ is an incidence geometry if S_1 has a set of three non-collinear points.

5 (2.1.24) Let $\{S, \mathcal{L}\}$ be an abstract geometry. If l_1 and l_2 are lines in \mathcal{L}, we write $l_1 \sim l_2$ if l_1 is parallel to l_2. Prove or disprove that \sim is an equivalence relation. If $\{S, \mathcal{L}\}$ is the Cartesian Plane then each equivalence class can be characterized by a real number or infinity. What is this number?
6 (2.2.2) Prove that the function \(d_H \) defined by Equations (2-2) and (2-3) on page 28 of your text satisfies axioms (i) and (iii) of the definition of a distance function.

7 (2.2.8) Prove that the function \(g : \mathbb{R} \to \mathbb{R} \) given by \(g(a, y) = \ln(y) \) is a bijection and that it satisfies the Ruler Equation. Also show that the inverse of \(g \) is given by \(g^{-1}(t) = (a, e^t) \).

8 (2.2.18) Define the \textbf{max distance} (or \textbf{supremum distance}), \(d_S \) on \(\mathbb{R}^2 \) by

\[
 d_S(P, Q) = \max\{|x_1 - x_2|, |y_1 - y_2|\}
\]

where \(P = (x_1, y_1) \) and \(Q = (x_2, y_2) \).

(a) Prove that \(d_S \) is a distance function.

(b) Prove that \(\{\mathbb{R}^2, \mathcal{L}, d_S\} \) is a metric geometry.

9 (2.2.19) In a metric geometry \(\{S, \mathcal{L}, d\} \) if \(P \in S \) and \(r > 0 \), then the \textbf{circle with center} \(P \) and \textbf{radius} \(r \) is

\[
 \mathcal{C} = \{Q \in S : d(P, Q) = r\}.
\]

Draw a picture of the circle of radius 1 and center \((0, 0)\) in \(\mathbb{R}^2 \) for each of the distances \(d_E, d_T, \) and \(d_S \).

10 (2.3.2) In the Poincaré Plane find a ruler \(f \) with \(f(P) = 0 \) and \(f(Q) > 0 \) for the given pair \(P \) and \(Q \):

(a) \(P = (2, 3), Q = (2, 1) \).

(b) \(P = (2, 3), Q = (-1, 6) \).

11 (2.3.5) Prove that a line in a metric geometry has infinitely many points.