Math 331: Homework 1 Due: Friday, September 5th

1 (2.1.7) Prove that if P and Q are distinct points in \mathbb{H} , then they cannot lie simultaneously on both $_{a}L$ and $_{c}L_{r}$ for some choice of a, c, and r.

2 (2.1.19) Some finite geometries are defined pictorially:

Answer the following questions:

- (a) In each example list the set of lines.
- (b) Which of these geometries are abstract geometries?
- (c) Which of these geometries are incidence geometries?

3 (2.1.20) Let $\{S, \mathcal{L}\}$ be an abstract geometry and assume that $S_1 \subseteq S$. We define an S_1 -line to be any subset of S_1 of the form $l \cap S_1$ where $l \in \mathcal{L}$ and where $l \cap S_1$ has at least two points. Let \mathcal{L}_1 be the collection of all S_1 -lines. Prove that $\{S_1, \mathcal{L}_1\}$ is an abstract geometry. $\{S_1, \mathcal{L}_1\}$ is called the geometry induced from $\{S, \mathcal{L}\}$.

4 (2.1.21) If $\{S_1, \mathcal{L}_1\}$ is the geometry induced from an incidence geometry $\{S, \mathcal{L}\}$, prove that $\{S_1, \mathcal{L}_1\}$ is an incidence geometry if S_1 has a set of three non-collinear points.

5 (2.1.24) Let $\{S, \mathcal{L}\}$ be an abstract geometry. If l_1 and l_2 are lines in \mathcal{L} , we write $l_1 \sim l_2$ if l_1 is parallel to l_2 . Prove or disprove that \sim is an equivalence relation. If $\{S, \mathcal{L}\}$ is the Cartesian Plane then each equivalence class can be characterized by a real number or infinity. What is this number?

6 (2.2.2) Prove that the function d_H defined by Equations (2-2) and (2-3) on page 28 of your text satisfies axioms (i) and (iii) of the definition of a distance function.

7 (2.2.8) Prove that the function $g: {}_{a}L \to \mathbb{R}$ given by $g(a, y) = \ln(y)$ is a bijection and that it satisfies the Ruler Equation. Also show that the inverse of g is given by $g^{-1}(t) = (a, e^{t})$.

8 (2.2.18) Define the max distance (or supremum distance), d_S on \mathbb{R}^2 by

$$d_S(P,Q) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$$

where $P = (x_1, y_1)$ and $Q = (x_2, y_2)$.

- (a) Prove that d_S is a distance function.
- (b) Prove that $\{\mathbb{R}^2, \mathcal{L}_E, d_S\}$ is a metric geometry.

9 (2.2.19) In a metric geometry $\{S, \mathcal{L}, d\}$ if $P \in S$ and r > 0, then the circle with center P and radius r is

$$\mathcal{C} = \{ Q \in \mathcal{S} : d(P, Q) = r \}.$$

Draw a picture of the circle of radius 1 and center (0,0) in \mathbb{R}^2 for each of the distances d_E , d_T , and d_S .

10 (2.3.2) In the Poincaré Plane find a ruler f with f(P) = 0 and f(Q) > 0 for the given pair P and Q:

- (a) P = (2,3), Q = (2,1).
- (b) P = (2,3), Q = (-1,6).

11 (2.3.5) Prove that a line in a metric geometry has infinitely many points.