Math 331: Homework 2 Due: Friday, September 19

1 (2.3.4) Let *P* and *Q* be points in a metric geometry. Show that there is a point *M* such that $M \in \overrightarrow{PQ}$ and d(P, M) = d(M, Q).

2 (3.1.3) Prove that if L_{AB} is a Cartesian line then $f: L_{AB} \to \mathbb{R}$ defined by

$$f(A + t(B - A)) = t ||B - A||$$

is a ruler for $\{\mathbb{R}^2, \mathcal{L}_E, d_E\}$.

3 (3.1.9) Define a function d_F for points P and Q in \mathbb{R}^2 by

$$d_F(P,Q) = \begin{cases} 0 & \text{if } P = Q \\ d_E(P,Q) & \text{if } L_{PQ} \text{ is not vertical} \\ 3d_E(P,Q) & \text{if } L_{PQ} \text{ is vertical} \end{cases}$$

- (a) Prove that d_F is a distance function on \mathbb{R}^2 and that $\{\mathbb{R}^2, \mathcal{L}_E, d_F\}$ is a metric geometry.
- (b) Prove that the triangle inequality is not satisfied for this distance d_F .

4 (3.2.5) Prove that in the Euclidean plane A - B - C if and only if there is a number t with 0 < t < 1 and B = A + t(C - A).

5 (3.2.6) If A - B - C - D in a metric geometry, prove that $\{A, B, C, D\}$ is a collinear set.

6 (3.3.4) Prove that "congruence" is an equivalence relation on the set of all lines segments in a metric geometry.

7 (3.3.11) Suppose that A and B are distinct points in a metric geometry. $M \in \overleftrightarrow{AB}$ is called a **midpoint** of \overrightarrow{AB} if AM = MB.

- (a) If M is a midpoint of \overline{AB} , prove that A M B.
- (b) If A = (0, 4) and B = (0, 1) are points on the Poincaré Plane, find a midpoint M of \overline{AB} . Sketch A, B, and M, on a graph. Does M look like a midpoint?
- 8 (3.3.12) If A and B are distinct points of a metric geometry, prove that:
 - (a) The segment \overline{AB} has a midpoint M.

(b) The midpoint M of \overline{AB} is unique.

9 (3.3.16) Prove or disprove that in a metric geometry, \overrightarrow{AB} is the set of all points $C \in \overrightarrow{AB}$ such that A is not between C and B.

10 (3.4.1) Prove that $\angle ABC = \angle CBA$ in a metric geometry.