Math 446: Homework 4 Due: Friday, March 13th

1 (878) If a and b are elements of a field F and $b \neq 0$, let a/b denote ab^{-1} . Prove that when $a \neq 0$:

$$\frac{1}{a/b} = \frac{b}{a}$$

2 (87 ζ) Let F be a field and let $E = F \times F$. Define addition and multiplication in E by the rules:

$$(a,b) + (c,d) = (a+c,b+d)$$
 and $(a,b)(c,d) = (ac-bd,ad+bc)$

Determine conditions on F under which E is a field.

3 (87 η) Show that a field homomorphism is always one-to-one or trivial (every element is mapped to zero). Explain why an onto field homomorphism is a field isomorphism.

4 (88\alpha) Show that a subset F of a field E is a subfield if and only if F^* is nonempty and $a, b \in F$ implies $a - b \in F$ and when $b \neq 0$ that $a/b \in F$.

5 (88 δ) Prove that every number field contains \mathbb{Q} .

6 (-) Consider the following \mathbb{Q} -vector space:

$$\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \{ z \in \mathbb{C} : z = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{2}\sqrt{3} \text{ where } a, b, c, d \in \mathbb{Q} \}$$

Prove that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a field.

7 (92 γ) Let $T: E \to E'$ be a linear transformation of F-vector spaces. Show that the sets

$$\operatorname{Ker}(T)=\{\alpha\in E: T(\alpha)=0\}$$

and

$$\operatorname{Im}(T) = \{ \alpha' \in E' : \alpha' = T(\alpha) \text{ where } \alpha \in E \}$$

are subspaces of E and E' respectively.

8 (95 β) Prove that a subspace E' of a finite dimensional vector space E over F is again finite dimensional and that $[E':F] \leq [E:F]$.

9 (95 γ) Let E' be a subspace of a finite dimensional vector space E over F. Prove that when E is finite dimensional the dimension of E is the sum of the dimensions of E' and E/E'.

10 (96 δ) Show that a finite field of characteristic p, see 89α , has p^n elements for some natural number n. Explain why there is no field of order 6.